Design, Implementation, and Evaluation of new MAC Protocols for Long Distance 802.11 Networks

Picture taken from TIER, UCB

S Pavan Kumar under the supervision of Dr. Bhaskaran Raman

Motivation

Low cost Internet Access for remote rural villages

- Applications
 - Telephone service through Voice over IP
 - Telemedicine service through Video over IP
- How to go about it?
 - Network Infrastructure
 - Wired, Cellular, VSAT Prohibitively expensive
 - Wireless (802.11) inexpensive hardware, unlicensed spectrum, widely accepted and employed

Motivation and Introduction

- Digital Gangetic Plains Project, IIT Kanpur
 - Single point of wired connectivity
 - Use of high gain directional and sector antennae
 - Long distance point-to-point and point-to-multipoint links

Motivation and Introduction

CSMA/CA

- —Standard MAC protocol for 802.11 networks
- -Suitable for indoors (WLAN) and not outdoors
 - Huge RTT
 - •Hidden node problem (RTS/CTS large overhead)
 - Contention is not arbitrary
- –Not suitable for applications in question

New MAC Protocols

²P (2 Phase) for point-to-point links

–TDMA based

SRAWAN (Sectorized Rural Area Wireless Access Networks) for point-to-multipoint links

_TDMA-TDD based

2P MAC – Background

- Synchronous Operation by Sreekanth Garigala SynTx/SynRx
- CSMA/CA performs poorly
 - Immediate acks
 - Carrier sensing
- STDMA based MAC by Dr. Bhaskaran Raman and Dr. Kameswari Chebrolu

2P operation on single link

19th May 2006, 4PM -5PM

S Pavan Kumar Master's Thesis Defense

Indian Institute of Technology, Kanpur

2P operation on two links

Transmitor beidle for SynTx duration

2P MAC Operation

- Single link operation
 - Synchronization through marker packet
- Two link operation
 - Synchronization
 - With link-nbr through marker packet
 - With ifa-nbr through shared memory or ethernet messages
 - When the ifa switches from SynRx to SynTx
 - When the ifa switches from SynTx to SynRx before transmitting marker packet

Significant Questions we seek to answer

How to achieve 2P on the top of off-the-shelf 802.11 hardware to preserve cost benefits?

Is 2P feasible outdoors?

What is the performance of 2P in comparison to CSMA/CA?

2P MAC - Implementation

- Older implementation
 - IBSS mode and IP unicast packets to MAC broadcast
 - antsel_rx
- Drawbacks
 - Backoff, antenna switching overhead
- Newer implementation for Atheros AR5212 chipsets in Madwifi driver
 - Disable immediate MAC level acks
 - Disable CCA and NAV
 - Disable exponential backoff
 - Nullify SIFS, DIFS, EIFS and slot duration
 - Disable RTS/CTS

Effect of disabling CCA and NAV

Is C operating	NAV disabled at	CCA disabled at	SCP throughput
	C	C	from AP to client
			(KBPS)
No	No	No	850
Yes	No	No	450
Yes	Yes	No	235
Yes	No	Yes	200
Yes	Yes	Yes	185

2P - Experimental Setup

CSMA/CA and 2P – Performance Evaluation

MAC	Channels	Throughput	Throughput	Total
	(MLA, CSE links)	MLA link (Mbps)	CSE link (Mbps)	(Mbps)
CSMA/CA Madwifi	1, 6	7.5	6.9	14.4
CSMA/CA HostAP	1, 6	6.1	5.8	11.9
2P	1, 6	6.3	6.2	12.5
CSMA/CA HostAP	6, 6	3.0	2.8	5.8
CSMA/CA Madwifi	6, 6	4.1	2.9	7.0
2P	6, 6	4.3	4.1	8.4

Problem during SynRx

Phase	Throughput on MLA link (Mbps)	Throughput on CSE link (Mbps)
SynTx	2.3	2.6
SynRx	2.0	1.5

19th May 2006, 4PM – 5PM

S Pavan Kumar Master's Thesis Defense

Indian Institute of Technology, Kanpur

Overheads

- Time gap of 700us between NOTIF from *Master* and NOTIF_ACK from *Slave*
 - –Net Filter hooks in Linux kernel for transmitting and receiving IP packets at MAC driver level
 - –Low processing power of WRAP boards
- How to handle this?
 - -Shared Memory coordination among interfaces: not possible

Experiment	Signal level at ifa1 because of ifa2	Signal level at ifa2 because of ifa1
Interfaces connected to no external antennae	-77 dBm	-75 dBm
Interfaces connected to external antennae with 3dBi gain	-33 dBm	-32 dBm
Interfaces connected to netgear pigtails	-30 dBm	-30 dBm

Shared Memory Experiment

SRAWAN

- SRAWAN Sectorized Rural Area Wireless Access Network
 - Point-to-multipoint MAC protocol
 - TDMA-TDD based MAC based on WiMAX
 - Designed to operate on 802.11 PHY
 - Challenges
 - Intelligently select minimal functionality from WiMAX that will suit the applications for rural networks
 - Implementation on 802.11 PHY
- Design Jointly done by Dr. Bhaskaran Raman, myself and Narasimha Puli Reddy of MTech 2004
- Implementation Jointly done by myself, Narasimha Puli Reddy and Pratik Sinha of Zazu Networks.
- Evaluation Done by me

SRAWAN – Architecture

- BS Base Station (sector antenna)
- SS Subscriber Station (directional antenna)
- SRAWAN specifies the communication between BS and SSs
- *TDD supports traffic from both sides
- *TDMA supports multiple SSs
- SRAWAN relies on tight time synchronization to support TDD and TDMA
- *FDD is not possible. Why?

SRAWAN – Frame Structure

SRAWAN – Frame Structure

- Downlink DL (BS to SSs)
 - Beacon: why is it the first PDU in DL?
 - FCH UCD, DCD and ULMAP
 - No DLMAP. Why?
 - MPDUs (MAC Protocol Data Units)
- Uplink UL (SSs to BS)
 - MPDUs
 - Contention based Ranging Slots
 - Contention based Bandwidth Request Slots
- Guard Time

Ranging

Connection Establishment

Primary CID – exchange of management messages except periodic ranging msgs

Basic CID – exchange of periodic ranging msgs

Connection establishment – 3 way handshake

Multiple connections per SS

Other features of SRAWAN

- Authentication and Security 802.1x
 - SRAWAN does not impose restrictions on what to send in pkts (payload) and how to send them (encryption etc)
 - 802.1x does not lay restrictions on when to send the pkts
- Packing
 - Multiple SDUs per PDU
 - No Packing of Multiple SDUs belonging to different CIDs as in WiMAX
- ARQ
 - Sliding window based
 - Retransmission granularity is MPDU
 - Cumulative ack (8 bits) with selective ack map (16 bits)

Significant questions we seek to answer

How to achieve SRAWAN on the top of off-the-shelf 802.11 hardware?

- Is SRAWAN feasible outdoors? Is it possible to achieve tight time synchronization?
- What is the performance of SRAWAN in comparison to CSMA/CA?

Implementation

- Atheros AR5212 chipsets (Ubiquiti SR2 and Wistron CM9 cards)
- Madwifi Multiband Atheros Driver for WiFi
- Primary tasks required for SRAWAN
 - Overriding the 802.11 MAC PDU
 - Disabling immediate MAC level acks
 - Disable CCA and NAV
 - Disable exponential backoff
 - Eliminate SIFS, DIFS, EIFS, RTS/CTS and nullify slot
 - A micro second granular timer since the implementation is based on interrupt driven model

Features of the driver

- Operates in 2 modes: BS and SS
- BS supports only UGS (CBR) flows
 - Bandwidth to be allocated for a CID is decided during connection establishment phase
 - Internet connectivity to subscribers who pay for a limited bandwidth support
 - Bandwidth requirements are not known apriori
- Beacon is sent at lowest possible rates
- Transmit power is set to maximum value
- Round robin scheduling
- ARQ
- No Packing

Implementation Parameters

- Frame duration = 10ms
- UL : DL = 1 : 1
- Guard time = 200 us
- Ranging slots = 200 us
- Connection request slots = 200us
- Num of ARQ retries = 4

Experimental Setup

CSMA/CA and SRAWAN – Performance Evaluation

MAC	Driver	RTS/CTS	Effective throughput (MLA link, CSE link in Mbps)
CSMA/CA	Madwifi	Disabled	6.3
CSMA/CA	Madwifi	Enabled	5.7
CSMA/CA	HostAP	Disabled	4.1
CSMA/CA	HostAP	Enabled	3.0
SRAWAN	Madwifi	Not applicable	6.0 (3, 3)

Single link performance evaluation of 2P, SRAWAN and CSMA/CA

MAC	Driver	Average throughput (Mbps)
CSMA/CA	Madwifi	7.42
CSMA/CA	HostAP	5.95
SRAWAN	NA	6.33 (7.40)
2P	NA	6.28

- Tight vs. loose time synchronization
- Lossy links tight time synchronization is better
- Saturated traffic TDMA MAC
- Bursty traffic CSMA/CA

Applicability

Rural Networks

- –Ashwini Network in Bhimavaram, AP (built by NGO Byrraju Foundation)
- -Estimated throughput support per village is 384 kbps (can support voice and video applications)
- Broadband connectivity in cities and hotspots
 - -Deployment of SRAWAN in Paris by an ISP after further development by Zazu Networks, Bangalore

Conclusions

- 802.11 cost effective solution for rural networks
- Voice and Video applications
- 2P and SRAWAN performance effective MAC for point-to-point and point-to-multipoint links respectively
- Feasibility of 2P and SRAWAN outdoors
- Performance evaluation against CSMA/CA on DGP testbed
- Immediate applicability in Ashwini Network at Bhimavaram, AP built by Byrraju Foundation.

Questions?

Thank You

