Feasibility Study of Spatial Reuse in an 802.11 Access Network

A. R. Harish
Department of EE

Sreekanth Garigala
Bhaskaran Raman
Phalguni Gupta
Department of CSE

Indian Institute of Technology, Kanpur
Digital Gangetic Plains (RuralNet)

IITK

Land-line access point (close to high-population density area)

802.11 for last-hop access within a village

Point-to-Point 802.11 link

Lodhar Apr ‘02

Mandhana Jun ‘02

MS3 Jun ‘02

Nov ‘02 Bithoor

Safipur Sep ‘02

22.5 Km

17.3 Km

12 Km

0.9 Km

5.1 Km

2.3 Km

5 Km

12 Km

37 Km

23 Km

22 Km

23 Km

Banthar Jun ‘03

Rasoolabad Mar ‘04

5 Km

Sawaiyajpur Dec ‘03

Bithoor

Sarauhan Dec ‘02

Rajajipura/Lucknow Mar ‘03

End to end distance ~80 Km

River Ganges

Not to scale

Land-line access point (close to high-population density area)
The Ashwini Deployment (Planned) West Godavari, A.P., India
Network Model

- Point-to-point links
- Multiple interfaces (radios) per node
- One directional antenna per link
- Single channel operation
Exposed interface problem within a node:
CSMA/CA (802.11 DCF) inherently allows only one link operation per node

Problems: (a) Immediate ACK, (2) CS back-off
SynOp: SynRx + SynTx

- Links at a node operating simultaneously, synchronously (on the same channel)
- Is this feasible? Yes, under certain conditions

\[
\left| P_{R_1} - P_{R_2} \right| \leq SL_{\alpha} - SIR_{reqd}
\]
Experimental Setup
Interference vs. Throughput

Throughput (Mbps) vs. SIR (dB)

Signal levels: -49 dBm, -53 dBm, -63 dBm, -78 dBm
Conclusions

- Simultaneous **Synchronous Operation (SynOp)** possible with parabolic grid antennae
- SynOp has subsequently been verified on field
 - See HotNets-2004 and Mobicom-2005 papers
- Further work:
 - **More rejection** possible at higher angles of separation
 - **Adjacent channels** can be used
- SynOp has implications for network design in other wireless technologies too: e.g. **WiMax**