ScaleNet: A Platform for Scalable Network
Emulation

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Sridhar Kumar Kotturu

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur

June, 2005

Certificate

This 15 to certify that the work coutained in the thesis entitled “SealoNet: A
Platform for Sealable Network Emulation”, by Sridhar Kumar Kotturu, has been
carried out under my supervision and thal this work has not been submitted clsewhere

for o degree.

June, 2005 (Dr.Bhaskaran Raman)
Deparument of Computer Science & Engineering,
Indian Institute of Technology,

Kanpur.

Abstract

The need for large-scale protocol development environments for protocol testing and
verification has been increasing with the rapid growth of the Internet and the evolu-
tion of network protocols. Due to approximations in network simulation, accuracy
of the reproduction of protocol execution may be less than desired levels. For real
networks, it is very hard to reconfigure and its behaviour is not easily reproducible.

Whereas with emulation, it is easy to reconfigure and its behaviour is easily repro-
ducible.

Dummynet, netbed and remote unix lab environment(RULE) are some of the
emulation platforms. Dummynet can not emulate complex network topologies. It
is not implemented as a loadable kernel module. Its implementation only exists
between TCP and IP layers, so it can not emulate other protocols(eg UDP). Netbed
requires several resources. It uses FreeBSD jail functionality for creation of several
virtual hosts. This jail functionality does not exist in other operating systems,
so in that case it has to do one-to-one mapping of the virtual resources to physical
resources. RULE also creates several virtual hosts on a physical machine, but routing

is not possible between these virtual hosts and it is not scalable.

In this work, we have created ScaleNet, an emulation platform that can emulate
large networks using limited physical resources. This emulation platform can be
used to test any network protocol. Several virtual hosts are created on few physical
systems. NIST Net is used for applying effects such as bandwidth limitation, delay,
packet duplication, packet drops etc. The approach is scalable and cost effective.
We have shown that our emulation platform scales upto 50 virtual hosts per physical
host, while the scalability of Netbed is restricted to about 10-20 virtual hosts per

machine.

Acknowledgements

Tam grateful to my thesis supervisor Dr.Bhaskaran Raman for his guidance
through out this thesis work. I learnt how to do research from him. Inspite of

his busy schedule he was always approachable and gives valuable suggestions.

I also wish to thank all the faculty members of the department of computer
science and engineering for their excellent teaching. I also wish to thank all the
technical staff of the department.

I also like to thank Pratik Mehta for his suggestions and comments on this report.
I also like to thank Anantha Kiran and Srinivasa Rao Myla for their feedback on
the work presented here. T also wish to thank all my classmates for their support

during my stay at IITK.

I would like to thank my parents and brothers for taking me to this stage in life.

Contents

1 Introduction

1.1 Background and Motivation
1.2 Challenges in Scalable Network Emulation
1.3 Contributions of our worko
1.4 Organization of the Report

2 Related Work

2.1 Dummynet
2.2 NIST Net e
2.3 FreeBSD JailHostso
2.4 Netbed L
2.5 User Mode Linux
2.6 Alpine
2.7 Summary e

3 Design and Implementation of ScaleNet

3.1 Overview of ScaleNet Design
3.2 Processing of Outgoing Packets
3.3 Processing of Incoming Packets00,
3.4 Network Topology and Routing
3.5 Virtual Hosts o

i

10
11
12
13
13

3.5.1 Association between Applications and Virtual Hosts

3.5.2 System Call Redirection

4 Experimental Results
4.1 NIST Net Bandwidth Tests
4.1.1 TCP Packets
4.1.2 UDP Packets oL
4.2 Creating 20 Virtual Hosts per System
4.3 Creating 50 Virtual Hosts per System

4.4 Some Tuning Parameters

5 Conclusions and Future Work

A Linux Kernel Programming
A1 Linux Kernel Modules
A2 Netfilter Hookso
A.2.1 Userspace Packet Queuing
A3 ProcFile System oL
Ad doctl’s ..o
A5 sk_buff structureo oo

B Source Code Organization

Bibliography

il

31
32
32
36
39
43
46

50

52
52
o4
o7
o7
o8
99

63

65

List of Tables

2.1
4.1

4.2

4.3

4.4

4.5

4.6

4.7

Comparison of the emulation platforms..

Bandwidth tests using TCP packets and both client, server are run-

ning on the same machine. Lo

Bandwidth tests using TCP packets. Both client and server are run-
ning on the same machine(PIII). The MTU of loopback packets is
changed to 1480 Bytes.o

Bandwidth tests using TCP packets. Both client and server are run-
ning on the same machine(PIV). The MTU of loopback packets is
changed to 1480 Bytes.o oo

Bandwidth tests using UDP packets. Both client and server are run-
ning on the same machine. We are sending 50 packets from client to

server each of size 1000 bytes.

Bandwidth tests using UDP packets. Both client and server are run-
ning on the same machine. We are sending 17400 packets. Through-

put is calculated for every 100 packets.

Bandwidth tests using UDP packets. Both client and server are run-
ning on the same machine. We are sending 18300 packets. Through-

put is calculated for every 100 packets.

Bandwidth tests using UDP packets. Client and Server are running
on the different machines. We are sending 17400 packets. Throughput

is calculated for every 100 packets.

v

4.8 Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.10. For each link
10ms Delay is applied. oL

4.9 Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.10. For each link
10ms Delay is applied.

4.10 Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.10. For each link
5ms Delay is applied. o o oo

4.11 Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.10. For each link
5ms Delay is applied. o oo

4.12 Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.25. For each link
10ms Delay is applied.,

4.13 Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.25. For each link
10ms Delay is applied.

4.14 Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.25. For each link
5ms Delay is applied. o o oo

4.15 Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.25. For each link
5ms Delay is applied. oL

A1 Available IPv4 hooks
A2 Netfilter return codes L.

List of Figures

1.1 Loopback of packets between Ethernet Device Aliases 3
2.1 The Architecture of Dummynet.(from [1]) 7
2.2 NIST Net as a "network in a box". (from [2]) 9
2.3 Jail hosts appear as independent IP hosts on the network. (from [3]) 10
3.1 An example network topology 16
3.2 ScaleNet Architecture Lo 18
3.3 An Example for sending a packet from virtual host 1to3 20
3.4 Processing of Outgoing packets 23
3.5 Processing of Incoming packets 25
4.1 A network topology consisting of 20 nodes per system. 40
4.2 A network topology consisting of 50 nodes per system 45
A.1 IPv4 Netfilter Hooks, 56
A.2 sk_buff Structureo Lo 62

vi

Chapter 1

Introduction

1.1 Background and Motivation

Emulation is a combination of simulation and field testing. Simulation is a process
of execution of representations of code in synthetic environment while field testing is
executing real code in real environment. Emulation involves running real protocols

and operating systems and it applies synthetic delays and faults.

Large networks can be created by using simulation, but they may not exactly
model the real environment. Simulators can not accurately model factors such as
processing overheads, scheduling of processes, disk speeds and CPU load. Real
networks can be used for protocol testing etc., but it is hard to reconfigure and its
behaviour is not easily reproducible. Emulated network doesn’t require real deployed
network. It only needs a software model. It is easy to vary emulated network
configuration and its behavior can be easily reproduced at will. So emulation is the
better alternative.

With the rapid growth of the Internet, network technologies and network proto-
cols there is a need for protocol development environments. These testbeds can be
used for network protocol testing, understanding some peculiar behaviour, finding

the coding bugs, performance analysis of applications etc.

There are several emulation platforms like dummynet|1], nistnet|2], FreeBSD jail

hosts|3|, netbed|4]. Dummynet can not emulate complex network topologies. It can
not apply effects such as packet duplication, delay variation. So we can not exactly
get the real network behaviour. NIST Net can not create several virtual hosts on a
physical machine. FreeBSD jail hosts can create several virtual hosts on a physical
machine. But routing is not possible between these virtual hosts and it is not
scalable. Netbed is very costly. It requires several hardware resources. For creating
several virtual hosts on a physical machine, it uses FreeBSD jail host functionality.
This jail functionality exists only for FreeBSD, so on other operating systems it has
to do one-to-one mapping of virtual hosts to physical hosts. It uses dummynet for

emulation of the links, so we can not get the exact network behaviour.

Our goal is to emulate large networks using few physical resources. Using these
emulated large networks, any kind of network protocol can be studied. Since large
networks are emulated, it is very useful for studying internet scale protocols. Arbi-

trary network topologies can be created. It is cost effective and scalable.

We can do performance analysis of applications using this emulation platform.
This emulated platform can be used for debugging purposes. We may not find all the

bugs in real implementations in simulations but these can be found in emulation.

1.2 Challenges in Scalable Network Emulation

In the emulation platform, we seek to create several virtual hosts on a limited
number of physical machines. For this different IP aliases have to be assigned to the
Ethernet card and each IP alias is treated as a different virtual host. The support of
routing tables for each virtual host is a challenge. Each application program has to
be assigned to some virtual host. While doing this application program code should
not be changed. For example an application issues a command to add a route to
some destination. In normal system there is only one system routing table and the
route is added in that routing table. But in this emulation platform there are several
virtual hosts on a physical machine. So there should be some mechanism to specify
the particular virtual host whose routing table has to be updated. One possibility

is to include the virtual host IP address, whose routing table has to be updated, in

the system call itself. But this requires changing the application program.

Another issue is that routing between different IP aliases is not possible which
poses a major problem. Suppose three IP aliases say 1, 2 and 3 are assigned to
Ethernet interface. Now we want to route packets from IP alias 1 to 3 through alias

2. For this, add an entry in the routing table corresponding to virtual host 1.
#route add 3 gw 2 dev ethO

The above command implies that packets destined for 3 are sent to gateway 2.
But routing is not done, since the IP addresses are local aliases and the routing
table is not consulted to send packets destined for local aliases. This is shown in the
Figure 1.1. The packet should be sent from 1 to 2 and then from 2 to 3, whereas it

is directly delivered to alias 3 in the above example.

Check Destination
Address
IP Output IP Input
A
Y
I'______________';
: Yes Broadcast/

Place on

Input Queue Multicast

Y

Loopback No
Driver

Yes

Own Interface

No

Figure 1.1: Loopback of packets between Ethernet Device Aliases

1.3 Contributions of our work

With this emulation tool large networks with any arbitrary network topology can
be created using few systems. We use NIST Net[2] for applying the effects such as
bandwidth limitation, delay, packet drops, packet duplication etc on the packets in
the emulation platform. The unmodified application code is run on this emulation
platform. As large scale networks are emulated, it is very useful for studying Internet

scale protocols such as BGP.

The required topology is generated on which the protocol testing has to be done.
Several virtual hosts have to be created on each physical system. After that, nodes
in the topology have to be assigned to the virtual hosts on the physical systems.
Routing tables have to be assigned to each virtual host according to the topology of
the network. NIST Net module has to be loaded and initialized with the required
bandwidth limitations, delays etc on each physical host. Any network application

can be run on this emulation platform.

NIST Net module removes the IP protocol handler and registers its own handler
for handling incoming packets. After applying all the effects it hands over the packet
to the IP protocol handler for further processing.

In this emulation platform packets are captured at netfilter hooks in the Linux
kernel network stack and nexthop IP address is found from the routing table cor-
responding to the current virtual host. Nexthop IP address may lie on the same
physical machine or on another physical machine. Extra IP header is added to the
packet with nexthop IP address as the destination IP address and the current vir-
tual host IP address as the source IP address. If the nexthop is on another physical
machine then the destination MAC address is changed to the MAC address of the
nexthop and the packet is transmitted to the nexthop.

We have created 50 virtual hosts on a single physical machine whereas Netbed

created 20 virtual hosts on a single physical machine.

1.4 Organization of the Report

This thesis report is organized as follows. Chapter 2 describes the related work.
Chapter 3 describes the design and implementation of the emulation platform.
Chapter 4 gives the experimental results. Chapter 5 contains conclusions and future
work.

Appendix A describes the aspects of Linux kernel programming relevant to

ScaleNet. Appendix B describes source code organization.

Chapter 2

Related Work

In this section we discuss other emulation platforms and their drawbacks. In Sec-
tion 2.1, we discuss dummynet. In Section 2.2, we discuss NIST Net. In Section 2.3,
we discuss FreeBSD jail hosts. In Section 2.4, we discuss netbed. In Section 2.5, we
discuss User Mode Linux. In Section 2.6, we discuss Alpine and a Summary of all

the emulation platforms is given in Section 2.7.

2.1 Dummynet

Dummynet[1] is one of the most well-known network emulators. It is a simple,
flexible and accurate network emulator that was built with modifications to the
communication protocol stack. It emulates the effects of finite queues, bandwidth
limitations and delays. It runs in an operational system, thus utilizing the real
traffic generators and real protocol implementations. This tool allows carrying out
experiments with network protocols by running a set of unmodified real world ap-

plications.

Dummynet inserts routers with bounded queue size and a queueing policy, com-
munication links with given bandwidth limitation and delay, packet reordering and
packet loss in the flow of data. The routers and communication links can be modeled
by using two queues: router queue and link queue. They are between the protocol

layer under observation and the next lower protocol layer as shown in Figure 2.1.

There are two sets of queues one in each direction of the communication. Router
queue is characterized by number of packets and a queueing policy. Link queue is
characterized by bandwidth limitation and delay. When a layer communicates with
the other layer, packets are inserted in the router queue. Packets are inserted until
the queue reaches its maximum size. Any queueing policy can be used. Packet
reordering can be done in this queue. Packets are moved from router queue to link
queue according to the bandwidth limitation. Packets are stored in the link queue
for certain amount of time which corresponds to the delay that needs to be applied
on the packets, after which packets are removed from this link queue. Packet drops
can occur at this point of time. Thus this emulates the bandwidth limitation and
delay. Packets moving to the link queue and removing the packets from link queue

can be done at periodic intervals which is submultiple of communication delay.

\
Application H Iq = pq
[|

Transport dummynet M

-
|
|
Network [Pd H rq
| !
'

rq — Router Queue
pq — Link Queue

Figure 2.1: The Architecture of Dummynet.(from [1])
There are certain limitations to the Dummynet.

1. The granularity of the operating system timer causes several approximations.

2. The periodic timer may run late and may miss some of the clock ticks. Another

limitation is that the events in the Dummynet may occur synchronously with

7

the system timer. This won’t happen in real networks and may hide or amplify

certain phenomena.

3. Dummynet was not implemented as a Loadable Kernel Module and is not
flexible to make any modifications. So each time we make some modifications,

we have to recompile the kernel.
4. It can not emulate complex network topologies.

5. It can not apply effects such as packet duplication, delay variation etc. So we

can not exactly get the real network behaviour.
6. It can not apply the effects for selected data flows.

7. Dummynet implementation exists only between TCP and IP. So it can not

apply effects to other protocol packets such as UDP.

8. Dummynet exists only for FreeBSD, which is not so popular.

2.2 NIST Net

NIST Net[2] emulates the behaviour of any network at a particular router. It applies
that network behaviour on the packets passing through it. It is shown in the Figure
2.2.

NIST Net has a table of emulation entries. Each entry consists of three parts.
First part is the packet matching criteria and second part contains the effects to be
applied to the packets which satisfy the selection criteria and third part contains
a set of statistics for that emulation entry. We can load thousands of emulation

entries. These entries can be added or removed from the emulator dynamically.

Packets are matched according to the source and destination IP address, type
of service and source, destination ports. NIST Net applies effects such as fixed and
variable packet delay, bandwidth limitations, random and congestion dependent
packet loss, packet duplication, packet reordering. Congestion dependent loss is

emulated using Derivative Random Drop(DRD). It has two parameters: DRDmin

"Live" Internet

Measured/Estimated Behavior " - - | \

-

Lab network

Figure 2.2: NIST Net as a "network in a box". (from [2])

and DRDmax. If the queue length is less than DRDmin, no packet is dropped and
95% packets are dropped if the queue length is greater than DRDmax. NIST Net
provides several statistics for each emulation entry. It provides the number of packet

drops, duplications, average bandwidth, queue length and number of bytes sent.

NIST Net consists of two main parts: a loadable kernel module and user inter-
faces. Since NIST Net is a loadable module, it can be loaded or unloaded at any
time without interrupting any active connections. The NIST Net module has two
hooks in the Linux kernel. Packet interception code replaces IP Packet handler with
its own handler and intercepts all the IP packets and checks all the emulator entries.
If this packet matches any emulator entry, the effects for this emulation entry are
applied on the packet. After that, it calls the IP handler to handle the packet. The
fast timer uses system clock as a timer source for scheduling delayed packets. NIST
Net provides both graphical user interface and command line interface. Command

line interface is useful for writing shell scripts.

It is not possible to create several virtual hosts using NIST Net. NIST Net won’t

do any routing.

We use NIST Net for applying effects such as bandwidth limitation, delay, packet
drops, packet duplications etc. in ScaleNet. NIST Net is designed to be scalable
in terms of the number of emulation entries, and also in terms of the amount of
bandwidth it can support. We leverage these aspects of scaling directly from NIST
Net.

2.3 FreeBSD Jail Hosts

Several FreeBSD[5| virtual hosts can be created on a single machine using the
FreeBSD’s jail functionality. Remote Unix Lab Environment(RULE)[3] creates sev-
eral virtual hosts by using the FreeBSD ja:l functionality. The main purpose of the
RULE is to minimize the infrastructure cost. At Swinburne University of Technol-
ogy, they have placed several FreeBSD hosts in a rack and these can be accessed by

students from remote terminals or 802.11-equipped laptops.
Jail Hosts have distinct IP address, user accounts. These are shown in Figure 2.3.

The three jail hosts A, B and C appear as three different hosts from outside.

172.27.22.10 172.27.22.11 172.27.22.12

Host A Host B Host C A network
with three
hosts
Single FreeBSD PC

A network
172272210 172.27.22.11 172.27.22.12 with three
jail hosts

Host A Host B Host C

Figure 2.3: Jail hosts appear as independent IP hosts on the network. (from [3])

10

Root access to the jail host is given to the student. Students can manage user or
group accounts within the jail host. They can compile and run network applications.

Each student can run his own web, email or ftp servers.

Processes belonging to a particular jail host inherit that jail host’s restricted
context. Filesystem accesses by processes belonging to a jail host are remapped
relative to the jail host’s root directory. For example let the jail host A root di-
rectory be /jailA. If a process in jail host A refers /usr/java then it is remapped
to /jailA /usr/java. Network communications are also remapped. For example if
process in jail host A wants to bind to a TCP socket with wild card IP Address '*’
and to port 8000, then it is remapped to <Jail host A TP>:8000.

Virtual jail hosts are managed by Jail Host Toolkit(JHT). It is used by primary
host administrator. JHT is a set of scripts for building, booting and killing a jail
host.

The main limitation of FreeBSD jail hosts is that they are not scalable. Each
jail host’s file system is placed on a separate FreeBSD disk partition. There can
be upto eight FreeBSD partitions in a FreeBSD disk slice. There are four FreeBSD
slices. So there is a theoretical upper limit of 24 jail hosts per primary host. A jail

host cannot get access to raw socket.

2.4 Netbed

Emulab is an emulation platform and Netbed|4] is an extension of Emulab. Netbed
integrates simulation, emulation and live network experimentation. Simulated re-
sources are integrated with real traffic by using nse. Emulab is used for emulation.
Netbed is a time and space shared platform. The user specifies the network topol-
ogy either graphically or by ns-scripts. The nodes in the user specified topology
are mapped to local nodes, distributed nodes or simulated nodes. The links are
mapped to local links, wide area links or emulated using dummynet. Currently, the
emulab portion of netbed contains 168 PCs of varying configurations and each has
four interfaces. Experiment creation times in Emulab are three minutes for a single

node topology, and six and half minutes for an 80-node topology(from [6]).

11

Netbed automatically maps virtual resources onto available physical resources
by using simulated annealing|6]. Simulated Annealing is a randomized heuristic
search technique. It uses a cost function, for determining the cost of a particular
configuration, and a generation function, for generating a new configuration from
the old configuration. This new configuration is evaluated by the cost function. If
this new configuration is better than the previous one then it is accepted. Otherwise

it is accepted with certain probability. This is done to avoid local minima.

Original Emulab mapped virtual nodes and links one-to-one onto dedicated PCs
and Ethernet links. Later they used FreeBSD Jail host functionality to create mul-

tiple virtual hosts on a physical system.

The main limitation of Emulab is it requires several hardware resources. So it
is very costly. Several virtual nodes are created by using FreeBSD jail host func-
tionality. Only FreeBSD supports virtual jail hosts. So in other cases, it forces
one-to-one mapping between virtual nodes and physical machines. Netbed scales
upto 20 virtual hosts per physical machine whereas ScaleNet scales upto 50 virtual

hosts. As mentioned earlier, FreeBSD jail hosts are not scalable.

2.5 User Mode Linux

User Mode Linux(UML) |7] is a Linux kernel that can be run as a normal user process
on Linux machine. Since Linux kernel can be used as a normal user level process,
kernel development and debugging is very easy. We can use normal debuggers such
as gdb for debugging the kernel. We can use various other Linux distributions on a
single disk partition. It can be used as a secure sandbox since the processes running
in the UML have no access to the physical machine. We can create arbitrary network

topologies using UMLs.

The main disadvantages with User Mode Linux are:

e User Mode Linux runs applications inside itself at 20% slowdown compared to
the host system. (from [7])

e Lot of extra overhead in creating virtual host, since entire kernel image is used

12

for creating virtual host. So it is not scalable.

2.6 Alpine

Application-Level Protocol Infrastructure for Network Experimentation(Alpine)|8]
moves an unmodified FreeBSD network stack into a userlevel library. Since the
protocol stack is moved to userlevel, debugging of network protocols becomes easy.
Alpine sends outgoing packets from userlevel network stack using raw socket, thus
avoiding the traversing of the kernel network stack by the packet. It receives packets
by using 1ibpcap. It prevents the kernel from processing of packets destined for ap-
plications using Alpine by filtering at the firewall. The central port server maintains
the firewall up-to-date with the ports that Alpine applications are using. Alpine
provides all the socket related system calls. Applications are linked with Alpine
library by setting the LD _PRELOAD environment variable to the Alpine library.

By this applications use Alpine’s networking stack instead of kernel network stack.

Disadvantages of Alpine are given below.

e Alpine does not support network emulation.

e If the network is too busy or machine is slow, this won’t work well. The kernel
allocates limited buffer for queueing the received packets from the network. If

this buffer is full, kernel drops the packets.

e Extra overhead to copy each and every packet to userlevel and processing in
the userlevel. SIGALRM handler is used to poll for packets once every 10ms
(from [8]).

e Extra overhead in maintaining up-to-date information at the firewall.

e It exists only for FreeBSD.

2.7 Summary

The comparison of all emulation platforms is shown in the Table 2.7.

13

Performance | Many VMs | Hardware | Scalable 0OS
per PM Resources

Dummynet High No Low - FreeBSD

NIST Net High No Low - Linux
FreeBSD jail hosts Low Yes High No FreeBSD
Netbed High Yes High Partly | FreeBSD

User Mode Linux Low Yes High No Linux
Alpine Low No Low No FreeBSD

ScaleNet High Yes Low Yes Linux

Table 2.1: Comparison of the emulation platforms.

14

Chapter 3

Design and Implementation of
ScaleNet

We use NIST Net and Linux to build ScaleNet. NIST Net works only on Linux.
Linux provides a clean way of accessing the data packets in the network stack using

modules. Linux is so popular and very good documentation is available.

ScaleNet is built using loadable kernel modules. Modules can be loaded and
unloaded dynamically. There is no need to rebuild and reboot the kernel each time

we make some modifications to the modules.

We use NIST Net for applying effects such as bandwidth limitation, delay, packet
drops, packet duplications etc. in ScaleNet. NIST Net is designed to be scalable
in terms of the number of emulation entries, and also in terms of the amount of

bandwidth it can support.

We create several virtual host IP addresses using IP aliases. A packet may
traverse via multiple IP aliases, and may use the loopback interface, as well as
the ethernet interface. Loopback packet MTU is 16436 bytes and that of ethernet
packets is 1500 bytes. Extra IP header is added to the packet for routing and NIST
Net purposes. To prevent the fragmentation of the packet, MTUs of both loopback
and ethernet packets are changed to 1480 bytes.

15

@ Machine 1

Machine 2

Figure 3.1: An example network topology

An example topology is shown in the Figure 3.1. There are nine virtual hosts dis-
tributed on two physical machines. This topology can be emulated using ScaleNet.

Each virtual host have an IP address, routing table and some associated applications.

Overview of ScaleNet design is given in Section 3.1. We discuss the processing of
outgoing and incoming packets in Section 3.2 and Section 3.3 respectively. Network
topology and routing is described in Section 3.4. Virtual hosts are described in
Section 3.5.

3.1 Overview of ScaleNet Design

We are building emulation platform as Linux loadable kernel modules. (Linux kernel
programming aspects which are relevant to ScaleNet are described in Appendix A.)
Linux kernel version 2.4.20-8 is used because NIST Net doesn’t support 2.6.* kernel

version. NIST Net supports Linux kernel versions 2.2.* and 2.4.*.

ScaleNet architecture is shown in the Figure 3.2. In the emulation platform there
is one module for handling incoming packets, and another module for handling out-

going packets. Kernel module IP-IP-in handles incoming packets and IP-IP-out

16

handles outgoing packets. RoutingTables module handles the routing tables and
IP addresses of virtual hosts, nexthop IP address and corresponding MAC address
and all the IP addresses of a router node. RoutingTables module gets this data
from a userlevel program, allocates sufficient memory and exports all data to rest
of the kernel. chardev module provides zoctl interface to access and modify routing
tables.

syscall _hack module redirects the relevant system calls. For example if an ap-
plication belongs to a virtual host issues route add command, it is directed to the
routing table corresponding to the virtual host. pid_¢p module associates an appli-
cation with a virtual host. It also provides zoctl interface to access and change this
association dynamically. dst_entry_export module exports dst_entry objects,

which have routing information for the destination, to other parts of the kernel.

We use NIST Net for applying various effects on the packets passing in the
emulation platform. NIST Net removes the IP protocol handler and inserts its
own module to capture the packets from the networking code. After processing the

packet completely, NIST Net hands over the packet to the IP protocol handler.

Consider an example for sending a packet from virtual host 1 to 3 via virtual
host 2. This is shown in the Figure 3.3. An application sends the packet with
source IP address 1 and destination IP address 3. An entry is added in the NIST
Net specifying the characteristics of the link between 1 and 2. Similarly another
entry corresponding to the link between virtual hosts 2 and 3 is added. The packet
is captured by IP-IP-out module at the netfilter hook NF_IP LOCAL_OUT. It
identifies that these IP addresses belongs to the emulation platform. It consults the
routing table of the virtual host 1 for finding the nexthop address for sending packet
to virtual host 3. At virtual host 1, nexthop address for 3 is 2.

Extra IP header is added for routing and NIST Net purposes. NIST Net captures
packets based on IP header details. In the current packet the destination IP address
is 3 and source IP address is 1. If we want to apply the effects for link between
virtual host 1 and 2, NIST Net won’t capture this packet since the addresses are not
matched. So we add extra IP header at the beginning of the packet with nexthop

IP address (virtual host 2) as the destination IP address and current virtual host

17

81

coute command

Routing
Tables

PID-IP
values

Routing
—
Tables
dst_entry
object
Q Kernel Module Kernel Data <> User-level program

Figure 3.2: ScaleNet Architecture

pidip_ioctl.c User—level

Kernel level

address (virtual host 1) as the source IP address.

After adding the extra IP header IP-IP-out module leaves the packet for further
processing. Since these are local alias addresses, the loopback driver places the

packet in the input queue.

The packet is captured by the NIST Net module. It applies all the effects corre-
sponding to the link between 1 and 2. After applying the required effects it hands
over the packet to the IP protocol handler. The packet is captured by IP-IP-in mod-
ule at the netfilter hook NF I[P PRE ROUTING. It checks whether the packet
reached final destination. Since the packet is not reached the final destination, it
finds the nexthop address using routing table corresponding to the current virtual
host(2). It changes the destination IP address to the nexthop and source IP address
to the current virtual host address in the extra IP header and fills the remaining
fields appropriately. It once again sends the packet using dev_ queue_ xmit function.
Since the addresses are local alias addresses, loopback driver places the packet in

the incoming queue.

Once again the packet is captured by the NIST Net module and it applies all the
effects corresponding to the link between 2 and 3 and hands over the packet to TP
protocol handler. The packet is captured by IP-IP-in module and it checks whether
the packet is reached final destination. Since the packet reaches the final destination,
it removes the extra IP header and returns the packet for further processing. Next

application receives the packet at virtual host 3.

NIST Net marks all the packets which are passing through the NIST Net module
to avoid infinite loops. There is a temporary control buffer array in the sk_buff
structure(described in appendix A.5). NIST Net marks some location in the control
buffer when it sees a packet. When NIST Net captures a packet, first it checks
whether the packet is marked or not. If the packet is marked then it won’t apply
any effects on that packet, because it has already applied effects on that packet.

Suppose we have three virtual hosts on a physical machine, say 1, 2 and 3. We
are sending packets from virtual host 1 to 3 via 2. The link between 1 and 2 has
certain characteristics and the link between 2 and 3 has some other characteristics.
These are emulated by NIST Net. As NIST Net sees the packet between virtual

19

0¢

Packet after
changes

Kernel Module

Original
Packet

Virtual
Host

Extra IP
Header

Original
IP Header

Source IP 1
DestIP 2

Source IP 1
DestIP 3

Data

i

IP—IP—out

Source IP 1
DestIP 3

Data

Source IP 2
DestIP 3

Source IP 1
DestIP 3

Data

i}

IP-IP—in

Source IP 1
DestIP 2

Source IP 1
DestIP 3

Data

1W2%3

Figure 3.3: An Example for sending a packet from virtual host 1 to 3

Source IP 1
DestIP 3

Data

A

IP-1P—in :

Source IP 2
DestIP 3

Source IP 1
DestIP 3

Data

hosts 1 and 2, it marks the packet and applies all effects corresponding to that link.
Next packet is passed from 2 to 3. NIST Net sees this packet and observes that the
packet is marked. So it won’t apply any effects on this packet. To overcome this we
are removing the NIST Net mark in control buffer of the sk_buff in our emulation

platform modules.

Suppose we are sending a packet from virtual host 1 to 3 via virtual host 2.
Virtual hosts 1 and 2 are on the same machine. Virtual host 3 is on another machine.
Since virtual hosts 1 and 2 are on the same machine loopback interface is used in
sending the packet from 1 to 2. The MTU of the loopback interface is 16436 bytes
whereas Ethernet interface MTU is 1500 bytes. While sending the packet from 1
to 3, first it reaches virtual host 2. Since it reaches virtual host 2 using loopback
interface, the packet size is atmost 16436 bytes. After that the packet has to traverse
from virtual host 2 to 3. Since the MTU of ethernet packet is 1500 bytes, the packet
needs to be fragmented. So to avoid fragmentation, we made loopback packet MTU
size to 1500 bytes.

We added extra IP header to the packet. So the packet size is increased by 20
bytes (size of the IP header). For example if the size of the original IP packet is 1500
bytes, after adding the extra IP header its size becomes 1520 bytes. But the ethernet
interface can handle only upto 1500 bytes. So the packet needs to be fragmented. To
avoid fragmentation, we made the MTUs of both loopback and ethernet interfaces

to 1480 bytes. So we can add extra IP header to the packet without fragmentation.

In this section we described the overall design of ScaleNet. In the next section

we describe the processing of outgoing packets.

3.2 Processing of Outgoing Packets

Processing of outgoing packets is shown in the Figure 3.4. Outgoing packets are
captured at netfilter hook NF_IP_LOCAL_OUT. (Netfilter hooks are described in
Appendix A.2.) Packets are captured only if source IP address of the packet belongs
to any of the virtual hosts in the emulation platform on our machine. We are not

considering the destination IP address because we don’t know the IP addresses of

21

virtual nodes on other machines. If the packet doesn’t match the selection criteria,
NF ACCEPT is returned. It puts the packet again in the network stack.

rind_find() function is used for finding whether the source IP address of the
captured packet is any of the virtual hosts on our machine. It searches the list of
all IP addresses of virtual hosts on our machine. If it finds the source IP address of
the packet, it returns the index of that IP address in the list. Otherwise it returns
-2.

Nexthop IP address is found by using the function route_find (). This function
takes two arguments: the index of the routing table corresponding to the source
IP address of the packet which we found earlier and the destination IP address in
the host byte order. If the nexthop address is available, this function returns the
nexthop address in the network byte order. Otherwise it returns -2 and the packet
is dropped by returning NF DROP.

CheckNextHop () function is used to check whether nexthop is on the same ma-
chine or on other machine. It takes two arguments: A pointer to skbuffer and

nexthop IP address in host-byte order. If the nexthop is on another machine then
find the nexthop MAC address and fill the MAC Header details of the packet.

After finding the nexthop IP address, extra IP header is added to the packet
i.e. IP-over-IP. Instead of filling all the fields in the extra IP header, fields in the
original IP header are copied to the extra IP header and required fields are changed
in the extra IP header. The size of the extra IP header is added to the total length
field in the extra IP header. The destination and source IP addresses are filled with
the nexthop IP address and the current virtual host IP address respectively. Since
some of the packet fields are changed we need to recalculate the checksum of the
IP header. First we need to put zero in the checksum field of the IP header. All
the words in the IP header are added and one’s complement of the result gives the

checksum of the header.

While packet is traversing the network stack, it is placed in the sk_buff struc-
ture. Refer Appendix A.5 for more details on sk_buff structure. Extra IP header
is added at the beginning of sk_buff structure. If sufficient space is available at

the beginning then it is added directly. If space is not available at the beginning

22

Capture packet at netfilter hook
NF_IP_LOCAL_OUT

pkt src IP belongs
local virtual host?

nexthop
available?

return

NF_ACCEPT

return
NF_DROP

Create extra IP Header.
Dst IP <— nexthop
Src IP <— current virtual host

nexthop on
same machine?

fill MAC header.
dst MAC <- nexthop MAC
protocol <—IP

[

Yes

space available at
beg of sk_buff?

create new sk_buff
with extra space.
Add extra IP header followed
by rest of packet

No

space available at
end of sk_buff?

\b Yes

Add extra IP header
at the beginning of sk_buff

copy original IP Header
to the end of sk_buff.
place extra IP header
at the beginning of sk_buff

{

return

NF_ACCEPT

Figure 3.4: Processing of Outgoing packets

23

then check at the end of the sk_buff. If sufficient space is available at the end of
sk_buff then the original IP header is copied to the end of sk_buff and the extra
IP header is added at the beginning. Extra IP header should be added only at the
beginning. This is required for NIST Net. If the extra IP header is not added at the
beginning then NIST Net won’t capture this packet. Finally if there is no space both
at the beginning and at the end of the sk_buff then new sk_buff is allocated with
the required size and entire packet is placed inside the new sk_buff. New sk_buff
is allocated by using dev_alloc_skb(len) where len is the required buffer size in
bytes.

If space is available at the beginning of sk_buff then the required sk_buff point-
ers are changed by using skb_push() function which is described in Appendix A.5.
If space is available at the end of sk_buff then the required sk_buff pointers are
changed by using skb_put () function. At the time of sending the packet to the final
destination, we need to remove the extra IP header and the original IP header should
be placed in the right place. First we have to find whether the original IP header is
at the beginning or at the end of the sk_buff. protocol field in the IP header is used
for identifying the original IP header position. If the original IP header is at the
beginning of sk_buff then the protocol field contains IPPROTO _IPIP otherwise
some new value IPPROTO_EPF.

Finally packet is returned for further processing by returning NF ACCEPT.

In this section we described the processing of outgoing packets. In the next

section we describe the processing of incoming packets.

3.3 Processing of Incoming Packets

Processing of incoming packets is shown in the Figure 3.5. Incoming packets are
captured at netfilter hook NF_IP_PRE ROUTING. If the destination IP address
of the outer IP header is one of the IP addresses of the emulation platform on this

machine then only packet is processed. Otherwise return NF ACCEPT.
NIST Net marking is removed from the control buffer cb[] (refer AppendixA.5)

24

Capture packet at netfilter hook
NF_IP_PRE_ROUTING

pkt dst IP belongs
local virtual host?

remove NIST Net
marking

packet reaches
final destination?

nexthop
available?

return

NF_ACCEPT

remove outer

IP header

return
NF_DROP

Change fields of extra IP header.

Dst IP <— nexthop

Src IP <— current virtual host

nexthop on
same machine?

fill MAC header.
dst MAC <— nexthop MAC
protocol <—1IP

Yes V

call dev_queue_xmit()

!

return
NF_STOLEN

Figure 3.5: Processing of Incoming packets

25

of the sk_buff. So next time the packet goes to NIST Net, it applies all the specified
effects on that packet.

We have to find the position of inner IP header. I.e. we have to find whether
it is at the beginning of sk_buff or at the end of sk_buff. If the protocol field in
the outer IP header is IPPROTO_IPIP then inner IP header is at the beginning of
sk_buff. Otherwise it is present at the end of sk_buff.

If destination IP address of outer IP header is equal to the destination IP address
of the inner IP header then the packet reaches final destination. If the packet reaches
final destination then outer IP header of the packet is removed and the packet is
sent to upper protocol layers for further processing. While removing the outer IP
header, if the inner IP header is at the beginning then just adjust the sb->data
pointer. If the inner IP header is at the end then adjust the sb->tail and copy the
inner IP header to the beginning of sk_buff. Refer Appendix A.5 for further details
on these pointers. Return NFACCEPT for further processing of the packet.

If the packet not reaches the final destination then we have to find the nexthop
IP address. route_find() function finds the nexthop IP address using the routing
table of the current virtual host. Instead of creating new IP header, we are changing
some fields in the outer IP header. As earlier destination IP address of the outer
IP header is changed to the nexthop IP address and source IP address is changed
to the IP address of the current virtual host. Checksum field is made zero and new

checksum of the IP header is calculated by using checksum() function.

CheckNextHop () function is used to find whether nexthop is on the same machine

or on other machine. If the nexthop is on another machine then find the nexthop
MAC address and fill the MAC header details of the packet.

Packet type is changed to outgoing packet and is sent by calling dev_queue_xmit ()
function. If this function is not called then the packet is directly delivered to the
local interface. Next NF_STOLEN is returned to the netfilter hook. It tells netfilter
that the hook function will take processing of the packet from here on and netfilter
should drop its processing completely.

In this section we described the processing of incoming packets. In the next sec-

tion we describe the creation of the network topology and accessing and modification

26

of the routing tables.

3.4 Network Topology and Routing

During initialization of the emulation platform all the routing tables, IP addresses
of virtual hosts, nexthop IP addresses which lie on other machine are read from
userspace to the kernel. These are written to the /proc/rtable file by a user-
level program. Call-back function proc_write_rtable() is called when anything is

written to the /proc/rtable file.

Each routing table entry consists of three fields: Mask field, IP address of a
Host or Network and the nexthop IP address. In searching the routing table, the
destination IP address is ANDed with the mask and the result is compared with
the second field. If they match then the third field is the nexthop IP address for
the given destination. All the entries of the routing table are searched until any
matching entry is found. There are NUM NODES routing tables each containing
at most NUM _ENTRIES entries. A chunk of memory is allocated for each routing
table.

proc_write_rtable() function first reads the number of virtual nodes (NUM _NODES),
maximum number of routing table entries (NUM ENTRIES) in each routing table,
number of [P addresses (NUM _IP__ ADDRS) and number of nexthop IP addresses
(NUM_NHOP_MAC) which lie on other physical machines. Both the number of
nodes and number IP addresses are read because a router can have several IP ad-
dresses. Then it allocates (#virtual nodes * Max Entries per routing table * 3 *
sizeof(unsigned int)) bytes of memory for routing tables. A number is associated
with IP address and all [P addresses of a router have same number. Memory is allo-
cated for IP addresses and their corresponding index. Similarly memory is allocated

for nexthop IP addresses and their corresponding MAC addresses.

proc_write_rtable() reads the nexthop IP address and corresponding MAC
address. Next it reads the IP addresses and their corresponding indices. Finally it
reads routing tables one by one. After reading these it exports these to other parts
of the kernel.

27

Routing tables can be accessed or updated using zoctl interface. The ioctl’s are
described in Appendix A.4. The ioctl call has three arguments: The file descriptor
for the file /proc/char_dev, the ioctl number which specifies the type of the

command and the argument to the ioctl command.

Three ioctl calls are supported. First one is for adding a routing table entry to
the specified routing table. For this, the ioctl number is IOCTL_ADD_ RT ENTRY.
These variables are defined in chardev.h file which should be included by both ker-
nel module and the userlevel program. The argument for this call is a pointer to
a character. It contains the routing table number and the routing table entry. It
is terminated by a NULL character. Second ioctl call is for removing a rout-
ing table entry from the specified routing table. The ioctl number for this call
is IOCTL REM RT ENTRY. The argument to this ioctl command is also a
pointer to a character. The data contains the routing table number, routing table
entry to be deleted and is terminated by a NULL character. Third ioctl call is for
showing routing table entries. The ioctl number is IOCTL _SHOW _RT ENTRY.

It takes an integer argument which specifies the routing table to be displayed.

In this section we described the creation of the network topology. In the next sec-
tion we describe how to associate an application with a virtual host and redirection

of system calls.

3.5 Virtual Hosts

Several IP aliases are created on each machine using ifconfig command. For

example an IP alias 10.0.0.1 to eth0 Ethernet interface is created as follows.

#ifconfig eth0:1 10.0.0.1

3.5.1 Association between Applications and Virtual Hosts

We want to associate an IP address with the application program. If an application
program issues system calls like route add, this acts on the system routing table.

But we want to change this behaviour such that this system call acts on the routing

28

table corresponding to a virtual host.

We associate application programs with an IP address of a virtual host as follows.
A wrapper program forks and executes all the application programs belong to a
virtual host. This wrapper program acts just like a shell. It takes the application to
be executed and its arguments and calls ezecve to execute that application. After
this application finishes its execution, it waits for executing another application. All
the applications executed in this wrapper program correspond to the virtual host

that is associated with this wrapper program.

The PID of the wrapper program is associated with the virtual host IP address.
pid_ip module handles this association. Each process has a task_ structure, which
maintains all the information about that process. It also has pointer to the parent
process of this process. So we can traverse the current process parent, grand-parent
etc. If this process is executed in a wrapper program, while traversing the ancestor
processes, wrapper program is reached. Otherwise init process is reached. If a
wrapper program is reached, this process corresponds to the virtual host which is

associated with the wrapper program.

The pid_ip module also provides an ioctl interface for accessing and modifying
the pid-ip association. Three ioctl commands are supported. IOCTL _ADD _PIDIP
command is used for adding pid-ip entry. It takes a pointer which points to the
pid-ip entry that is to be added. IOCTL_REM PIDIP command is used for re-
moving pid-ip entry. It takes a pointer to the pid-ip entry that is to be removed.
IOCTL_SHOW _PIDIP command is used for showing all pid-ip values.

3.5.2 System Call Redirection

sys_call table' is an array of pointers to the system call functions. For hacking
the system calls, the pointer to the system call function which we want to hack is
replaced with our own function handler. This function will do whatever it wants

and if required calls the original system call function.

!This symbol is exported by the kernel. If it is not exported then export it in the file
/usr/src/linux/kernel /ksyms.c. After exporting that, rebuild and reboot the kernel.

29

bind and route system calls are hacked. In Linux, all the socket related system
calls are multiplexed using socketcall system call. socketcall system call handling
function pointer is replaced with our own function handler. In this function, if
this call is not bind system call then original system call handler function is called.
Otherwise whether this process belongs to any virtual host in the emulation platform
is determined. If so then it is binded to that virtual host IP address. Otherwise

original system call handler function is called.

toctl system call is hacked for route command. In this, if this ‘octl call is not
route command or this process does not belongs to any of the virtual host in the
emulation platform then original system call handler function is called. Otherwise
the route command is directed to act on the routing table belongs to the virtual
host that is associated with the current process. In this way application programs
can directly manipulate the routing tables corresponding to the virtual hosts in the

emulation platform.

30

Chapter 4
Experimental Results

In this chapter we describe various tests performed and the problems encountered.

Since NIST Net is used for applying effects such as delay, bandwidth limitation,
packet drops, packet duplication etc on the packets passing through the machine on
which NIST Net is running, we have to find out how NIST Net performs in applying

these effects.

NIST Net has some problems in applying the bandwidth limitation in the case
of client and server running on the same machine for TCP packets. There is also

another problem in case of sending UDP packets continuously.

NIST Net packet duplication and packet drop features are verified using the ping
command. Expected results are coming. NIST Net bandwidth test results are given
in the Section 4.1.

After that we have to find out how the emulation platform scales up. We created
20, 50 virtual hosts per physical machine and performed several tests in both cases
using TCP and UDP packets. Bandwidth and delay test results for the emulation
platform in the case of 20 virtual hosts per physical machine are given in the Sec-
tion 4.2 and the results for 50 virtual hosts per physical machine are given in the
Section 4.3.

There are several tuning parameters. By setting these values appropriately, we

can increase the performance of the system. These are described in the Section 4.4.

31

4.1 NIST Net Bandwidth Tests

Netperf]9], bw_tcp[10] and ScaleNetTest programs are used for doing bandwidth
limitation tests. ScaleNetTest programs are set of socket programs used for doing
bandwidth limitation tests. In all the cases similar results are coming. In this section
we describe the results obtained using ScaleNetTest programs only. We can bind to
the particular virtual host using ScaleNetTest programs. Statistics are also printed

at user specified intervals using these programs.

Tests are performed on both TCP and UDP packets. Both TCP and UDP are
used because of the different characteristics of the protocols. In TCP case, sender
and receiver agree on the maximum segment size, receive window size etc. TCP
adjusts its behaviour according to the available bandwidth, congestion in the route
between source and destination and RT'T. Where as in the UDP case, there is no flow
control between the sender and receiver. It won’t consider the congestion, available
bandwidth etc.

4.1.1 TCP Packets

When the server and client programs are running on different machines and NIST

Net is running on the server machine, we are getting expected results.

In this experiment, client and server are running on the same machine. These
results are shown in the Table 4.1. Tests are performed by varying the number of
packets that are sent from client to server. 50 packets, 100 packets and continuous
packet streams, each packet of size 1000 bytes, are sent from client to server and
the throughput is calculated in each case. To know how the NIST Net behaves for

smaller number of packets, tests are performed for 50 and 100 packets.

In the case of sending fixed number of packets from client to server, server pro-
gram notes the time before receiving the packets. After receiving all the packets, it
notes the time and calculates the throughput. In the case of sending packets contin-
uously, server sets an alarm clock for delivery of a SIGALRM signal at the specified

number of seconds. In the signal handler function, it calculates the throughput for

32

Bandwidth applied
using NIST Net

Throughput obtained
using 50 packets

Throughput obtained
using 100 packets

Throughput:sending
packets continuously

(Bytes/sec) (Bytes/sec) (Bytes/sec) (Bytes/sec)
1000 1468 1001.29 -
2000 2935 2001 -
4000 2868 4000 3276
5000 7335 5001 -
6000 8802 6001 -
8000 11903 8000.1 (6553,9830)

10000 14931 10002 9830
20000 29000 20136 19661
40000 (50000, 60000) 40536 49152
100000 (139000, 174000) 105312 -
131072 249036.8 146800.64 133693.44
262144 (655360, 724828.16) | (314572.8, 340787.2) 271319.04
524288 (5767168, 6946816) (655360, 1966080) 737935.36
1048576 (5636096, 7864320) (5242880, 6553600) 4949278.72

Table 4.1: Bandwidth tests using TCP packets and both client, server are running

on the same machine.

that duration and sets the alarm clock again. Like this, it prints the throughput at

fixed intervals.

In some cases throughput is varying highly. In those cases we put a dash for that

value. For lower values of applied bandwidth, we are getting some reasonable values.

But for higher values, we are getting higher bandwidth than the applied bandwidth

using NIST Net. When packets are sent continuously, for 8 Mbps applied bandwidth
throughput is 37.76 Mbps. It is not clear why this is happening, but when the MTU

of loopback packets is changed expected results are coming.

Default value of the MTU of loopback packet is 16436 bytes and that of Ethernet
packet is 1500 bytes. We changed the MTU of loopback packets to 1480 bytes using

the command

#ifconfig lo mtu 1480

After changing the MTU, we are getting expected results. In this experiment

33

Bandwidth applied | Throughput obtained | Throughput: Sending
using NIST Net using 100 packets | packets continuously
(Bytes/sec) (Bytes/sec) (Bytes/sec)
1000 844.2 925

2000 1915.86 1856

4000 3819.93 3855

8000 7672.51 7568

16000 15337.93 15200

32000 30575.38 30272

50000 47225.35 47553

64000 59969.73 60900

100000 93067.76 95170

131072 127139.84 130809.856

262144 243793.92 261619.712

524288 ~342097.92 522977.28

1048576 ~343408.64 1045954.56
2097152 ~933232.64 2093219.84
4194304 - 4170711.04
8388608 ~1588592.64 4187750.4
13107200 - -

No Bandwidth limit - 4194304
Emulator Off - ~4369940.48

Table 4.2: Bandwidth tests using TCP packets. Both client and server are running
on the same machine(PIII). The MTU of loopback packets is changed to 1480 Bytes.

both server and client are running on the same machine and NIST Net is running
on the server machine. Bandwidth tests are done in two cases: sending 100 packets
and continuously sending packets. Each packet contains 1000 Bytes. The programs
used for these tests are same as those in the previous case. The configuration of
machine used is Pentium IIT 997 MHz processor, 256 MB RAM and 20 GB HDD.

These results are shown in the Table 4.2.

In the case of sending 100 packets from client to server, each packet of size 1000
bytes, for higher bandwidths the throughput is saturated because of TCP slow start.
In the case of sending packets continuously, the throughput is saturated around 32
Mbps.

34

Bandwidth applied | Throughput obtained | Throughput: Sending
using NIST Net using 100 Packets | packets continuously
(Bytes/sec) (Bytes/sec) (Bytes/sec)
1000 866 925

2000 1915.81 1856

4000 3818.88 3855

8000 7637.42 7568

16000 15275.6 15200

32000 30551.96 30416

50000 47799.21 47553

64000 60784.44 60900

100000 96023.85 95170

131072 131334.144 130809.856

262144 261488.64 261619.712

524288 507248.64 522977.28

1048576 983040 1045954.56
2097152 1867776 2093219.84
4194304 3377725.44 4182507.52
8388608 4909957.12 8365015.04
13107200 ~4978114.56 9749135.36

No Bandwidth limit - 10040115.2
Emulator Off - 10261626.88

Same test is conducted on a machine with configuration Pentium IV 3 GHz
processor, 2 GB RAM and 80 GB HDD. Tests are conducted on both low and
high configuration machines to know the NIST Net behaviour on low and high

As in the previous case, in the case of sending 100 packets, the throughput is

35

Table 4.3: Bandwidth tests using TCP packets. Both client and server are running
on the same machine(PIV). The MTU of loopback packets is changed to 1480 Bytes.

configuration machines. The programs used for this test are same as in the previous

case. The results for the second case are shown in the Table 4.3.

saturated around 37 Mbps. Values are varying very much in the case of no bandwidth
limitation applied and emulator is off. So we put a dash in those cases. In the case

of sending packets continuously results are coming as expected.

Bandwidth applied using | Throughput
NIST Net (Bytes/Sec) | (Bytes/sec)
1000 972

2000 1945

4000 3891

8000 7786

16000 15562

20000 19461

Table 4.4: Bandwidth tests using UDP packets. Both client and server are running
on the same machine. We are sending 50 packets from client to server each of size
1000 bytes.

4.1.2 UDP Packets

For UDP, there is no flow control and congestion control. The client program sends
all packets at once. In several cases packets are dropped due to unavailability of

buffer space at the receiver.

We have done tests with UDP packets in two cases. In first case both client and
server are on the same machine and in second case client and server are running
on different machines. Tests are done in two cases because in the first case only
loopback interface is used where as in the second case both loopback and Ethernet

interface are used.

B Client and server are on the same machine

Throughput is calculated by sending 50 packets, each of size 1000 bytes, from client
to server. The client program sends the specified number of packets to the server.
The server program notes the time at the beginning and end of the data transfers
and calculates the throughput. It also prints the throughput after receiving the
specified number of bytes.

The results are shown in the Table 4.4. Expected results are coming.

In the case of sending 17300 packets, each packet of size 1000 bytes, from client

36

Bandwidth applied using Throughput (Bytes/sec)
NIST Net (Bytes/sec) | (For every 100 pkts received)

10000 22109
10000 9824
10000 9825

10000 9825

Table 4.5: Bandwidth tests using UDP packets. Both client and server are running
on the same machine. We are sending 17400 packets. Throughput is calculated for
every 100 packets.

to server expected results are coming. The programs used for this test are same as
in the previous case. By using NIST Net, 20000 bytes/sec bandwidth limitation is
applied. We are getting throughput 19650 Bytes/sec.

Next 17400 packets are sent from client to server, each packet of size 1000 Bytes.
Expected results are not coming in this case. These results are shown in the Ta-

ble 4.5. Here the throughput is calculated for every 100 packets received.
NIST Net is queueing atmost 17344 packets, each packet of size 1000 bytes,

at any point of time. It is allocating fixed amount of memory. After the allocated
memory is over, it is not queueing the packets. If it receives more than 17344 packets
then it is sending these excess packets without applying any effects. So in the first
100 packets received throughput is 22109 bytes/sec where as applied bandwidth is
10000 bytes/sec.

Next 18300 packets are sent from client to server, each packet of size 1000 bytes.
In this case also NIST Net is passing 756 excess packets without applying any
effects. The results are shown in the Table 4.6. Throughput is calculated for every
100 packets received.

Next packets are sent continuously. 20000 bytes/sec bandwidth limitation is
applied using NIST Net. We are getting throughput around (55959709, 68027210)
bytes/sec. In this case NIST Net is queueing 17344 packets. After that it is leaving

37

Bandwidth applied using Throughput(Bytes/sec)
NIST Net (Bytes/sec) | (For every 100 pkts received)

20000 1032663
20000 48551
20000 19650
20000 19649

20000 19649

Table 4.6: Bandwidth tests using UDP packets. Both client and server are running
on the same machine. We are sending 18300 packets. Throughput is calculated for
every 100 packets.

the packets without applying any effects. So we are getting excess bandwidth than
the applied bandwidth.

g Client and server are on different machines

In the case of client and server are running on different machines, if the number of
packets that are sent from client to server are less than 17344, expected results are

coming. If packets exceed this, NIST Net is not queueing excess packets.

17400 packets are sent from client to server, each packet of size 1000 bytes. The
programs used for this test are same as in the previous case. The results are shown
in the Table 4.7. Here the throughput is calculated for every 100 packets received.

In this case also, NIST Net is queueing atmost 17344 packets. After that it is
leaving the packets without applying any effects. That’s why in the first 100 packets
received, we are getting 26649 bytes/sec.

Next packets are sent continuously from client to the server. By using NIST Net,

20000 bytes/sec bandwidth limitation is applied. We are getting throughput around
11,840, 000 bytes/sec.

If packets are sent at constant bit rate, which is slightly higher than the band-
width applied, then there are no packet drops until the queue size reaches 17344

38

Bandwidth applied using Throughput(Bytes/sec)
NIST Net (Bytes/sec) | (For every 100 pkts received)

20000 26649
20000 19650
20000 19649
20000 19649

Table 4.7: Bandwidth tests using UDP packets. Client and Server are running on
the different machines. We are sending 17400 packets. Throughput is calculated for
every 100 packets.

packets, each packet of size 1000 bytes/sec.
In this section we discussed the NIST Net behaviour for both TCP and UDP

packets. In the next section scalability tests for the emulation platform are described.

4.2 Creating 20 Virtual Hosts per System

We created a network topology consisting of 40 nodes. We created this topology
on two machines. Each machine has 20 virtual hosts. This topology is shown in
the Figure 4.1. The reason for choosing this network topology is each machine
in the emulation platform has several virtual hosts which are connected through
loopback interface and there are limited number of physical machines which are
connected through ethernet interface. The topology in the Figure 4.1 resembles
these aspects. In the case of sending a packet from 10.0.1.1 to 10.0.4.10, the packet
traverses the virtual hosts on the machine 1 through loopback interface and goes to
machine 2 using ethernet interface and traverses the virtual hosts on the machine 2
through loopback interface and comes again to machine 1 using ethernet interface

and traverses the virtual hosts on machine 1 and goes to machine 2.

Several tests are performed by varying the bandwidth and delay values as in
the previous section to see how the emulation platform performs with many virtual
hosts per physical machine. Both TCP and UDP protocols are used because of

their different characteristics. In each test we used 40000 packets. In all the cases

39

Machine 1

10.0.1.10

10.0.4.10

Machine 2

Machine 2

10.0.3.10

Machine 1

Figure 4.1: A network topology consisting of 20 nodes per system.

expected behaviour is coming.

40000 TCP packets are sent from 10.0.1.1 to 10.0.4.10. Here source IP lies on
the machine 1 and destination IP lies on machine 2. Various bandwidth limitations
are applied using NIST Net. We pick two delay values 5, 10ms and calculated the
throughput in the two cases. We pick two delay values to know how the NIST Net

performs at various delay values. In this experiment each link has 10ms delay.

In this experiment, the client TCP program sends 40000 packets to the server.
The server program calculates the throughput(number of bytes received / total time)
after receiving the specified number of packets.

The results are shown in the Table 4.8. From the table, the maximum possible
throughput is around 154000 bytes/sec. The window size of TCP is 65535 bytes.
The TCP receiver can receive 65535 bytes in RTT. In the topology shown in the

40

Bandwidth applied using | Throughput
NIST Net (Bytes/Sec) | (Bytes/sec)
4096 3892

8192 7784

16384 15572

32768 31136

65536 62222

131072 123933

262144 154125

393216 154361

Table 4.8: Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.10. For each link
10ms Delay is applied.

Figure 4.2, each link between 10.0.1.1 and 10.0.4.10 has a delay of 10ms. In the
backward direction, i.e. from 10.0.4.10 to 10.0.1.1, we haven’t applied any delay. For
example, link between 10.0.1.1 and 10.0.1.2 has 10ms delay, whereas link between
10.0.1.2 and 10.0.1.1 has no delay. There are 39 links between 10.0.1.1 and 10.0.4.10.
So the total propagation delay is 390ms. For 100Mbps link, the transmit time for
65535 bytes is around 5ms. In the direction from 10.0.4.10 to 10.0.1.1, there is no
propagation delay. So RTT is 395ms. So the maximum possible data transferred
per unit time is (65535bytes/395ms), which is 165911 bytes/sec. Excluding the
headers(each packet has 20 bytes TCP header, 20 bytes IP header and 20 bytes
extra IP header) we are getting around 154000 bytes/sec (from Table 4.8). If we add
all headers size(154 headers each of size 60bytes i.e. 9240bytes), it is 15400049240
= 163240 bytes/sec. So we are getting expected results.

Next 40000 UDP packets are sent from 10.0.1.1 to 10.0.4.10. Each link has 10ms
delay. If we are sending all the packets at the maximum possible rate then NIST
Net queue overflows and it won’t apply the effects on these excess packets. So client
sends packets at constant rate to server, which is taken as an input from the user.

The server program receives all the packets and calculates the throughput.

The bandwidth limitation applied, throughput, client data sending rate are
shown in the Table 4.9.

41

Bandwidth applied using | Throughput Client
NIST Net (Bytes/sec) | (Bytes/sec) | send rate(Bytes/sec)
2048 1954 2500

4096 3908 4500

8192 7816 8500

16384 15634 16500

32768 31268 33000

65536 62537 66000

131072 125069 132000

262144 250146 262500

393216 375278 393500

024288 000321 524500

655360 625504 655500

786432 750347 786500

1048576 1001276 1048600

1179648 1126465 1180000

Table 4.9: Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.10. For each link
10ms Delay is applied.

In the case of UDP packets, there is no flow control. So the client program sends
the packets continuously. So there is no saturation in the throughput value. So,
expected results are coming in this case.

Next each link delay is changed to 5 ms and 40000 TCP packets are sent from
10.0.1.1 to 10.0.4.10. The programs used for this test are same as in the previous
TCP case.

The results are shown in the Table 4.10. In the case of 10ms link delay, maximum
throughput is 153000 bytes/sec. Since throughput is inversely proportional to the
delay, throughput is doubled to 305366 Bytes/sec as the delay is halved to 5ms. So,
expected results are coming.

Next 40000 UDP packets are sent from 10.0.1.1 to 10.0.4.10. The programs used
for this test are same as in the previous UDP test. The results are shown in the

Table 4.11.
For 9 Mbps (1179648 bytes/sec) bandwidth limit applied, client sends at the

42

Bandwidth applied using | Throughput
NIST Net (Bytes/sec) | (Bytes/sec)

4096 3892
8192 7784
16384 15572
32768 31141.5
65536 62262.79
131072 124395
262144 248082

393216 305150.5
524288 305366.67

Table 4.10: Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.10. For each link
5ms Delay is applied.

rate 1180000 bytes/sec. In this case not all the packets reached destination. Each
machine has a buffer for received packets. If there is no space in the buffer, it drops
the packets. In 9 Mbps case, this buffer might be full and it dropped some of the
packets. So some packets not reached the application at the destination. This won’t

happen in TCP case.

4.3 Creating 50 Virtual Hosts per System

We created another topology, similar to the previous 40 node topology, consisting of
100 nodes distributed on two machines. Each machine has 50 nodes. The topology

of the network is shown in the Figure 4.2.

Tests similar to the previous section are performed in this section. Expected

results are coming.

In all the experiments in this section, same programs as in the previous section
are used. As in the previous section both TCP and UDP packets are used for doing
the tests. Both are used because both have different characteristics. The tests are
performed by varying the bandwidth limitation and delay. We pick 5ms and 10ms

delay values for the experiments. Several bandwidth limitations are applied.

43

Bandwidth applied using Throughput Client
NIST Net (Bytes/sec) (Bytes/sec) | send rate(Bytes/sec)
2048 1954 2500
4096 3908 4500
8192 7816 8500
16384 15633 16500
32768 31268 33000
65536 62534 66000
131072 125064 132000
262144 250140 262500
393216 375260 393500
524288 000293 524500
655360 625454 655500
786432 750276 786500
1048576 1001152 1048600
1179648 Not all pkts 1180000
reached destination

Table 4.11: Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.10. For each link
5ms Delay is applied.

First 40000 TCP packets are sent from 10.0.1.1 to 10.0.4.25. Each packet has
1000 bytes. Source IP lies on first machine and destination IP lies on second machine.
Each link has 10 ms delay.

The results are shown in the Table 4.12. The maximum possible throughput
is 62013 bytes/sec. The reason for this saturation is same as that in the previous

section.

Next 40000 UDP packets, each packet of size 1000 bytes, are sent from 10.0.1.1
t0 10.0.4.25. The programs used for this test are same as those in the previous case.
Each link has 10ms delay. The bandwidth limitation applied, throughput and client

data sending rate are shown in the Table 4.13.

Except in the 8 Mbps case, expected results are coming. For 8 Mbps, not all the
packets reached destination. The receive buffer at the destination likely dropped

some of the packets due to unavailability of space.

44

Machine 1

10.0.1.25

10.0.4.25

Machine 2

Machine 2

10.0.3.25

Machine 1

Figure 4.2: A network topology consisting of 50 nodes per system

Next 40000 TCP packets, each packet of size 1000 bytes, are sent from 10.0.1.1
to 10.0.4.25. Each link has 5 ms delay. The programs used for this test are same as
those used in the previous TCP case.

The results are shown in the Table 4.14. The maximum possible throughput
is around 122270 bytes/sec. Observe that in the case of 10ms delay, maximum
throughput is 62000 bytes/sec. Since the delay is halved to 5 ms, the maximum
throughput is increased to 122270 bytes/sec. Expected results are coming in this
case.

Finally 40000 UDP packets, each packet of size 1000 bytes, are sent from 10.0.1.1
t0 10.0.4.25. The programs used for this test are same as those in the previous UDP

case.

The results are shown in the Table 4.15. Except for 8 Mbps, expected results are

45

Bandwidth applied using | Throughput
NIST Net (Bytes/sec) | (Bytes/sec)
4096 3892

8192 7782

16384 15561

32768 31079

65536 61024

131072 61921

262144 61995

393216 62011

524288 62013

Table 4.12: Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.25. For each link
10ms Delay is applied.

coming. For 8 Mbps, not all packets reached destination. The receive buffer might

be full, so some of the packets are dropped.

4.4 Some Tuning Parameters

There are several tuning parameters which can affect the performance. These are

described below.

txqueuelen Size of the queue between the kernel subsystem and the driver for
NIC. If this queue is full, all the packets coming from the kernel subsystem
are dropped. So the application has to retransmit the packets. If this is set to

some high value, these droppings won’t occur.

netdev_max backlog Maximum number of packets queued on the INPUT side,
when the interface receives packets faster than kernel can process them. If this
limit is reached, all the packets coming from the interface are dropped. If this

is set to some high value, these droppings won’t occur.

rmem __default The default setting of the socket receive buffer in bytes. If this

buffer is full, all the incoming packets are dropped. This value can be increased

46

Bandwidth applied using Throughput Client
NIST Net (Bytes/sec) (Bytes/sec) | send rate(Bytes/sec)
4096 3908 4500
8192 7816 8500
16384 15634 16500
32768 31268 33000
65536 62537 66000
131072 125069 131500
262144 250146 262500
393216 375279 393500
524288 500325 524500
786432 750346 786500
917504 875913 918000
1048576 Not all packets 1049000
reached destination

Table 4.13: Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.25. For each link
10ms Delay is applied.

by user upto a maximum value of rmem_max.
rmem max The maximum receive socket buffer size in bytes.

wmem __default The default setting of the socket send buffer size in bytes. If
this buffer is full, the send, write etc commands will block until the space is

available. This can be increased upto wmem max.

wmem max The maximum send socket buffer size in bytes.

The commands used for setting the above parameters are shown below.

e /sbin/ifconfig eth0 txqueuelen VALUE; The default value is 100.

e /sbin/sysctl -w net.core.netdev_max_backlog=VALUE; The default value
is 300.

e /sbin/sysctl -w net.core.rmem_max=VALUE; Default value is 131071 bytes.

47

Bandwidth applied using | Throughput
NIST Net (Bytes/sec) | (Bytes/sec)
4096 3892

8192 7784

16384 15569

32768 31122

65536 62158

131072 120066

262144 122024

393216 122155

524288 122270

Table 4.14: Sending 40000 TCP packets from 10.0.1.1 to 10.0.4.25. For each link
5ms Delay is applied.

Bandwidth applied using Throughput Client
NIST Net (Bytes/sec) (Bytes/sec) | send rate(Bytes/sec)
4096 3908 4500
8192 7816 8500
16384 15633 16500
32768 31267 33000
65536 62537 66000
131072 125066 131500
262144 250138 262500
393216 375259 393500
524288 500293 524500
786432 750277 786500
917504 875775 918000
1048576 Not all packets 1049000
reached destination

Table 4.15: Sending 40000 UDP packets from 10.0.1.1 to 10.0.4.25. For each link
5ms Delay is applied.

48

e /sbin/sysctl -w net.core.rmem_default=VLAUE; Default value is 65535 bytes.
e /sbin/sysctl -w net.core.wmem_max=VALUE; Default value is 131071 bytes.

e /sbin/sysctl -w net.core.wmem_default=VALUE; Default value is 65535 bytes.

While doing the tests, we used all default parameters.

49

Chapter 5
Conclusions and Future Work

In this work, we have created an emulation platform which emulates large-scale
networks using few physical resources. Several virtual hosts are created in each
physical machine and applications are associated with virtual hosts. There is no need
to modify application programs code for running on the emulation platform. With
this emulation platform any kind of network protocol may be tested. Performance
analysis and debugging can be done using this emulation platform. In [11], they did
simulation of BGP using 11806 AS nodes. In our emulation platform, this can be
done by using 240 systems. Similarly OSPF protocol and peer-to-peer networks can

be studied using this emulation platform.

There are several aspects of the work which can be done in the future.

Automatic mapping of user specified topology to the physical resources has to

be done and routing tables have to be generated from the topology.

We need to provide a graphical user interface.

We redirected bind and route system calls. All other system calls which
should act on the current virtual host rather than on the physical machine

needs to be identified and we have to redirect them.

We have to implement locking of the shared data structures.

a0

While sending packet from one machine to other machine we are changing
MAC header details. This should be avoided.

Packet is not reaching the application. For this we have captured dst_entry
object and used it in the sk_buff of the packet. After that packet is reaching
the application. We have to avoid capturing the dst_entry object and needs

to investigate why the packet is not reaching the application.

During initialization of the emulation platform sometimes the system is crash-

ing. We have to investigate this.

We have done experiments with only one TCP flow. We have to do with more
than one TCP flow.

We have to run some networking protocol on this emulation platform and
needs to analyze the memory and processing requirements at each virtual
host. Memory is the primary bottleneck since we have to store all the data of

all the virtual hosts.

ol

Appendix A

Linux Kernel Programming

A.1 Linux Kernel Modules

Linux Kernel Modules are pieces of code that can be loaded and unloaded dynami-
cally. Modules have several advantages. We do not need to include each and every
functionality in the kernel image, so that its size can be reduced. If the modules
facility is not there then we have to rebuild and reboot the kernel every time we
need new functionality.

Kernel modules must implement at least two functions: Initialization function
and cleanup function. Initialization function is init_module (), which is called when
the module is inserted into the kernel, and cleanup function is cleanup_module(),

which is called just before the module is removed from the kernel.

Consider the following simple kernel module.

#define MODULE
##tdefine __KERNEL__

#include<linux/module.h>

#include<linux/kernel.h>

92

int init_module (void)
{

printk ("In the initialization routine.\n");

return O;

void cleanup_module(void)

{

printk ("In the cleanup routine.\n");

Observe that here we are using printk () instead of printf (). printk() is used
to log messages or to give warnings by the kernel. If you are in the tert mode then
these will also be printed on the console. Generally these messages are logged in the
file /var/log/messages. The symbol =~ KERNEL means that the code will be
run in the kernel mode. The symbol = MODULE _ means that this is a kernel

module. For compiling this module use the following command.
gcc -c hello.c -o hello.o -I /usr/src/linux/include

It produces an object file rather than ezrecutable file by using the -c flag. This
object file will be linked dynamically with the kernel when the module is inserted
into the kernel. The -I dir means add the directory dir to the list of directories to
be searched for header files. Directories named by -I are searched before the standard
system include directories. The Directory /usr/src/linux/include contains the

Linux kernel header files.

Kernel modules are inserted into the kernel by using any of the commands

modprobe module_name

insmod module_name

The main difference between these two commands is that modprobe uses insmod
to load any pre-requisite modules, and then the requested module, where as with ins-

mod command first we have to load all prerequisite modules required by this module

33

followed by this module. The standard directory for modulesis /1ib/modules/kernel-version/.
For example module 1 is the prerequisite for module 2. If we want to load

module 2 by using insmod command then

insmod /lib/modules/2.4.20-8/kernel/module_1.0
insmod /1lib/modules/2.4.20-8/kernel/module_2.0

If we want to load module 2 by using modprobe then
modprobe -a module_2

Once the work is finished with the module, it can be unloaded using the command
rmmod module_name

The modules that are currently loaded into the kernel can be obtained by using
the command lsmod.

More information about Linux Kernel Module Programming can be found in [12]
[13].

A.2 Netfilter Hooks

Netfilter is a subsystem in the Linux kernel. Netfilter has various hooks in the
kernel’s network code. We can register any function at these netfilter hooks. The
handler functions for a particular hook are called in their order of priority for all the

packets passing through that netfilter hook.
Netfilter defines five hooks for IPv4. These hooks are mentioned in the Table A.1.

The IPv4 traversal diagram is shown in Figure A.1.

Hook callback functions should return one of the predefined return codes after

they finished processing of the packet. These codes are shown in the Table A.2.

These return codes are explained below.

NF DROP This packet should be dropped completely and any resources allocated

for it should be released.

NF ACCEPT Send the packet for further processing in the network stack.

o4

Hook Called...

NF_IP_PRE_ROUTING After sanity checks, before routing decisions.
NF IP LOCAL_IN After routing decisions if packet is for this host.
NF_IP_FORWARD If the packet is destined for another interface.

NF_IP_LOCAL_OUT For pkts coming from local processes on their way out.
NF IP POST ROUTING Just before outbound packets "hit the wire".

Table A.1: Available IPv4 hooks

Return Code Meaning

NF_DROP Discard the packet.
NF ACCEPT | Send the packet for further processing.
NF STOLEN Steal the packet.
NF_QUEUE Queue packet for userspace.
NF REPEAT Call this hook function again.

Table A.2: Netfilter return codes

NF STOLEN The hook function will take processing of this packet from here and
that netfilter should drop all processing of it. The packet and its respective

sk buff structure are still valid.
NF QUEUE Queue the packet in user space. This is described in A.2.1.

NF REPEAT Call the hook function again.

A netfilter hook function is registered by using nf_register_hook() function.
nf_register_hook() takes the address of nf_hook_ops structure. The definition

of nf_hook_ops structure is as follows:

struct nf_hook_ops {
struct list_head 1list;

nf_hookfn x*hook;

99

“oo = [1]---= [ROUTE] -==-= [3] ~--= [4] ~==-=

[ROUTE]
[5]
A

—
<= N === ==
—

Different Hooks:

1. NF_IP_PRE_ROUTING
2.NF_IP_LOCAL_IN

3. NF_IP_FORWARD

4. NF_IP_POST_ROUTING
5.NF_IP_LOCAL_OUT

Figure A.1: IPv4 Netfilter Hooks

int pf;

int hooknum;

int priority;

};
list Maintains the list of netfilter hook functions.
hook Pointer to a function that will be called for the hook.

pf Specifies a protocol family. For IPv4 the protocol family is PF_INET.

hooknum The particular hook to install this function for and is one of the values
listed in Table A.1.

priority The priority of this hook function.
More information on netfilter hooks can be found in [14] [15].

26

A.2.1 Userspace Packet Queuing

Netfilter provides a mechanism for passing packets out of the network stack to
userspace. Whenever a netfilter hook function returns NF_ QUEUE, the packet is
queued in the userspace. The userspace application do whatever processing it needs
to do with the packet and sends the packet back into the kernel with a verdict
specifying what to do with the packet (such as ACCEPT or DROP).

For each supported protocol, a kernel module called a queue handler may register
with netfilter to perform the mechanics of passing packets to and from userspace.
The standard queue handler for IPv4 is ip queue. It uses a netlink socket for

kernel /userspace communication.

Libipq library provides an API for communicating with ip __queue.

A.3 Proc File System

The /proc file system is a virtual file system in the Linux. The files in the procfs
provide information regarding the state of the machine to userland programs. procfs
can be used to communicate with the kernel. In this we describe various functions

used for creation and communication with procfs entries.

For dealing with procfs, proc_fs.h header file have to be included.

struct proc_dir_entry* proc_mkdir (const char* name,

struct proc_dir_entry* parent);
proc_ mkdir() function creates a directory name in parent.

struct proc_dir_entry* create_proc_entry(const charx*

name, mode_t mode, struct proc_dir_entry* parent);

create_ proc_ entry() function creates a procfs file with the name name, file mode

mode in the directory parent. If parent is NULL, file is created in /proc/ directory.

void remove_proc_entry(const char* name, struct

proc_dir_entry* parent);

remove_proc_entry() function removes name in the directory parent.

o7

Whenever a procfs file is read or written by a userlevel process, corresponding
function is called. These functions are called call back functions. Call back functions

should be initialized after the procfs file is created.

struct proc_dir_entry* entry;

entry->read_proc = read_proc_func;

entry->write_proc = write_proc_func;

int read_func (char* page, char*x start, off_t off,

int count, int* eof, void* data);

To communicate from the kernel to the userspace, read function is used. The
read_ func() function writes at most count bytes into page starting from off. It sets
eof on reaching end of file. When this function is shared by more than one proc file,

data field is used to distinguish between the files.

int write_func (struct filex file, const char* buffer,

unsigned long count, voidx* data);

To communicate from userspace to kernel, write function is used. The write_ func()

reads at most count bytes from buffer which lies in userspace.

More information on procfs can be found in [16].

A.4 ioctl’s

Communication with the physical devices can be done in two ways. One is reading
or writing to the device file. Second is communication through the zoctl’s. When we

write to device files, device drivers send this information to the devices.

Read ioctl’s are used for communicating from a user process to the kernel. Write
ioctl’s are used for communicating from the kernel to a user process. The ioctl
function has three arguments. First argument is the file descriptor of the device file.
Second argument is the ioctl command number. Third argument is the argument to

the ioctl command. We can use a cast to pass any data type.

28

An ioctl number for read ioctl is created as follows.
#define IOCTL_SEND_INFO _IOR(MAJOR_NUM, O, long)

__IOR means it is read ioctl. MAJOR_NUM is the major device number. 0 is

the number of the ioctl command. long is the type of the ioctl command argument.
#define IOCTL_RW_INFO _IOWR(MAJOR_NUM, 1, int)

The above ioctl is used for both input and output.

register_chardev() function is used for registering a character device driver

inside the init_module() function of a module.

register_chrdev(MAJOR_NUM, DEVICE_NAME, &fops);

The third argument fops is a pointer to file_ operations structure which will hold
the call back functions of the device we created. For talking to the device we have

to create a device file. This can be created using the following command.
#mknod DEVICE_FILE_NAME ¢ MAJOR_NUMBER O

Whenever we read or write to this device file, corresponding call-back function

is called. Unregistering of the character device driver is done as follows.

unregister_chrdev (MAJOR_NUM, DEVICE_NAME);

A.5 sk buff structure

In the layered network architecture each protocol needs to add headers and tails
to the data received from upper layers and needs to remove these at the receiving
end. Linux uses SOCKET BUFFER sk _buff structure to efficiently pass the data

between the layers.

Some of the important fields are explained below. These fields are also shown in
the Figure A.2.

next Pointer to the next buffer in the list.

prev Pointer to the previous buffer in the list.

29

list List we are on.
sk Pointer to the socket we belongs to.
dev Pointer to the device we arrived on/are leaving by.

h, nh and mac Pointers to the transport, network and MAC layer headers respec-

tively.

dst Points to destination cache that is used to send the packet to a particular

destination.

cb| | This is the control buffer. It is free to use for every layer. We can put all the

private data here.
len The length of the current protocol packet.
csum Checksum of the data portion of the buffer.
priority Packet queuing priority.

truesize Total size of the data buffer.

Each sk buff has a block of data associated with it. The sk buff has four data

pointers, which are used to manipulate and manage the socket buffer’s data.

head This is a pointer to the data buffer associated with sk_ buff. This is set at the
time of allocating sk_ buff.

data This is a pointer to the current start of the data in the buffer. This varies

depending on the current protocol layer that is handling sk_ buff.
tail This is a pointer to the current end of data in the buffer.

end This is a pointer to the end of data buffer. This is set at the time of allocating
sk_ buff.

60

The sk _buff handling code provides standard mechanisms for adding and re-
moving protocol headers and tails to the application data. These safely manipulate
the data, tail and len fields in the sk_ buff.

push() It moves the data pointer towards the start of the data buffer and increments
the len field. It is used when adding protocol headers to the start of the data

to be transmitted.

pull() It moves the data pointer away from the start of the data buffer and decre-
ments the len field. It is used when removing protocol headers from the start

of the data that has been received.

put() It moves the tail pointer towards the end of the data buffer and increments
the len field. It is used when adding protocol information to the end of the

data to be transmitted.

trim() It moves the tail pointer towards the start of the data buffer and decrements

the len field. Tt is used when removing protocol tails from the received packet.

61

next T =
prev B
list -
sk -
dev N
h =
nh T =
mac -1 =
dst N
cb[48]
len
csum
priority
truesize
head
data
tail
end

~<~——truesize =

len

skb_push ()

- - -

skb_pull ()

skb_trim()

skb_put ()

Figure A.2: sk _buff Structure

62

Appendix B

Source Code Organization

IP-IP-in This module handles processing of incoming packets into the network

stack.
IP-IP-out This module handles processing of outgoing packets from this machine.

RoutingTables This module handles all the routing tables. It has call-back func-
tions which are called when any user-level program writes to the proc file. This

module exports all the routing tables to other parts of the kernel.

chardev This module provides zoctl interface for accessing and modifying the rout-
ing tables. It has call-back functions which are called when any user-level

program calls ioctl’s.

chardev.h Definitions for the ioctl calls for accessing and modifying the routing
tables.

syscall hack This module hacks the system calls bind and route. Applications are
associated with a virtual host. This module finds this association and modifies
the system calls to act on that virtual host. For example, a route command
issued by an application that belongs to a virtual host is changed to act the

command on the virtual host routing table rather than system routing table.

63

pid__ip This modules maintains the association between the virtual hosts and ap-
plication programs. It associates PID of the wrapper program with virtual
host IP address. All the applications executed in this wrapper are assigned
the virtual host corresponding to the wrapper. This module also provides an

toctl interface to modify this association.

pid ip.h Definitions for the ¢octl calls for modifying the association between the

wrapper and the virtual host.

my header.h Header file which contains the definitions for global variables, flags

etc of the emulation platform.

dst entry export This module captures dst_entry objects and exports these to

other parts of the kernel.

rt _init.c This userlevel program writes all the routing tables, IP addresses etc to

proc file /proc/rtable, which is handled by RoutingTables module.

pidip _ioctl.c This userlevel program is used for modifying the PID-IP associa-

tions.

runme Shell script which compiles all the modules and inserts them into the kernel.

Several userlevel programs generates TCP and UDP traffic and calculates the
bandwidth.

64

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

Luigi Rizzo. Dummynet: a simple approach to the evaluation of network pro-
tocols. ACM Computer Communication Review, 27(1):31-41, January 1997.

Mark Carson and Darrin Santay. NIST Net — A Linux-based Network Emulation
Tool. ACM SIGCOMM Computer Communications Review, 33(3):111-126,
July 2003.

Grenville Armitage. Maximising student exposure to networking using freebsd
virtual hosts. ACM SIGCOMM Computer Communications Review, 33(3):137—
143, July 2003.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad,
Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated
experimental environment for distributed systems and networks. In Proc. of
the Fifth Symposium on Operating Systems Design and Implementation, pages
255-270, Boston, MA, December 2002. USENIX Association.

FreeBSD, October 2003. http://www.freebsd.org.

Robert Ricci, Chris Alfeld, and Jay Lepreau. A solver for the network
testbed mapping problem. ACM SIGCOMM Computer Communications Re-
view, 33(2):65-81, April 2003.

User mode linux. http://user-mode-linux.sourceforge.net/.

65

|8] Stefan Savage David Ely and David Wetherall. Alpine: A user-level infrastruc-
ture for network protocol development. In Proc. of the Third USENIX Sympo-

sium on Internet Technologies and Systems. http://alpine.cs.washington.edu/.
[9] http://www.netperf.org.
[10] bw_tcp. http://www.bitmover.com/lmbench/bw_tcp.8.html.

[11] Fang Hao and Pramod Koppol. An internet scale simulation setup for bgp.
ACM SIGCOMM Computer Communications Review, 33(3):43-57, July 2003.

[12] Peter Jay Salzman and Ori Pomerantz. The linux kernel module programming
guide, 2003. http://www.fags.org/docs/kernel/.

[13] Bryan Henderson. Linux loadable kernel module howto, 2005.
http://tldp.org/HOWTO /Module-HOWTO/.

[14] Owen Klan. How to wuse netfilter hooks, 2003.
http://uqconnect.net/%7Ezzoklan /documents/netfilter.html.

[15] Rusty Russell and Harald Welte. Linux netfilter hacking howto,
2002. http://www.netfilter.org/documentation/HOWTOQO/ /netfilter-hacking-
HOWTO.html.

[16] Erik (J.A.K.) Mouw. Linux kernel procfs guide, 2001.
http://kernelnewbies.org/documents/kdoc/procfs-guide /Ikprocfsguide.html.

[17] pragmatic / THC. (nearly) complete linux loadable kernel modules.
http:/ /reactor-core.org/linux-kernel-hacking.html.

|18] Daniel P.Bovet and Marco Cesati. Understanding the Linuz Kernel. O’Reilly,
2nd edition, December 2002.

[19] Alessandro Rubini and Jonathan Corbet. Linuz Device Drivers. O’'Reilly, 2nd
edition, June 2001. http://www.xml.com/ldd/chapter/book/.

66

|20] M Dziadzka U Kunitz R Magnus C Schroter M Beck, H Bohme and D Ver-
worner. Linuz Kernel Programming. Addison Wesley Professonal, 3rd edition,
August 2002.

|21] Cross referencing linux. http://lxr.linux.no/source/.

[22] A map of the networking code in linux kernel 2.4.20.
http://datatag.web.cern.ch/datatag/papers/tr-datatag-2004-1.pdf.

[23] Jonathan Sevy. Linux network stack walkthrough.
[24] The linux documentation project. http://www.tldp.org/.

[25] Juan-Mariano de Goyeneche. Kernel links for understanding the linux kernel.

http://jungla.dit.upm.es/%7Ejmseyas/linux /kernel /hackers-docs.html.

[26] Linux kernel sources. http://www.kernel.org/pub/linux/kernel/.

67

