Wi-Fi NetMon :

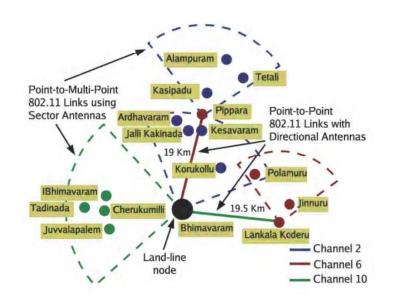
Performance Observation, Anomaly Detection & Diagnosis in Long Distance Wi-Fi Networks

> by Dheeraj Golchha

under guidance of Dr. Bhaskaran Raman

Outline

- Motivation
- > Problem Statement
- Background
- Network Monitoring
- > Wi-Fi NetMon Architecture
- Experiments for Performance Observation
- Possible Anomalies on link
- Anomaly Detection and Diagnosis
- > Evaluation
- Related Work
- Take-aways


MOTIVATION

Motivation

Long Distance Wi-Fi Networks

- Providing network connectivity to rural areas at low cost
- Use of long distance Wi-Fi links
- Using off the shelf 802.11 equipments
- Using high gain directional and sector antennas
- Used for providing different services such as expert consultation, internet access etc.
- Some of the services require QOS
- Video conferencing requires at least 384 Kbps throughput

Motivation Contd....

Ashwini Network Deployment In Bhimavaram

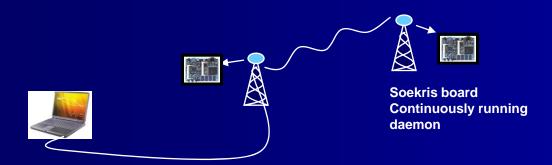
- P2P links
- P2MP links
- Link length O(1 KM) to O(10 KM)
- Use of directional and sector antenna
- Land line internet connectivity at Bhimavaram

Motivation Contd...

- Difficult to conduct experiments on the links of long distance Wi-Fi networks.
- Poor results in experiments conducted on links of Ashwini Network deployment.
 - TCP and UDP throughput as low as 1Mbps with 802.11g.
- Problems listed in Long Distance 802.11 Links: Performance Measurements and Experiences by K. Chebrolu, B. Raman and S. Sen can be detected and corrected without visiting location of links.

PROBLEM STATEMENT

Problem Statement


Design and Implement a Monitoring system for Long Distance Wi-Fi Networks which can

- help in conducting experiments from central location without going to location of links
- provide complete view of network at central location
- detect and diagnose the problems in the links of the network.
- rectify the problems, if possible, otherwise notify administrator.

BACKGROUND

Background

Rahul worked on a problem of running experiments between a link remotely

- Experiment daemons running continuously at nodes.
- Experiment parameters sent in form of xml document.

Background Contd...

Image source: Defense Presentation by Akhilesh

NETWORK MONITORING

Network Monitoring

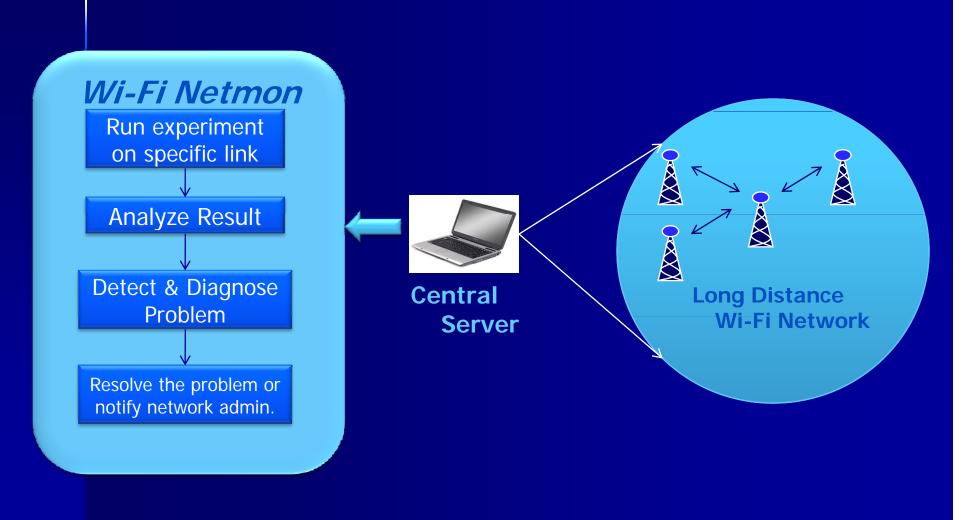
Design Choices:

- Active Monitoring
 - Inject traffic in the link our self and observe performance.
- Passive Monitoring
 - Observe performance without injecting traffic ourselves.

Network Monitoring Contd...

Other Dimension of design choices:
Centralized

Control remains at central node
All decisions made by this central node


Distributed
Every node makes decision on its own

WI-FI NETMON ARCHITCURE

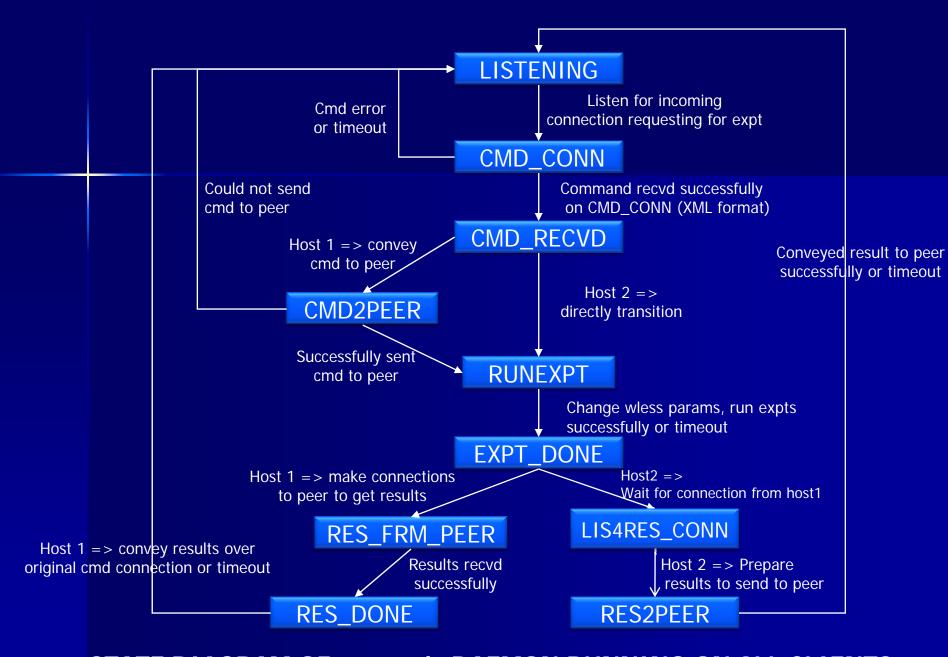
Wi-Fi NetMon Architecture

Centralized Approach
Client – Server Model
One central node works as server
All other nodes are client
All decisions made by central server

Wi-Fi NetMon Architecture Contd...

Wi-Fi NetMon Architecture Contd...

Long Distance Wi-Fi Network


Host 2

Clients running *exptd*

Host 1

Central Server

Function of Client-Server Model in Wi-Fi NetMon

STATE DIAGRAM OF "exptd" DAEMON RUNNING ON ALL CLIENTS

EXPERIMENTS FOR PERFORMANCE OBSERVATION

Experiments for Performance Observation

- Packet Error Rate
 - PER
 - Average RSSI, Average Noise
 - Monitor Mode:

MAC Addresses, Average RSSI, Average Noise

- UDP Throughput
 - UDP throughput achieved on a link in specified duration
- TCP Throughput
 - TCP throughput achieved on a link in specified duration

Experiments for Performance Observation Contd...

Get Configuration

- Retrieve value of different wireless parameters set on a link
- Default configuration and current configuration
- Set Configuration
 - Set Value of different wireless parameters on a link as specified
- Parameters file maintained on all nodes
- Value of parameters always reflected in a file

POSSIBLE ANOMALIES IN THE LINK

Possible Anomalies on link

Power Reset

- Transmit power reset to default value
- Insufficient Transmit Power
 - RSSI at receiver is low
- Packet Dropping at Receiver
 - Processing Power of hardware not enough
 - Packets being dropped between hardware and driver

Possible Anomalies on link Contd...

Interference

- From Wi-Fi sources in vicinity working in same channel
- From non Wi-Fi sources in vicinity
- Hardware Quirk
 - Even at high RSSI, packet error rate not zero
 - RSSI of CRC error packets are very low
- Link Misalignment
 - Antenna got misaligned

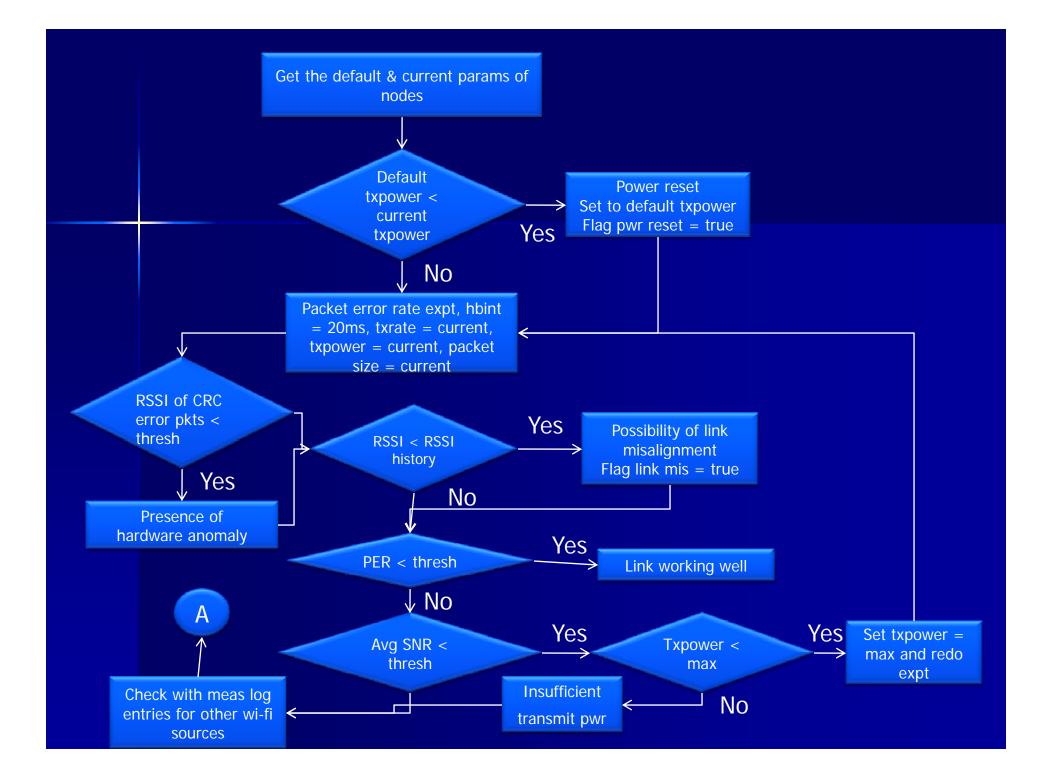
Possible Anomalies on link Contd...

- MAC level ACK timeout
 - Link length is very high
 - ACK timeout due to link length before packet reaches destination
 - Found only on longest link of length 37km

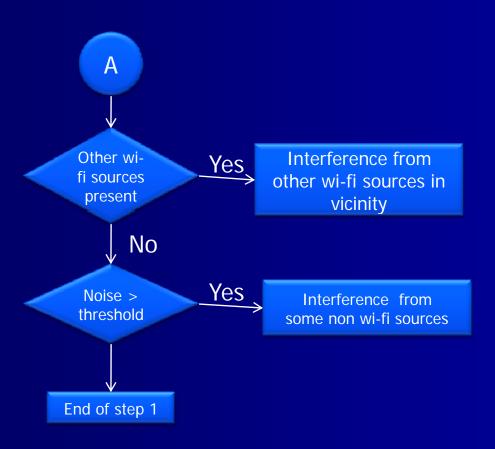
ANOMALY DETECTION & DIAGNOSIS

Anomaly Detection & Diagnosis

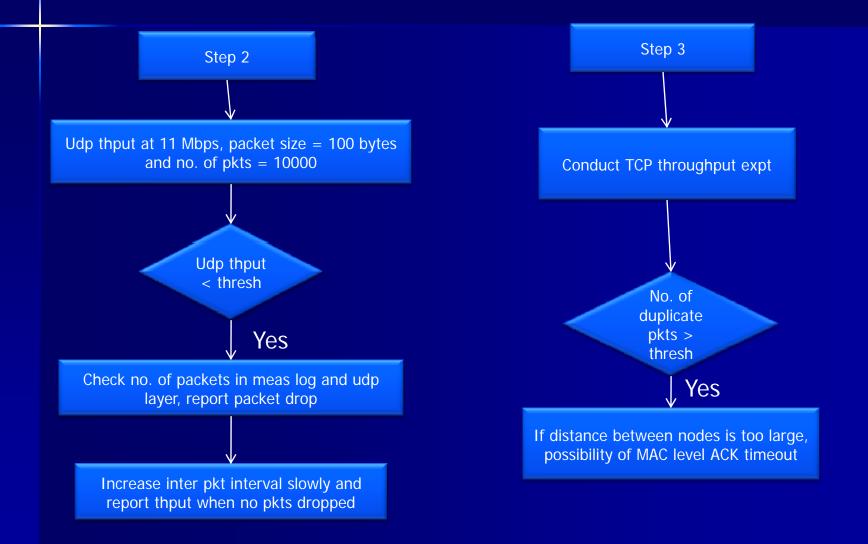
Power Reset


- Difference in current and default transmit power values.
- Set back to default value
- Insufficient transmit power
 - Packet error rate with maximum transmit power
 - If PER with maximum transmit power is less than threshold then set transmit power to maximum.
- Interference from Wi-Fi sources in vicinity
 - Presence of other MAC addresses in results of monitor mode

Anomaly Detection & Diagnosis contd...

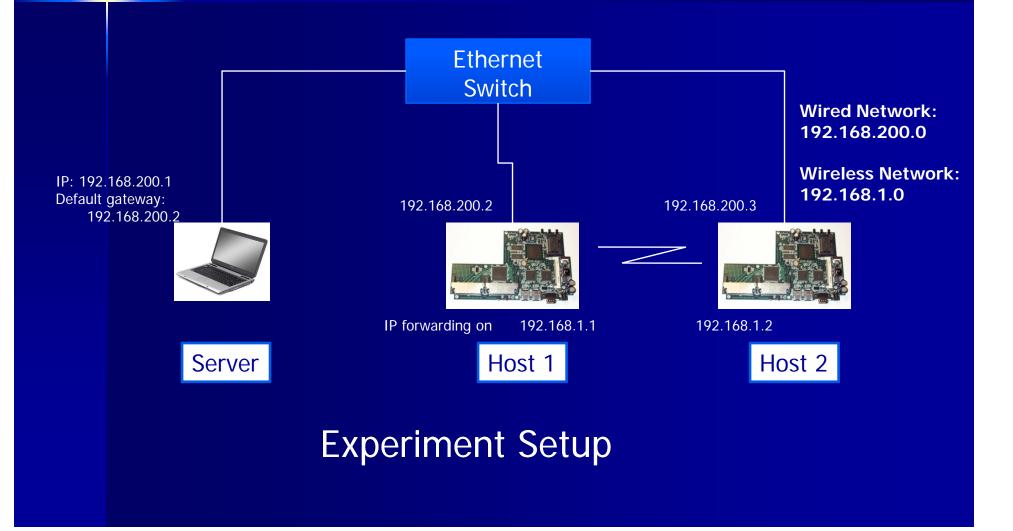

- Packet dropping at receiver
 - No. of packets received at meas log greater than no. of packets received at upper layer
- Link Misalignment
 - Maintain RSSI history at each node
 - If RSSI of packets received in PER experiment less than RSSI history than possibility of link misalignment
- MAC level ACK timeout
 - High no. of duplicate packets in meas log

Anomaly Detection & Diagnosis contd...


Hardware Quirk
 Check RSSI of CRC error packets
 Hardware quirk present if RSSI of such packets very low

Anomaly Detection and Diagnosis Algorithm

Anomaly Detection and Diagnosis Algorithm Contd...


EVALUATION

Evaluation

Objective:

- Establish a wireless link in the lab
- Introduce anomalies in the link
- Detect and diagnose anomalies in the link through detection algorithm

Evaluation Contd...

Evaluation Results

Power Reset

- Set default transmit power to 20dBm
- Vary current transmit power to various values
- Power reset detected successfully in all the cases.

Insufficient transmit power and link misalignment

- Cover both soekris boards with thick clothes to attenuate the signal
- Parameter values:
 - Mode : master managed
 - Transmit power : -4 dBm
 - Inter packet interval : 20 ms
 - Packet size : 1400 B, no. of packets : 1000
 - Channel : 1,11
 - Transmit rate : 1, 2, 5.5, 11 Mbps
- RSSI history set to -75 dBm

Parameters		Results								
Chann el	Tx Rate		Default t	x powe	r	Insuffici ent transmit power	Max tx power		Link	
		RSSI (dBm)	Noise (dBm)	SNR	PER (%)		RSSI (dBm)	PER (%)	Misalignme nt	
1	11	-86	-96	10	7.78	Yes	-59	1.02	Yes	
	5.5	-87	-94	7	6.65	Yes	-60	0.87	Yes	
	2	-87	-95	8	32.67	Yes	-60	0.65	Yes	
	1	-88	-96	8	29.50	Yes	-59	0.52	Yes	
11	11	-87	-96	9	54.32	Yes	-60	0.71	Yes	
	5.5	-90	-95	5	28.43	Yes	-60	0.40	Yes	
	2	-90	-94	4	20.34	Yes	-61	0.52	Yes	
	1	-90	-95	5	23.50	Yes	-61	0.84	Yes	

Evaluation results for insufficient transmit power and link misalignment

- Both Link misalignment and insufficient transmit power detected successfully.
- Network administrator notified about the link misalignment.
- Transmit power set to maximum in presence of insufficient transmit power.

Interference detection

- Wi-Fi sources working in channel 6-11 in lab
- Parameters:
 - Mode : master-managed
 - Transmit power: 20 dBm
 - Inter packet interval: 20ms
 - Channel: 1, 11
 - Transmit Rate: 1, 2, 5.5, 11 Mbps
- Interference reported in channel 11
- No interference in channel 1

Evaluation Contd...

Param	neters	Results				
Channel	Tx Rate	RSSI (dBm)	PER (%)	Interferenc e	Interferers (RSSI)	
11	11	-56	4.6	Yes	A(-82), B(-85), C(-76), D(-86)	
	5.5	-55	3.5	Yes	A(-85), K(-86), C(-76), G(-83), L(-88), M(-88), B(-91)	
	2	-56	3.4	Yes	A(-85), B(-90), C(-75), G(-83)	
	1	-55	0.8	Yes	P(-89), A(-83), B(-91), C(-75), G(-83)	
1	11	-54	3.5	No	-	
	5.5	-54	0.6	No	-	
	2	-54	3.5	No	-	
	1	-54	0.5	No	-	

Evaluation results for interference detection

Evaluation Contd...

Packet dropping at receiver

Packets are dropped when transmitting at 11
 Mbps with very small inter packet interval

– Parameters:

- Mode: master-managed
- Transmit power: 20 dBm
- Transmit rate: 11 Mbps
- Packet size: 100 bytes
- No. of pkts: 10000
- Channel: 1, 11
- Inter packet interval: 0, 2, 4 ms

Evaluation Contd...

Param	eters	Results					
Channel	Inter pkt interval	RSSI (dBm)	PER (%)	No. of pkts at UDP layer	No. of pkts at meas log	Packet drop detected (yes/no)	
11	0	-51	86.58	1342	1496	Yes	
	2	-52	33.04	6696	6025	No	
	4	-51	0.01	9999	9458	No	
1	0	-52	86.62	1338	1497	Yes	
	2	-53	27.78	7222	6501	No	
	4	-53	1.33	9867	9337	No	

Evaluation results for packet dropping at receiver

RELATED WORK

WORK	NETWO RK	METHOD OLOGY	FAULTS CONSIDERED OR METRICS MONITERED	ARCH / SIMULATION / IMPLEMENTATION
MOJO	WLAN	Sniffers	 Hidden terminal Capture Effect Signal Strength Variation Noise 	Architecture
VISUM	WLAN	AP	N/A	Architecture / Implementation
Arch and tech for diagnosing faults	WLAN	Client	 Locating disconnected clients Rogue AP detection 	Architecture / Implementation
Troubleshooti ng WMN	WMN	Client	 Pkt dropping Link congestion External noise MAC misbehavior 	Architecture / Simulation
Wi-Fi NetMon	Long Distance WMN	Client- Server	 Power reset Pkt dropping at receiver Interference detection Insufficient transmit power Link Misalignment MAC level ACK timeout 	Architecture / Implementation

CONCLUSION OR TAKE-AWAYS

Take-Aways

- Network monitoring tool for long distance Wi-Fi networks
- Centralized approach and client-server based model
- Decisions made by central server
- Performance related experiments: pkt error rate, UDP throughput, TCP throughput, get config, set config
- Anomaly detection and diagnosis for problems such as power reset, link misalignment, insufficient transmit power, interference detection, packet dropping at receiver, MAC level ACK timeout and hardware quirk

Take-Aways Contd...

- Power reset, link misalignment, insufficient transmit power and interference detected successfully
- Detecting packet dropping at receiver partially successful, bug found in code.
- No hardware quirk found in DLink cards
- Evaluation for MAC level ACK timeout not done

Questions?