Thesis Defence

The Feasibility and Usefulness of Link Abstraction in Wireless Networks

DY Gokhale

Thesis Advisors: Dr. Bhaskaran Raman Dr. Kameswari Chebrolu

Contents

Introduction

Motivation and Related Work

Experimental Setup and Methodology

Results and Implications

Conclusion

Introduction

What is 'link abstraction'?

- Concept derived from 'wired networks'
- If link abstraction exists –

Introduction – Link Abstraction

If link abstraction is absent –

It's Existence simplifies

- Complex routing metrics
- Network protocols
- Improves network performance

Introduction – Link Abstraction

If link abstraction exists -

Link	Exists	Doesn't exist	
Error rate	Negligible (0%)	All packets lost (100%)	
SNR and BER	Rapid change	Gradual change	

It's Existence simplifies

- Complex routing metrics
- Network protocols
- Improves network performance

Introduction – Our Work

We look for answers to:

- Is link abstraction feasible? Especially in
 - Wireless Sensor Networks (WSNs)
 - Wireless Mesh Networks based on 802.11b (WMNs) – link distances < 500m
- Is there a method to engineer links with 'link abstraction'?
- Is there a possibility of classifying existing links?
- Is there a factor / factors that invalidate 'link abstraction'?

Related Work and Motivation

Related Work and Motivation: WMNs

Motivation

 Measurement study of WMNs motivated by FRACTEL (wi-Fi based Regional/Rural data Access and TELephony)

FRACTEL : AIM

"Extend the connectivity available at a single location in a village, to multiple locations while aiming to provide data, voice and video services over the links...."

Related Work and Motivation: WMNs

Important wireless measurement studies –

- Roofnet Community Mesh Network
- DGP Long Distance Network

Setting:

	Community WMNs E.g.: Roofnet	Long Distance WMNs E.g.: DGP	FRACTEL (Presently)
External Connectivity	Multiple points	Single point	Single
Link Distance	Mostly <500m	Up to few 10s of kms	Mostly < 500m
Network Architecture	Unplanned, Omni antennas on rooftops	High gain directional antennas on tall towers	Avoid use of tall towers
Environment	Dense urban	Rural	Rural

Related Work and Motivation:

Contrasting Results

	Community WMNs E.g.: Roofnet	Long Distance WMNs E.g.: DGP	FRACTEL (Presently)
Link Abstraction	INVALID	VALID	To be determined
Effect of Multi-path	Strong Component observed	Less Susceptible	To be determined
SNR / RSSI & Link Quality	Not useful to predict link quality	Has strong correlation with link quality	To be determined

FRACTEL link characteristics ???

Related Work and Motivation: WMNs

- Roofnet Results
 - Intermediate delivery probabilities (*neither 0% or* 100%) on majority links
 - Multi-path is major cause of losses

Proposed routing metrics to work around – ETX –

Minimises expected time of transmission to ultimate destination

(Couto, D. S. J. D., Aguayo, D., Bicket, J., and Morris, R. A HighThroughput Path Metric for MultiHop Wireless Routing. In MOBICOM (Sep 2003))

WCETT –

Chooses a channel diverse path

(Draves, R., Padhye, J., and Zill, B. Routing in Multi-Radio, Multi-Hop Wireless Mesh Networks. In MOBICOM (Sep 2004))

Related Work and Motivation: WSNs

Zhao and Govindan have shown:

- Absence of a link abstraction
- Presence of a 'gray/transitional' region
 - Outdoor 1/5th of total communication range
 - Indoor 1/3rd total communication range
 - Error rates unpredictable, varying

("Measuring packet delivery performance in dense wireless networks", Sensys 2003)

Problem addressed by

- Routing metrics to differentiate between links
 - Multi-hop LQI (Link Quality Indicator)
 - 1/PSR (Packet Success Rate)

Related Work – Summary

Most literature reports –

- The absence of link abstraction
- Links with intermediate delivery rates
- Routing metrics that choose the best link amongst them

Our work suggests –

- Link abstraction is 'feasible'
- It can be used to build predictable links
- This simplifies things like routing

Experimental Setup And Methodology

Experimental Setup – WMNs

Hardware –

- Senao 2511CD Plus 802.11b PCMCIA cards
- Laptops
- Antennas
 - Sector Antenna (Sector) 17 dBi
 - Omni Directional Antenna (Omni) 8 dBi

Software –

- Linux kernel 2.6.11
- Modified HostAP driver ver 0.4.9

Experimental Setup: WMNs

Experiment Locations: WMNs

- Experiment Locations
 - On Campus 5
 - Village 1
- Fixed one transmitter position
- Varied up to 6 receiver positions
- Receiver position classification
 - Good Avg. RSSI ≈ -70 dBm
 - Medium Avg. RSSI ≈ -75 dBm
 - Bad Avg. RSSI ≈ -80 dBm

At each location – combination of Rx positions

Experiment Locations: WMNs

ACES Type II –
Apt
Stoff Cround

Staff Ground –Gnd

✤ Hall 8 – *dorm*

SBRA –Apt2dorm

Academic Area*corridor*

Village Amaur –Vill

Images Source : http://earth.google.com

Hardware –

- Tmote Sky motes
 - CC2420 Zigbee compliant 2.4GHz radio
- Laptops
- Antennas
 - Parabolic Grid Antenna (*Grid*) 24 dBi
 - Sector Antenna (Sector) 17 dBi
 - Omni Directional Antenna (*Omni*) 8 dBi

*Software –

TinyOS – Open source OS

Experiment Locations: WSNs

- Dense Foliage foliage
 Narrow road road
 Hall 8 dorm
 Structures Lab lab
- Airstrip airstrip

WMNs Results and Implications

Controlled experiment – cards + RF cable

*****Experiments done at all 6 locations

- 6000 1400-byte broadcast pkts, 20ms gap between packets, 4 data rates
- Average values for 100 pkt bins
- Noise nearly constant (-94 to -95 dBm)

WMNs: Error Rate vs. RSSI

WMNs: Roofnet Data – A relook

We observed high noise values in logs

-94 dB

Evnorimont

Experimental Setup

'A': 1400-byte packets, 2ms interval
'B': 1300-byte packets, 2ms interval
'B' power fixed at -75 dBm
'A' power varied: -90, -85, -80, -75 dBm

Interference Experiment – Questions

- Does Interference increase the noise level reported by the card?
- Can packet loss be related to the number of foreign packets seen?
- Can the reported noise level be used to gauge the level of interference?

Can we estimate the link performance based on the 'Average measured noise floor'?

Interference Experiment – Answers

- Interference causes noise level to be high and variable
- Packet loss high even though number of observed foreign packets low
- Packet loss can be low even though number of observed foreign packets is high
- On this H/W, gauging level of interference is error prone
- It is not possible to estimate the link quality based on reported noise floor

Controlled Interference Experiment

Does Interference increase the noise level reported by the card?

Col-1	Col-2	Col-5	Col-8	Col-9
Expt No	${f Src}$	Mean Noise (dBm)	Noise Band (dB)	Max Noise (dBm)
1	A	-93.26	4	-88
1	В	-92.1	6	-88
2	А	-92.53	9	-85
2	В	-89.34	9	-84
3	А	-90.85	14	-80
3	В	-85.16	14	-80
4	A	-93.06	2	-74
4	В	-90.18	19	-74

Controlled Interference Experiment

Controlled Experiment

Roofnet

* Avg RSSI

- A : -85 dBm
- B : -75 dBm

Noise extends right up to -65 dBm

P1: Interference causes noise level to be high and variable

Evnorimont

Can packet loss be related to the level of interference seen?

Col-1	Col-2	Col -3	Col-4	Col-5	Col-6	Col-7	Col-8	Col-9
Expt No	\mathbf{Src}	Mean RSSI	\mathbf{Loss} %	Mean Noise	5 %-ile	95 %-ile	Noise Band	Max Noise
		(dBm)	\frown	(dBm)	(dBm)	(dBm)	(dB)	(dBm)
2	A	-85.23	99.2	92.53	-94	-85	9	-85
2	В	-74.68	18.3	89.34	-94	-85	9	-84

B's loss = 18.3%; A's loss = 99.2%
Even if B stops, A's loss = 99%

P2: Packet loss high even though number of observed foreign packets low

Evnorimont

P3: Packet loss can be low even though number of observed foreign packets is high

Evnorimont

P2 Packet loss high Foreign Packets low

P3 Packet loss low Foreign Packets high

Roofnet No Correlation between loss rate & rate of foreign packet reception

Evnorimont

- Can the reported noise level be used to gauge the level of interference?
 - Instantaneous noise levels show variability
 - Noise levels reported differ from known level
 - Reason?

P4: On this H/W, gauging level of interference is error prone

Evnorimont

Can we estimate the link performance based on the 'Average measured noise floor'?

WMNs: RSSI Stability and Error Variability

Location	Rx Posn	LoS ? (Y/N)	Dur. (hrs)	RSSI 95%-ile (dBm)	RSSI 5%-ile (dBm)	RSSI Band (dB)			
Apt	1	Y	48	-66	-69	3			
Apt	2	N (foliage)	48	-69	-77	8			
Apt	3	N (foliage)	48	-76	-82	6			
Apt2Dor m	1	Y	24	-75	-77	2			
Apt2Dor m	2	Y	24	-70	-71				
Apt2Dor m	3	N (foliage)	24	-79	-81	2			
RSSI Ba		er long	term mo	ostly bel	ow 5 dE	B (LoS)			
0.	0 5 10 15 20 25 30 35 40 45								

WMNs: RSSI Stability and Error Variability

Interest: RSSI stability

Short term stability – within 3 – 4 dB
 Long term stability – within 5 dB (LoS)

RSSI overlaps steep region
 Error rates – unpredictable, varying
 10 20 30 40 50 60

Error Rate vs Bin Number Village, Avg RSSI = -80.5 dBm

Bin Number

WMNs: Summary of Results

Interference: Major cause of intermediate error rates (neither close to 0% nor 100%)

- Above the threshold, '*link abstraction*' holds.
- RSSI is stable over long and short durations
- Control Con
- Difficult to gauge interference using available hardware

Design Implications – Link Abstraction

Allows us to plan links with predictable performance. How?

Design Implications – Routing Motrics

Routing

 Proposed metrics like ETX and WCETT are unstable

Bin No	Error Rate
4	30 %
5	18 %
6	17 %
7	40 %
8	70 %

Error Rate vs Bin Number Village, Avg RSSI = -80.5dBm

Design Implications – Routing

Opportunistic Routing (EXOR)

- Tries to work in presence of interference
- Tries to take advantage of any abnormal link range that may be achieved
- Source broadcasts packet
- Based on who received packet, chooses who forwards packet on next hop
- Difficult to achieve predictable performance

Better to avoid interference.

Design Implications – Routing

Interference Aware Routing –

- Methods proposed in literature
- Use the value of SNR to gauge level of interference
- Our measurements using our H/W indicate that reported noise floor unreliable for:
 - Inference of interference
 - Estimation of link quality

Possible with appropriate H/W ?

Design Implications – MAC

- CSMA / CA MACs:
 - Use CS and CA to avoid interference
 - RTS/CTS to overcome hidden node cases
 - However, not foolproof as
 - Interference Range > Signal Range

TDMA MAC

- Possible solution
- May be suitable for FRACTEL

WSNs Results and Implications

WSNs – Calibration Experiment

- 5000 packets, 20 ms interval
- TOSBase on mote connected to laptop
- Received packets logged on laptop

WSNs – Calibration

- Error rate rises sharply for small change in SNR. Gives rise to the 'steep region'
- Link abstraction holds
- Error Rate varies in the steep region
- Variability Operation close to sensitivity of radio

Real Life Experiments: Error Rate vs 100 <u>%</u>% Packet Error Rate (%) Error Rate (xists Packet I 10 20 table and -85 -80 -75 Avg RSSI (dBM) -70 -65 -90 -88 -86 -84 -82 Avg RSSI (dBM) -78 -80 -94 -92 ROAD AIRSTRIPK Abstraction holds ***** Spread of points with intermediate error rate

Temporal Variability – RSSI

Temporal Variability – Error Rate

WSNs: Implications

RSSI Threshold exists

Planning Links – to build predictable links

Take sample measurements

Allow worst case leeway in RSSI band

Operate link at such a point

Classify links in an existing network

Effect of variation (Time Scale)

- Small Routing metrics
- Large Old measurements invalid

Conclusion

CONCLUSION – Summary

In the absence of interference

- If RSSI > Threshold
 - Error rates are stable and low
 - 'Link abstraction' is feasible

Interference destroys correlation between error rate and RSSI / SNR

Close to steep region error rate becomes variable and unpredictable

Conclusion – Summary

Link Abstraction simplifies:

- Routing
- Allows planning predictable links
- Classifying existing links for predictable ops.
- Helps achieve better and predictable network performance
- '*BriMon*' uses the concept of link abstraction.

Future Work

Specific experiments to rule out multipath

Experiments in the 5 GHz band De-licensed in India in Jan 07

Achieve finer time synchronisation and over multiple hops

Effect of Interference on WSN links

Motivation and Related Work

Measurement studies shows 'absence of link abstraction'

Implications of absence -

- Intermediate error rates on a link
- State of link needs to be tracked. Why?
- Complex routing metrics required. Especially in multi-hop.

WSNs: Link Range Measurements

- ✤ Predictable Operation → Lower Ranges
- Number of ways to Increase Range
 - Increase Transmit Power
 - Use Multiple Hops
 - Use External Antennas

*****Link Range Experiments:

- Environments Foliage, Road
- Antenna Combinations (Tx Rx)
 - Internal Internal
 - Omni Internal
 - Sector Omni
 - Grid Omni

WSNs: Link Range Measurements

Environment	Location – Distance	Avg Pkt Error (Std Dev) (%)	Avg RSSI (Std Dev) (dBm)	
	Internal – 35m	0.3 (1.25)	-78.79 (3.43)	
Foliage	Sector - 30m	0.53 (2.6)	-80.77 (3.55)	
	Grid – 70m	1.6 (4.08)	-85.05 (4.19)	
Peed	Omni – 75m	0 (0)	-80.64 (2.47)	
Road	Sector – 210m	0 (0)	-81.92 (0.49)	
Airstrip	Grid – 500m	0 (0)	-85.67 (0.94)	

Substantial increase in range achieved

Implications

In WSNs, use of external antennas –

- Provides substantial increase in communication range
- Allows predictable performance
- Simplifies network architecture
- Simplifies routing
- Can help to increase network lifetime by reducing message overhead

Interference Prone

No Correlation between
 SNR and Error Rate

Interference Free

- Threshold exists
- Error rates low and stable
- Close to steep
 region -- Error rates
 varying and stable

Col-1	Col-2	Col -3	Col-4	Col-5	Col-6	Col-7	Col-8	Col-9
Expt No	Src	Mean RSSI (dBm)	Loss %	Mean Noise (dBm)	5 %-ile (dBm)	95 %-ile (dBm)	Noise Band (dB)	Max Noise (dBm)
1	А	-89.74	100	-93.26	-94	-90	4	-88
1	В	-75.59	0.5	-92.1	-94	-88	6	-88
2	Α	-85.23	99.2	-92.53	-94	-85	9	-85
2	В	-74.68	18.3	-89.34	-94	-85	9	-84
3	Α	-80.69	63.2	-90.85	-94	-80	14	-80
3	В	-75.73	37.2	-85.16	-94	-80	14	-80
4	Α	-75.25	39.8	-93.06	-94	-92	2	-74
4	В	-75.11	61.3	-90.18	-94	-75	19	-74

roofnet

