Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

WiBeaM : Design and Implementation of Wireless Bearing Monitoring System

VMD Jagannath Supervisor: Dr Bhaskaran Raman

Department of Computer Science & Engineering Indian Institute of Technology, Kanpur

29th June 2006

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
	00000		000000	000000	000000	

Outline

Background

- Types of Bearing Defects
- Existing Methods
- Necessity of Automated System
- Proposed Solution
- Theory of Bearing Measurement

Related Work

Design Overview

- Operation Cycle of Motors
- Hardware Selection
- Software Selection

Implementation

- Implementation Details
- Software Implementation

5

Performance

Single Vs Multihop

- Data Transfer
- Vibration Measurements

Future Work

WiBeaM : Wireless Bearing Monitoring System

・ロ・ ・ 四・ ・ 回・ ・ 日・

э

Introduction

Background Re

Related Work

Design Overview

Implementation

Performance

Future Work

Wireless Sensor Networks

A collection of sensor nodes that are deployed to perform a specific action.

Characterestics/Challenges of WSN

- Small Processing power.
- Limited Memory.
- Radio to transmit /Recieve data.
- Ability to run on batteries.

Introduction

Background Re

Related Work Design Overview

Implementation

Performance

Future Work

Wireless Sensor Networks

A collection of sensor nodes that are deployed to perform a specific action.

Characterestics/Challenges of WSN

- Small Processing power.
- Limited Memory.
- Radio to transmit /Recieve data.
- Ability to run on batteries.

・ロ・ ・ 四・ ・ 回・ ・ 日・

Introduction	Background	Related Work	Design Overview 0000000	Implementation	Performance	Future Work
Con	dition Bas	ed Mainter	nance			
To M	Ionitor and	d assess th	ne health of a	an equipmer	nt	
Com	nmon Para	meters Me	easured			
٢	temperatu	ire				

- vibration
- various other machine specific parameters

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

WiBeaM

Bearing Monitoring

Monitoring Bearings with the Uthaprobe

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Introduction Background Related Work Design Overview Implementation Overview Overvie

WiBeaM

Thesis Definition

Develop a cheap and reliable sensor network application to monitor the bearing vibration of induction motors in a ship

Thesis Goals

- Find a suitable vibration sensor
- Form a network of sensor nodes
- Ensure reliable transfer of data
- Storage of measured readings on the node
- Conserve the battery power
- Process the measured signal and capture relevant vibration data

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction	Background ●○○○○	Related Work	Design Overview	Implementation	Performance	Future Work
Types of Beari	ng Defects					
Backo	round					

Defects in Ball Bearings

- Outer race defect
- Inner race defect
- Ball defect

Bearing Anatomy

Int	roc	luc	fin	n
ΠIL	ιυc	iuc	ιıυ	

Background **Related Work** Design Overview

Implementation

Performance

Future Work

Existing Methods

Manual Methods

00000

Automatic/semi-automatic Methods

Shock Pulse Measurement

・ロ・ ・ 四・ ・ 回・ ・ 日・

- Vibration measurement
- Stator Transient current analysis

Introduction	Background ○○●○○	Related Work	Design Overview	Implementation	Performance	Future Work
Necessity of A	utomated Systen	า				

Drawbacks of Manual Methods

- Large number of machinery
- Hidden costs
 - More man hours expended
 - No lead time
 - Book keeping
 - Costly Hand held scopes

Introduction	Background ○○○●○	Related Work	Design Overview	Implementation	Performance	Future Work
Proposed Solu	ıtion					

Proposed Solution

- Develop a network of Wireless Sensor Nodes
- Should measure the vibrations automatically

Introduction

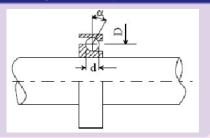
Background **Related Work** **Design Overview**

Implementation

Performance

Future Work

Theory of Bearing Measurement


00000

Theory of Bearing Measurement

Outer, inner and ball race defects

$$\begin{bmatrix} F_{ord} = \left\{ \frac{N \cdot RPM}{2} \right\} \times \left\{ 1 - \left(\frac{d_{ball}}{D_{plitch}} \right) \times \cos\alpha \right\} \end{bmatrix}$$
$$\begin{bmatrix} F_{ird} = \left\{ \frac{N \cdot RPM}{2} \right\} \times \left\{ 1 + \left(\frac{d_{ball}}{D_{plitch}} \right) \times \cos\alpha \right\} \end{bmatrix}$$
$$F_{ball} = \left\{ \frac{RPM}{2} \right\} \times \left\{ \left(\frac{D_{plitch}}{d_{ball}} \right) - \left(\frac{d_{ball}}{D_{plitch}} \right) \times (\cos\alpha)^2 \right\}$$

Bearing Geometry

・ロ・ ・ 四・ ・ 回・ ・ 日・

WiBeaM : Wireless Bearing Monitoring System

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

Related Work

Structural Monitoring

Monitor Structures

Habitat Monitoring

Great Duck Island

CodeBlue

Application for hospital care

North-sea Deployment

Similar to what we have done

BriMon

Bridge Monitoring System for railway bridges

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

Comparison Table

	Habitat Monitoring	WISDEN	North Sea Deployment	BriMon	CODEBLUE	WiBeam
Deployment	Long Term	Short Term	Long Term	Long Term	Long Term	Long Term
Hardware	Mica2	Mica2 MicaZ	MicaZ	Tmotes Telos	Mica2,MicaZ	Tmotes
System Replaced	manual	wired	Expensive wireless	manual	Medical Electronics	manual
Architecture	Tiered	Flat	Tiered	Tiered	Tiered	Tiered
Sensor	Temp erature Pressure	accelero meter	accelero meter	acclero meter MEMS	Pulse oximeter EKG	accelero meter MEMS
Compression	YES	YES	NO	NO	NO	NO

・ロト ・ 四ト ・ ヨト ・ ヨト

臣

Introduction	Background	Related Work	Design Overview ●○○○○○	Implementation	Performance	Future Work
Operation Cyc	le of Motors					
Desigr	n Overv	iew				

Operaton Cycle of Motors

- Important Fire fighting system, AC Plant , Ref plant etc.
- Less Important Cooling motors, Fuel supply motors for Engines
- Unimportant Ventilation, Sewage Motors

・ロ・ ・ 四・ ・ 回・ ・ 回・

Introduction	Background	Related Work	Design Overview ○●○○○○○	Implementation	Performance	Future Work
Operation Cyc	le of Motors					

Duty Cycle

- Motors are run in a cycle of 6 hours on/off in a day
- Nodes may wakeup once in every four hours and check for activity
- One measurement in a day is sufficient
- Latency upto one day is acceptable

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Introduction	Background	Related Work	Design Overview ○○●○○○○	Implementation	Performance	Future Work
Hardware Sele	ction					

Comparison between various Accelerometers

	Power	Range	Freq Band	Sensitivity	Noise	Cost
ADXL105 MEMS	2 - 5V	$\pm 5g$	0 — 12 <i>Khz</i>	225 — 275 <i>mv</i> /g	225 <i>mg</i>	14USD
CXL04 XBow	$\pm 5V$	$\pm 4g$	0 — 100 <i>H</i> z	500 <i>mv</i> /g	10 <i>mg</i>	185 <i>U</i> SD
SKF CMSS786A	18 – 30 <i>V</i>	\pm 80g	0.5 — 14 <i>Khz</i>	95 — 105 <i>mv/g</i>	20 <i>m</i> g	120 <i>U</i> SD
CMCP-1100	8 – 12 <i>V</i>	$\pm 50g$	0.3 — 10 <i>Khz</i>	100 <i>mv/g</i>	4 – 8 <i>ug</i>	130 <i>U</i> SD
Wilcoxon 786A	18 – 30 <i>V</i>	80g	30Khz	100 <i>mv/g</i>	not	185USD
					specified	

・ロト ・ 四ト ・ ヨト ・ ヨト

臣

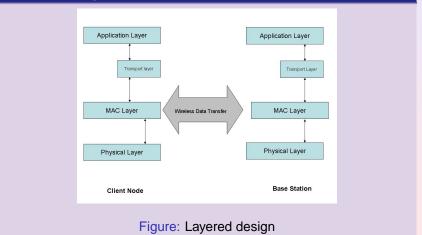
Introduction	Background	Related Work	Design Overview ○○○●○○○	Implementation	Performance	Future Work	
Hardware Selection							

Comparison between various Sensor Nodes

Model	Radio	Data Rates	RAM	Processor	I/OInterface
Tmote Sky	2.4Ghz	250kbps	10KB	msp430	10 Pin
Intel	Bluetooth	750kbps	64KB	ARM7TDMI	USB-slave mode
Mica2	916MHZ	38.4kbps	4KB	Atmega128	51-pin
Micaz	2.4Ghz	250kbps	4KB	Atmega128	51-pin

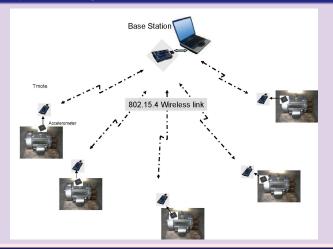
Introduction	Background	Related Work	Design Overview ○○○●○○	Implementation	Performance	Future Work
Software Selec	tion					

Operating System


TinyOS

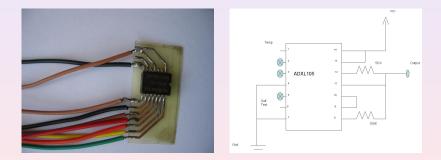
- Component based operating system
- Developed by U/C at Berkeley
- Has lot of sample applications and code
- Freely downloadable

・ロ・ ・ 四・ ・ 回・ ・ 回・


Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
			0000000			

Software design

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
			000000			


Overall System design

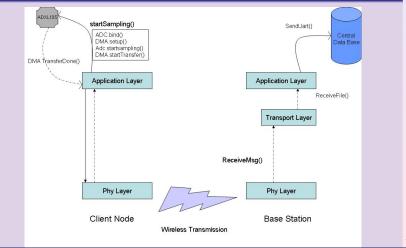
Introduction Background **Related Work Design Overview** Implementation Performance **Future Work** 00000

Implementation Details

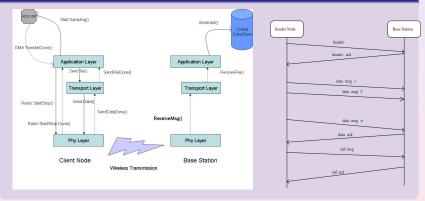
Hardware Implementation

(日)

E

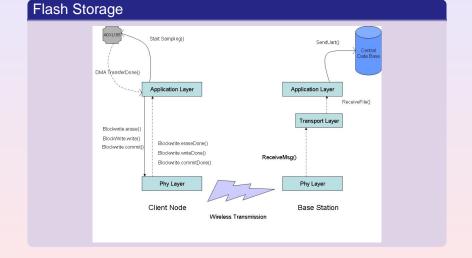

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
Implementation	n Details					

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
Software Imple	ementation					


Implementation Details

Data Measurement

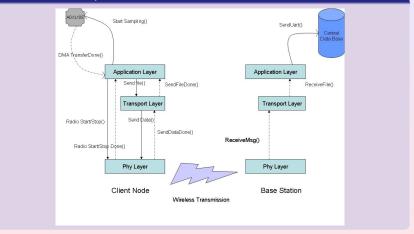
Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
Software Imple	ementation					


Reliable Data Transfer

WiBeaM : Wireless Bearing Monitoring System

< □> < □> < □> < □> < □>

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work
Software Imple	ementation					

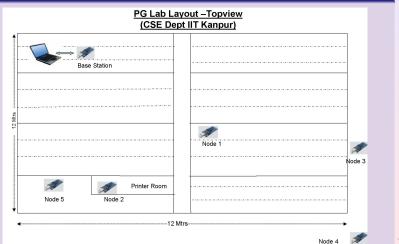


WiBeaM : Wireless Bearing Monitoring System

臣

Introduction	Background	Related Work	Design Overview	Implementation ○○○○●	Performance	Future Work
Software Imple	ementation					

Power Consumption


WiBeaM : Wireless Bearing Monitoring System

臣

Introduction	Background	Related Work	Design Overview	Implementation	Performance ●○○○○○	Future Work
Single Vs Multi	hop					

Performance Analysis

Singlehop Vs Multihop

WiBeaM : Wireless Bearing Monitoring System

Introdu	ction	Background	Related Work	Design Overview	Implementation	Performance ○●○○○○○	Future Work
Single	Vs Multi	hop					

CC2420 Transmit Power Vs Power Consumption

TinyOS	Transmit	Current
Power Value	Power(dBm)	Consumption(mA)
31	0	17.4
27	-1	16.5
23	-3	15.2
19	-5	13.9
15	-7	12.5
11	-10	11.2
7	-15	9.9
3	-25	8.5

Table: Source - CC2420 Datasheet

臣

Introduction	Background	Related Work	Design Overview	Implementation	Performance ○○●○○○○	Future Work
Single Vs Mult	ihop					

Powers After running Power Negotiation Algorithm

Node ID	Transmit
	Power(dBm)
1	-25
2	-9
3	-12
4	-18
5	0

WiBeaM : Wireless Bearing Monitoring System

Introduction	Background	Related Work	Design Overview	Implementation	Performance ○○○●○○○	Future Work
Data Transfer						

Data Transfer with 4 nodes

ſ	Delay(msec)	Throughput(kbps)	%Packet Loss(per file)
ĺ	10	17.5	4
	5	23	6
	2	32	8
	1	35	9

Table: Throughput and Packet loss at various delay intervals

(日)

Testbed for Trials

・ロト ・四ト ・ヨト ・ヨト

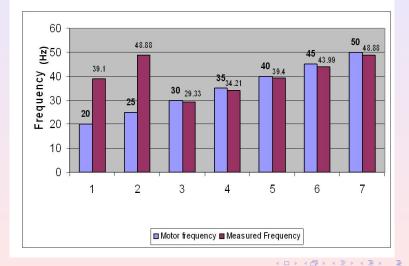
э

Introduction	Background	Related Work	Design Overview	Implementation	Performance ○○○○●○	Future Work
Vibration Meas	urements					

Measurement Settings

- Sampling Frequency = 20KHz
- No of data points measured = 4096

•
$$\delta F = \frac{1}{(\delta T \times N)}$$


- δF is the desired frequency resolution
- δT is the time between two samples(depends on the sampling rate)

•
$$\delta F = \frac{1}{(50 \times 10^{-6} \times 4096)} = 4.88 Hz$$

- No of Frequencies checked = 7
- No of measurements obtained at each frequency = 5

A (1) > A (2) > A (2) > A

VMD Jagannath

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

Future Work

- Data Compression
- Packaging
- Industry Trials
- Site Survey
- Security
- Low power operation (switch off Microcontroller)
- User Interface

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

Conclusion

- Wireless solutions are ideal to ships environment
- Extendable to other equipment like Engines and Generators etc

・ロ・ ・ 四・ ・ 回・ ・ 回・

臣

Introduction	Background	Related Work	Design Overview	Implementation	Performance	Future Work

Questions ?

Please ask, it may improve the standard of my work

WiBeaM : Wireless Bearing Monitoring System