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ABSTRACT

Railways form a crucial part of transport infrastructure in many parts of the world. A

large fraction of bridges used by railways may be considerably old and may be in use for

decades. For instance, Indian Railways has about 127,000 bridges of which 51,000 are about

100 years old. For smooth functioning of the system, safety of travel over these bridges must

be assured. For this, a structural health monitoring system is required, that is capable of

indicating any deterioration of physical condition of the bridges, thereby calling for mainte-

nance. Existing techniques are mostly wired solutions, requiring technical personnel to be

present at the bridge site during the inspections.

In this work, we present BriMon, a Wireless Sensor Network based structural health

monitoring system that has the essential features like ease of deployability, long life with

minimum maintenance, and remote monitoring. It also satisfies the constraints imposed by

structural engineers on data collection and analysis. The solution is based on wireless sen-

sor motes and MEMS accelerometers. We have designed various mechanisms and protocols

required for providing the afore-said features in an application specific manner. The imple-

mented solution shows how the design choices dictated solely by the application are different

from the general solutions that exist in the sensor network domain. We implemented the

solution on Moteivs Tmote-sky and used TinyOS and nesC for programming the motes.

In this work, we discuss the routing and time synchronization protocols that we have

designed, implemented and evaluated. These are very simple, light-weight and efficient in

our application setting, when compared to existing protocols in literature. We also describe

a signal strength based event detection mechanism in order to detect the oncoming train.

This subsequently triggers either data collection or mobile data transfer to a node on the

train depending on the context. The event detection mechanism allows us to detect the

oncoming train at a distance of about 1Km, which allows the nodes to sleep-wakeup with

a very low duty cycle of 1-2%. The moving train itself is used as a carrier of the vibration

data collected at the bridge, which is one of the novel aspects of this design. We also

discuss about the careful integration of the above components of routing, sleep-wakeup and
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time synchronization with the other aspects of BriMon namely high fidelity data aquisition,

reliable data transfer onto moving train.
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CHAPTER 1

Introduction

Railways are the most prevalent transport infrastructure in many parts of the world.

For instance, Indian Railways is one of the largest enterprises in the world. And bridges

form a critical part of railways. Indian Railways has approximately 127,000 bridges of which

about 51,000 are more than 100 years old [25]. In order for this system to operate smoothly,

assurance of safety of travel over bridges is crucial.

The life of a bridge is not based on its age but on physical condition as ascertained by

inspections. Generally, the vibrations of these structures are measured using sensors called

accelerometers during the inspection. Bridges showing signs of deterioration of physical

condition indicate need for repair and are classified as distressed bridges. A recent report

from the Indian Railways [25] says that about 50 billion rupees have been budgeted over

the period of 2001-2008 for repair and maintenance of about 11,000 bridges. This shows the

criticality of the problem.

Most of the current systems used for this purpose of structural health monitoring (SHM)

require technical personnel to be physically present and inspect the bridges. They also

use very expensive and bulky equipment. Thus, there is an utmost requirement for an

easily deployable system with minimum maintenance, that monitors the physical condition

of bridges and indicates the need for maintenance.

1.1 Problem Statement

The statement of the thesis problem is as follows:

To build an easily deployable, scalable and maintenance-free system that mea-

sures the structural vibrations of a bridge located at a remote place and transfer

the data to a repository

The vibration data that is measured should satisfy the constraints on the features of data

imposed by the structural engineers for the purpose of analysis like

1. Time synchronization across readings from several points

2. Duration for which data is collected
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3. Required sampling rate

1.2 Challenges

While providing a solution with the features described above, using the technology of

Wireless Sensor Networks, there are several challenges that need to be addressed:

• Limited source of energy: Since the sensor nodes are placed in a remote location and are

expected to work for long time with minimum maintenance, the availability of power

becomes a problem. Generally these are powered up using batteries or such limited

power sources. So, there is a need for the nodes to conserve energy for a prolonged life

time. They have to be made to follow a periodic sequence of low power and normal

power consuming modes, with the duty cycle of the nodes being minimum.

• Detection of Event: This is a challenge that arises due to the duty cycling described

above. The nodes should know when exactly to sense the vibrations, since they are

required to be measured only for a specific duration of time, when there is a passing

train. But the time of train arrival is unpredictable.

• Keeping the nodes connected: Even if a few nodes in the network fail, the remaining

nodes need to stay connected. At the same time, there must be flexibility to replace

the non-functional nodes with new ones.

• Limited platform capabilities: Sensor motes which we use in this work, have certain

limitations in terms of computation, program and data memory and communication

range. We need to be abide by these limitations or enhance the capabilities by using

complementary hardware (for example, external antennas are used to enhance range).

1.3 Thesis Contributions

In this thesis, a solution that meets the goals described, while also addressing the chal-

lenges is provided. The solution set consists of the following components:

• A routing protocol for network formation of sensor nodes

• Implementation of sleep-wakeup for duty-cycling.
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• An event detection mechanism that aids the data transfer as well as triggers the data

collection

• Time synchronization of the sensor nodes

Apart from design and implementation on tmote platform, we also justify and substan-

tiate the usability of these components via various evaluation experiments.

Note that apart from the components listed above, the solution set requires the following,

for completeness. These are developed in a separate and parallel work by Raj Kumar [22].

• Data acquisition with high fidelity using DMA based method

• Reliable data transfer on to a mobile node as well as within the network of nodes

• Data analysis system as per the requirements of structural engineers

These components are once again developed on tmote platform and are integrated to the

other components mentioned.

1.4 Organization of the report

Chapter 2 provides relevant background information on Structural Health Monitoring

and Wireless Sensor Networks. This also presents the design overview of the entire system

of BriMon in detail. Chapter 3 presents the past work done by Hemanth Haridas [23]

and Nilesh Mishra [24] on BriMon. This also presents the related work in the domains of

routing protocol and time synchronization mechanisms. Chapter 4 gives the design and

implementation details of the routing protocol used for BriMon. Chapter 5 gives the design

and implementation details of the time synchronization protocol used for BriMon. Chapter

6 describes the experiments done for validation of event detection, and evaluation of routing

and time synchronization protocols. Finally we conclude the work in Chapter 7 and specify

the future work.



CHAPTER 2

Background and Design Overview

This chapter provides the necessary background to the reader to understand the rest of

the report. Section 2.1 provides background on Structural Health Monitoring as a whole,

highlighting the case of bridges. Section 2.2 provides the necessary background on Wireless

Sensor Networks. Next the design overview of BriMon is explained in Section 2.3.

2.1 Structural Health Monitoring (SHM)

By definition, in SHM we monitor, directly or indirectly, various parameters of a structure

for identification of its current state. Based on the state we can assess whether the structure

is damaged or not. Subsequently, we can locate the damage and estimate the remaining

useful life for safe usage of the structure. Since SHM techniques fall under the non destructive

analysis domain, they are gaining prominence amongst the structural engineering community

with advancement in theory and equipment technology. To summarize SHM is used for:

• Damage detection i.e. is there change in the state of the structure.

• Damage localization i.e if there is a damage, can we locate the site of damage.

• Damage assessment i.e. how extensive is the damage and what is its impact.

• Lifespan prediction i.e. what is the life remaining of the structure for safe use.

The life of a structure is not dictated by its age but by its physical state. In order

to operate safely one needs SHM methods for assessment of risk from time to time. The

property of the structure often monitored in SHM systems is vibration. This is measured

using sensors called accelerometers. From the point of view of the civil engineers there are

three types of vibration which are important:

1. Forced vibration is the vibration induced in the system when the source of vibration is

still pumping energy into the system. For e.g., this situation comes up when a moving

train passes over a bridge and thus imparts it some energy to make it vibrate.
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2. Free vibration happens when the source of energy is removed from the structure in

question but the residual energy remaining in the system keeps it vibrating. E.g.

when a locomotive crosses a bridge, the latter keeps vibrating for some time even after

the vehicle has moved away from the bridge.

3. Ambient vibration is the vibration in the bridge when no intentional source is pumping

energy into the structure. The source of the vibration can be attributed to wind,

passage of vehicle on a nearby road, seismic vibrations, etc.

SHM of Bridges :

We now turn to provide a brief background on bridge monitoring. The details presented

here drive several of our design choices in the later chapters. This information was gathered

through extensive discussion with structural engineers [42].

General information on bridges : A common design for bridge construction is to have

several spans adjoining one another (most railway bridges in India are constructed this

way). Depending on the construction, span length can be anywhere from 30m to about

125m. Most bridges have length in the range of a few hundred metres to a few km.

What & where to measure: Accelerometers are a common choice for the purposes of

monitoring the health of the bridges. We consider the use of 3-axis accelerometers which

measure the fundamental and higher modal frequencies along the longitudinal, transverse,

and vertical directions of motion. The placement of the sensors to capture these different

modes of frequencies as well as relative motion between them is as shown in Figure 2.1.

The vibration data collected by the sensors on each span are correlated since they are

measuring the vibration of the same physical structure. In some instances of bridge design,

two adjacent spans are connected to a common anchorage, in which case the data across

the two spans is correlated. An important point to note here is that vibration data across

different spans are independent of each other i.e. they are not physically correlated.

When, how long to collect data: When a train is on a span, it induces forced vibrations as

described earlier. After the train passes the bridge, the structure vibrates freely that creates

natural (free) vibrations with decreasing amplitude till the motion stops.

With regard to SHM of bridges, Structural engineers are mostly interested in



6

Figure 2.1 Nodes on a double-span

• The natural and higher order modes of this free vibration as well as the corresponding

damping ratio.

• Peak magnitude induced by the forced vibrations.

• Data duration equivalent to about five time periods of oscillation for both forced as

well as free vibrations.

The frequency components of interest for these structures are in the range of about

0.25 Hz to 20 Hz [26, 27]. For 0.25 Hz, five time periods is equivalent to 20 seconds. The

total data collection duration is thus about 40 seconds (20 seconds each for forced and free

vibrations).

Time synchronization requirement : Since the data within a data-span are correlated,

we need time synchronization across the nodes, to time-align the data. The accuracy of

time synchronization required is determined by the time period of oscillation above, which

is minimum for the highest frequency component present in that data i.e. 20 Hz. For this

frequency, the time period is 50ms, so a synchronization accuracy of about 5ms (1/10 of the

time period) should be sufficient.

2.2 Wireless Sensor Network Technology

A wireless sensor network (WSN) [38] is a wireless network consisting of spatially dis-

tributed autonomous devices using sensors to cooperatively monitor/measure physical or
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environmental conditions, such as temperature, sound, vibration, pressure, motion or pollu-

tants, at locations of interest.

Wireless sensor networks are currently being developed in many civilian application ar-

eas, including environment and habitat monitoring, health care applications, home automa-

tion, structural health monitoring and traffic control as well as military applications such as

battlefield surveillance. Some of the foremost deployments are the habitat monitoring appli-

cations such as the great duck island experiment [33], studying the redwood tree macroscope

project [32], Zebranet project [34] etc. Some of the recent deployments falling under category

of structural health monitoring are [31, 27, 15].

Components of a Sensor node

Sensor nodes are small modules having the capabilities of

• Sensing physical quantities like temperature, pressure, vibration etc.

• Storage and processing of the data collected.

• Communication with another such module.

They are generally powered up by limited sources of energy like batteries, considering the

form factor acceptable by applications. In applications requiring long-term deployments,

limited power supply poses a requirement on the programmer to put off the power consuming

components like radio, sensors, when not in use.

Generally, all the components of processing, storage and communication are included

into a single board device called mote. Some of the platforms also have onboard sensors

for temperature, humidity or light. A mote can be equipped with external or internal radio

antennas depending on the compactness of the design and the range of communication

required.

Many such platforms exist of which Mica, Mica2, telos, telosb, tmote are a few. One of

the most commonly used operating systems for sensor mote platforms is TinyOS [40]. It is

developed at University of California at Berkley (UCB) for programming sensor nodes. It

has a component based architecture where only application specific components get compiled

and transferred to the nodes during programing. The components have been developed for a
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number of common platforms like Mica, Mica2, telos, telosb, tmote. It provides interfacing at

various levels including direct interfaces with hardware, interface for abstraction of common

features and programming level application interfaces.

Other operating systems include Contiki [36], MANTIS [37], BTnut [39]. We use TinyOS

in this development.

2.3 Design Overview of BriMon

With the goals of the system as enlisted in Section 1.1, we now proceed to explain the

complete design overview of BriMon. As was mentioned, the design of all the components of

BriMon is entirely based on the specific application needs and customized to it. For clarity,

we first explain all the stages of the application exactly as it happens in a real deployment.

Later, we discuss the design approach of the main components that build-up the system.

2.3.1 Stages of BriMon

Figure 2.2 gives a schematic of the entire system of BriMon (the exact placement of nodes

is better visible in Figure 2.1 though).

Components of a sensor node in BriMon : Each node in BriMon consists of a sensor

mote, an accelerometer chip, an external antenna (internal antenna of tmotes may suffice for

bridges having short spans) and power supply batteries. All this hardware is packaged in a

moisture proof box while deploying.

Deployment of sensor nodes on bridge : The sensor nodes each containing the components

described above should be placed on the spans of the bridge at the strategically chosen

positions shown in Figure 2.1, such that the position of each node (identified by its address)

is known. When the nodes boot up, they are initially idle.

The vibration data to be collected by nodes on a given span will be correlated as was

mentioned in Section 2.1. So, we need to time synchronize only the six nodes (twelve in

case of a double-span) on a given span. We can do so if these six nodes (or twelve nodes as

appropriate) constitute a network.

Cluster and Cluster Head : We designate one of the six nodes on a span as a head

node and we call the group of six nodes a cluster. The cluster head has several additional

responsibilities (that become clear as we proceed), other than collection of data itself.



9

Figure 2.2 Architecture of BriMon

Thus, we will have as many clusters as the number of spans in a bridge. The nodes in

different clusters are programmed to communicate on different radio channels. Importantly,

the adjacent clusters must be programmed to operate on channels far from each other among

the sixteen possible 802.15.4 channels available in the frequency range of 2.4 GHz (CC2420

radio chip, used by tmote operates in this frequency range). Normally a channel separation

of 2 should be enough because CC2420 provides an alternate channel rejection of about

54 dB [19].

Network Formation : The next task is to make the nodes in a cluster connected. The

routing protocol will be run in all the clusters independently in individual clusters. This

results in a formation of topology in which each node of a cluster will have a path towards

the head node of the cluster and the head node acts as the root of the routing tree. The

reason for this will become apparent as we proceed. This topology information has to be

available on every node in a cluster.

Thus, the head node can give commands to the nodes in the cluster to carry out the
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necessary tasks like

• Data Collection: During this, each node will sample the ADC at a rate of at least

400Hz∗. The duration in general can be 40 seconds, as was mentioned in the previous

section. Also, the nodes must perform the sampling operation in synchrony, with in

an error of 5ms as was explained in Section 2.1.

• Data Gathering : After the data has been collected, the head node holds the respon-

sibility of transferring the data from all the nodes in its cluster to a repository (how

it is done will be explained later). Before doing this, the head node gathers the data

collected by individual nodes. So, it issues a command to each node to pass on its data.

A node on hearing to this command should react by either forwarding the command

if it is not intended to it, or sending its data via its parent node to the root node.

• Sleep-Wakeup: Each node will go through a periodic sleep (radio, ADC and sensor

are turned off) and wakeup (all components are on) on getting the command from

head node. Moreover, so as to be able to receive any further commands, they do so in

synchrony. The durations of sleep and wakeup are decided as per the constraints that

will be explained as we proceed.

Time Synchronization: Thus, for the above operations to happen, the next crucial com-

ponent required is time synchronization. Time synchronization of the nodes is carried out

by our custom designed light-weight protocol. At the end of this, all the nodes in a cluster

will be time synchronized apart from being connected.

Command System: For the commands to propagate through the cluster there must be

a mechanism that does so in minimum possible time. We use a TDMA based flooding

scheme for command propagation. This scheme is exactly the same as used by the time

synchronization module and is explained in Chapter 5.

Once the nodes are time synchronized, the head node may issue the command for sleep-

wakeup and the nodes go through duty-cycling. Now, it is the responsibility of the head

node to identify when the train comes, so as to issue the command for data collection. For

this, the mechanism of event detection will be required.

∗As was mentioned in Section 2.1, the sampling rate requirement is 40Hz. But in order to reduce noise,
we do a ten-point averaging of the data for which we have to do sampling at ten times more than
40Hz
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Event Detection: The head node will have to detect the arrival of an oncoming train.

For this, we equip the oncoming train with an event signaling module, that continuously

emits beacons on 802.15.4 radio. The head node, during one of its wakeup cycle will hear to

such beacons and ceases its duty cycling. It further issues the command to the nodes in its

cluster to start data collection at a particular time of its clock (note that all the nodes are

time synchronized to head node).

There is a subtle problem of channel assignment in the above setting. As explained, the

nodes in a cluster are programmed to operate in a channel that is different from that of the

other clusters. But the operation of event detection is common to all the clusters. Thus, we

will have to assign a channel especially for this purpose of event detection and all the head

nodes of clusters on a bridge, during their awake period will be listening on this common

channel. Once they detect an oncoming train, they switch their operating channel to that

assigned to their respective clusters.

Once the data collection is over, the head node will issue command to individual nodes

to forward their data. It thus gathers the entire data and writes it into its flash memory.

Quantity of data: As mentioned earlier, each node collects accelerometer data in three

different axes (x, y, z). The sampling rate of data collection is determined by the maximum

frequency component of the data we are interested in: 20 Hz. For this, we need to sample

at least at 40 Hz. Often oversampling (at 400 Hz or so) is done and the samples averaged

(on sensor node itself before transfer) to eliminate noise in the samples. But the data that

is finally stored/transmitted would have a much smaller sampling frequency which we set to

40Hz. Each sample is 12-bits (because of use of a 12 bit Analog-to-Digital converter). The

total data generated by a node can be estimated as: 3channels ∗ 12bits ∗ 40Hz ∗ 40sec =

57.6Kbits. As explained there will be six sensor nodes per span, and a maximum of twelve

nodes. Thus the total data we have per span per data collection cycle is a maximum of

57.6 ∗ 12 = 691.2Kbits = 87KBytes.

With all the data written into the flash, the head node once again will issue the command

of sleep-wakeup to the nodes. The cluster thus continues its duty cycling once again. The

head node now is operating on the common channel assigned for event detection. The

remaining task for it is to transfer this data to some repository.

We use the trains themselves as the carriers of this data. The next train coming on that
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bridge will be equipped with Data Transport modules as shown in Figure 2.2. So, when the

train arrives, all the cluster heads will detect that and switch to the respective channels of

their clusters.

Mobile Data Transfer : The train will be equipped with separate data transfer modules

for individual clusters, operating in respective channels. Thus, each cluster head will upload

the data in its flash on to the corresponding mobile node, which stores it.

Later, when the train reaches some station, that has Internet connectivity, this data can

be collected and transfered to a central repository where the analysis is done.

Having seen the entire elements of the architecture, let us proceed to the details of the

design approach for important elements of the design namely event detection, routing, time

synchronization and mobile data transfer.

2.3.2 Design Approach to Elements of BriMon

Event Detection :

Our model for event detection is depicted in Figure 2.3. We have an 802.15.4 node in the

train which beacons constantly. Let Dd denote the maximum distance from the bridge at

which beacons can be heard from the train at the first node (node-1 in Figure 2.2), if it were

awake. We denote by tdc the maximum time available between the detection of the oncoming

train, and data collection. Thus tdc = Dd ÷ V where Dd is the maximum distance at which

train can be detected and V is the speed of the train (assumed constant). When we think

in the context of sleep/wakeup, the maximum duration for which the nodes can sleep, is tdc.

In our design as explained, all nodes duty cycle, with a periodic sleep/wake-up mechanism

Figure 2.3 Event Detection Model

as was mentioned. Let us denote the duration of the sleep/wake-up/check cycle as tcc which

consists of a duration tsl of sleep time and a duration Tw of awake time. Thus tcc = tsl + tw.
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Clearly we would like to have as large a tcc as possible to reduce the duty cycle. Thus, we

should increase this detection range as much as possible. We will explain how the minimum

value of tw is chosen, in the discussion to follow.

Routing Protocol :

We now explain the approach to the routing protocol used in BriMon. The first significant

question which arises here is what is the expected stability of the routing tree; that is how

often this tree changes. This in turn depends on link stability. We observed (and will

be explained in detail in Chapter 4) that when we operate links above a certain threshold

RSSI (received signal strength indicator), they are very stable, even across days. Below the

threshold, the link performance is unpredictable over small as well as large time scales (few

sec to few hours).

With such a threshold based operation, it is observed that link ranges of a few hundred

metres are easily achievable with off-the-shelf external antennas. The measurements we later

present in Chapter 4 also prove this. Note that using external antennas is not an issue in

BriMon since we are not particularly concerned about the form-factor of each node. Now,

recall that a physical span length is about 125m in the worst case, and a data-span length

can thus be about 250m maximum. Given a link range of 100m or so, this implies that we

have a network of at most about 3-4 hops. In such operation, the links will be quite stable

over long durations of time, with close to 0% packet error rate.

This then answers most of our questions with respect to routing. The protocol used can

be simple, only needing to deal with occasional node failures. We need to run the routing

protocol only occasionally. And time synchronization can effectively assume the presence of

a routing tree, which has remained stable since the last time the routing algorithm was run.

Time Synchronization :

We require time synchronization for two purposes as explained : for the periodic sleep/wakeup

mechanism, and for time-aligning the sensor data from different nodes.We adopt the design

approach of not seeking to estimate the exact clock drifts, as this normally adds considerable

complexity to the time synchronization protocol. We justify this as follows. We shall show

in Section 6.1 that our periodic sleep/wake-up has a period of the order of 30 seconds. The



14

minimum wakeup duration of the nodes is the duration taken by a command to propagate

(tpc) in the entire network along with any synchronization error (t∆). Since the error can be

positive or negative, we should have tw = tpc + 2 ∗ t∆. As will be shown in Section 6.3, tpc

will be of the order of 80ms, where as t∆ will be of the order of 0.2ms. Leaving some margin,

we chose to have a wake up duration of around 200ms.

Thus, we can have a lightweight time synchronization mechanism run during every wake-

up duration, at no extra cost. In the time-period between two wake-up durations, of about a

minute, the worst case clock drift can be estimated. The work in [13] reported a worst-case

drift of about 20ppm for the same platform as ours. This means a maximum drift of 1.2ms

over 60s. This is negligible as compared to our wake-up duration, and hence exact drift

estimation is unnecessary. With respect to our application too, the time synchronization

requirement is not that stringent. Recall from Section 2.1 that we require only about 5ms

or less accuracy in synchronization. So this too does not require any drift estimation.

Mobile Data Transfer :

In BriMon, we use the passing train itself for transferring the data collected. The data is

then ultimately delivered to a central repository. This could be done, via say an Internet

connection available at the next major train station. The same event detection used for

data collection is also used to trigger the data transfer to a moving train. A subtle point to

note here is that the data collected in response to a train is actually conveyed to the central

repository via the next oncoming train. The implementation of this component of the design

is done in a parallel work by Raj Kumar [22].



CHAPTER 3

Past and Related Work

3.1 Past work on BriMon

There was some past effort [23, 24] towards the design of BriMon. The architecture

assumed in their work uses a combination of 802.11 and 802.15.4 nodes. A schematic of the

architecture used in their work is shown in Figure 3.1.

Figure 3.1 Earlier Architecture of BriMon (courtesy: Nilesh Mishra [24])

The main differences of this old architecture from the current design presented in Sec-

tion 2.3 are the following:

• All the nodes on the bridge are identical in terms of their components, in the current

architecture whereas in the earlier architecture, the data collection modules and data

aggregator modules differ: The data aggregator module makes use of additional hard-

ware called Soekris, which has a serial interface with mote and an 802.11 compliant

radio.

• In earlier architecture, nodes on the entire bridge were made to synchronize rather than

nodes on a span. However, this is not required since the vibrations across different spans

will anyway not be correlated.

• In earlier architecture, they were trying to form a network of all the nodes on the
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bridge, where as in the new architecture, we make only the nodes on a span (or double

span depending on bridge) to form a network.

• 802.11 was intended to be used for mobile data transfer in the earlier architecture,

where as we use 802.15.4 in the new architecture.

• The earlier architecture makes use of only one radio channel at a time, where as we

use multiple channels simultaneously in new architecture.

• In the earlier architecture, scalability was a problem since there will be only one central

node that holds the responsibility of storing and uploading data of all the nodes on

the bridge. The present architecture scales well to any length of bridge, since a head

node will just have to manage its own cluster of six nodes (or twelve at maximum).

Coming to the takeaways for us from the past work, we are using the same platform

(tmote) and other hardware for the development. The accelerometer (ADXL 203) used is

the same. The present design also makes use of the same power-switching circuitry as that

in the earlier design which is required to manage the power supply to the sensor during

sleep-wakeup.

3.2 SHM Applications using Wireless Sensor Networks

A number of architectures have been provided in literature for SHM using WSNs. In [30]

Xu et al have proposed an architecture called WISDEN data acquisition system to stream

MEMS based accelerometer data. The system has a reliable data transport protocol using

end-to-end and hop-by-hop recovery. A separate 16-bit ADC resolution, accelerometer data

collection card is used with an on-board microprocessor. The maximum sampling rate that

they have used was 160Hz. The nodes do not perform duty cycling and continuously monitor

and stream data. They also study the use of wavelet based data compression techniques in

this setting.

The same group has designed the NetSHM [27] architecture which is a programmable and

re-usable architecture which can evolve with the change in sensor network technology. The

system is designed such that the application level programing of SHM related algorithms can

be done in C/MATLAB transparent to the intricacies of underlying sensor network. The
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requirements of these applications is broken down into tasks for the sensor nodes. Thus an

interface layer can be designed such that changes in the underlying sensor network techniques,

algorithms and hardware or application layer programs do not effect each other. The authors

also implement a damage detection and localization method to test the applicability of the

system.

Another recent implementation of WSN based bridge monitoring is in [31]. They have

deployed a network consisting of 64 nodes, spread on a 4200ft span of Golden gate bridge

in San Francisco and monitored the ambient vibrations. They collect and store the data

acquired by the nodes into a base station located at one end of the bridge. They have used

the existing protocols for routing (MintRoute [1]) and time synchronization (FTSP [10]).

A few other projects [28, 29] have also addressed the use of WSN in MEMS accelerometer

based SHM studies but they stress more on the mote building aspect rather than the complete

structure of the application.

The significant features of our work that differ from the earlier implementations, (partic-

ularly [30] and [31]) are the following:

• The data collection in BriMon is event based: our nodes collect data only when there

is a passing train. We have designed a novel event detection technique for this purpose.

Rest of the existing works do the data collection continuously. The other applications

collect data continuously [30, 31].

• The means by which we transfer the data collected at a remote bridge to a repository

is novel: we use the moving trains to carry the data.

• We custom design all the protocols required viz. routing, time synchronization, trans-

port and interface with sleep-wakeup with low duty cycling. The existing implementa-

tions use the protocols existing in literature like MintRoute [1], FTSP [10] etc. Also,

there is no sleep-wakeup in WISDEN [30] and [31].

3.3 Existing WSN Protocols and (ir)relevance to BriMon

3.3.1 Routing Protocols

There are many routing protocols available in sensor network literature. The ad hoc

routing protocols like [1, 5] run in background along with the application, like in traditional
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networks. They continuously measure a routing metric and monitor its changes and accord-

ingly change the route information. Moreover, a point to note is that these protocols are

more generic, in the sense that they are designed keeping in view that the flow of traffic can

be there from any node to any node in the entire network. However, our application needs

the traffic only towards a single destination, which is the root node.

SPIN (Sensor Protocol for Information via Negotiation) [4] is a flooding based family

of protocols used to efficiently disseminate information in a wireless sensor network. This

assumes that all the nodes in the network are always active, which is not possible in our

setting. Also, these family of protocols are not energy aware.

LEACH (Low Energy Adaptive Clustering Hierarchy) [3] is designed for sensor networks

where an end-user wants to remotely monitor the environment. In such a situation, the data

from the individual nodes must be sent to a central base station, often located far from the

sensor network, through which the end-user can access the data. LEACH includes distributed

cluster formation, local processing to reduce global communication, and randomized rotation

of the cluster-heads. The disadvantages of LEACH are that cluster head selection is a difficult

problem to optimize. However, in our setting this dynamic clustering is out of question since

we always want the nodes on a particular span to be a cluster, since it is their data which is

correlated.

Also, none of these protocols have been implemented and evaluated in context of any spe-

cific application. [1] presents implementation of MintRoute protocol and evaluates (though

not specifically for an application) with a setup of 50 nodes. This has been implemented in

TinyOS as MultiHopLQI [41]. This argues that expected number of retransmissions can be

a useful cost metric for making routing decisions. However, this protocol needs to be run

continuously in background during any message transfer so as to dynamically estimate the

routing metric. Thus, it will not be possible to have an explicit phase of routing that ends,

as is desired in our application.

Considering the arguments (of using RSSI as a metric to decide the route) in [7, 6]

we designed a light weight routing protocol that would cater to the needs of the other

components as were explained in Section 2.3. This routing protocol will have an explicit end

state, unlike other protocols in literature.
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3.3.2 Time Synchronization Protocols

There are primarily two classes of techniques by which a message exchange can achieve

time synchronization between two nodes.

• Receiver-receiver based: When a sender broadcasts a message, all the receivers hearing

to that will get synchronized to the clock of the sender, since all of them receive the

message at the same instant.

• Sender-receiver based: When a sender sends a message containing the current time

stamp at which the message is being sent, the receiver on hearing it can find the

current time at the same instant, thus being able to find its offset from the sender.

Reference Broadcast Synchronization (RBS) [9] is a protocol based on the receiver-

receiver based technique of achieving synchronization through message exchange. For a

multi-hop network, it achieves synchronization by grouping the nodes into clusters and com-

mon nodes that fall into several clusters will be used for synchronization across the clusters.

The existing implementation on Mica platform, with the clock of 4 MHz (corresponding to

a clock tick duration of 0.25µseconds) gives an average error of about 30µseconds.

Time-sync Protocol for Sensor Networks (TPSN) is one of the latter class of protocols,

which is implemented for Mica motes, running at their maximum clock rate of 4 MHz. For

more accuracy, it makes use of mutual message exchange between the two nodes under the

process of synchronization, and finds the average of the offset obtained in the two message

cases. It reports synchronization of nodes to within 17µ seconds, giving a two-fold better

performance than RBS. For multi-hop scenario, the nodes form tiers and a spanning tree of

nodes is formed, and the two nodes on every edge of this tree are synchronized in the manner

similar to a two node case. It makes use of randomized backoffs at the nodes in a same tier

to decide the order in which they participate in synchronization. This increases the duration

required for synchronization. Also, the first sender of the time sync pulse will send it again

after a time-out, if it does not get a time sync pulse reply. However, this is not required in

our application, since we do not want the synchronization process to take long time and it

is acceptable if a node gets out of sync once in a while.

FTSP [10] performs better than above protocols by combining the good features of both

the protocols. It uses broadcast nature of the medium to disseminate time stamps, sender-
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receiver type model for updates and regression based clock skew estimation. It also performs

MAC level time stamping and betters it by averaging the time stamps put in the messages

to remove interrupt handling related jitter errors. FTSP seeks to estimate the clock drift

through linear regression, and synchronize clocks to granularity of one micro-second. In

FTSP, the propagation of synchronization messages over a multi-hop network is in an ad hoc

manner. Due to this, it necessarily takes a long time for synchronization (of the order of a

few minutes) [10]. Furthermore, it is not clear about how FTSP could be adapted to work

in a periodic sleep/wake-up setting such as ours. Also, the existing implementation of FTSP

is specific to Mica2 platform, which uses CC1000 radio.

Our approach to time synchronization is simple and efficient when compared to the

protocols in literature. We use a TDMA based flooding as opposed to random backoff used

by TPSN and ad hoc scheme used by FTSP for propagation of time synchronization messages

over a multi-hop network. Also, in comparison with TPSN, our protocol does not involve

a message exchange, but only a single message transfer from one node to another (or a few

other) node(s) is required. One common property that our protocol shares with TPSN is

that the nodes need to have some information about network topology.



CHAPTER 4

Routing Protocol

This chapter discusses the Routing Protocol used to form the network of nodes within

a cluster of BriMon. The chapter starts with explaining the measurements carried on link

range and stability. The results from these experiments would be useful not only for BriMon,

but also for any other wireless sensor network application. Then we explain the purpose of

routing protocol in BriMon. Then comes the discussion on the basis of the protocol. This

constitutes of the implications of the experimental studies on link ranges and variations in

Received Signal Strength Indicator (RSSI) and packet error rates, the details of which were

explained in Section 4.1 and also in [6]. Then we discuss the algorithm for topology formation

named C2P Routing (for Centralized Two Phase Routing), followed by the implementation

details.

4.1 Link range and (in)stability measurements

In these experiments, we sought to measure the link ranges achievable and to estimate the

quality/stability of the links in different environments. In all the experiments described, we

used Moteiv Tmote Sky motes [21] for our experiments. These motes come with a Chipcon

CC2420 radio chip that is compliant with the 802.15.4 standard. To connect the external

antennas to the motes (wherever applicable), we soldered an SMA (Sub-Miniature ver-A)

connector while also disconnecting the internal antenna. Note that the Tmote Sky comes

with a 3.1 dBi internal antenna [21].

Range Measurements :

For this, we just had to put two motes to use in all the individual experiment runs. One mote

designated as transmitter, was programmed to continuously transmit a configurable number

of packets with 20ms inter-packet pause. All packets were broadcast by the transmitter. The

transmit power was fixed at 0 dBm, the maximum allowed by the CC2420 radio. Each packet

contained a 12 Byte MAC header and 14 Bytes of data that included a sequence number

to help calculate packet loss rate. The other mote designated as receiver, was programmed

with TOSBase, which forwarded the captured packets to a laptop along with the individual
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RSSI and LQI values of each packet. The receiver was mounted along with its antenna on a

tripod at a height of 1.5m to 1.7m. A schematic showing the setup is shown in Figure 4.1.

Figure 4.1 Setup for Link range and stability measurements

These experiments are done in two environments:

(1) Dense Foliage environment : In this environment, we experimented with just the

internal antenna at the receiver, though the transmitters antenna was varied between inter-

nal, omni (8dBi), sector (17dBi) and grid (24dBi). The transmitter antenna was fixed at

a distance of 1.5m above the ground. For each choice of the transmitter antenna, we took

readings at several receiver locations. We stopped at a distance where the received signal

strength fell to about -85dBm or worse. The experiments in this setup used 6000 transmitted

packets: about 2 minutes, with one packet sent roughly every 20 ms.

In Table 4.1, we show the packet error rate and the RSSI for various configurations at the

approximate range achieved with the set of antennas in use. The average and the standard

deviation of these metrics are calculated as follows. We first partition the transmitted 6000

packet sequence into bins of 100 packets each. We compute the error-rate and average RSSI

within each bin. We then compute the average as well as the standard deviation of the

resulting 60 values. We ignore bins which do not have any received packets, in which case,

the computation of the average RSSI/LQI within the bin would not make sense.

Given the high gain of the sector and parabolic grid antennas (17 dBi and 24 dBi), we

had expected better ranges than 60m or 90m respectively. However, it is worth noting that

in our environment the foliage was so dense that beyond about 35m, the people standing



23

Tx Antenna - Dist Avg Pkt Error % (Std. Dev) Avg RSSI dBm (Std. Dev)

Internal - 35m 0.3 (1.25) -78.79 (3.43)

Omni - 40m 0 (0) -79.42 (2.35)

Sector - 60m 0.53 (2.6) -80.77 (3.55)

Grid - 90m 1.6 (4.08) -85.05 (4.19)

Table 4.1 Range measurement results in dense foliage environment

near the transmitter and the receiver could not see each other.

(2) Narrow road environment : Similar to the foliage environment, we conducted various

range measurements on a narrow road. In this environment, we experimented with both

internal and omni-directional antenna at the receiver. The transmitting antenna was placed

at a height of 1.5m when using internal and omni. However we had to increase the height

to 3.8m for the sector and grid antenna as the ground reflections at the lower height of 1.5m

introduced losses in our measurements even at short distances.

Internal Antenna at receiver

Tx Antenna - Dist Avg Pkt Error % (Std. Dev) Avg RSSI dBm (Std. Dev)

Internal - 75m 1.37 (4.34) -83.74 (3.61)

Omni - 75m 0 (0) -80.64 (2.47)

Sector - 210m 0 (0) -81.92 (0.49)

Grid - 500m 0 (0) -85.67 (0.94)

8 dBi Omni Antenna at receiver

Tx Antenna - Dist Avg Pkt Error % (Std. Dev) Avg RSSI dBm (Std. Dev)

Omni - 90m 0.04 (0.33) -80.92 (0.88)

Sector - 500m 0.13 (0.68) -82.16 (0.37)

Grid - 800m 0.13 (0.39) -85.76 (0.31)

Table 4.2 Range measurement results in narrow road environment

Table 4.2 shows our various range measurements in this environment. We note that the

line-of-sight range measurements are much higher than in the case of our foliage measure-

ments. This is true even in the case where we only used the internal antenna at the receiver.

There was an increase of about 410 m in range, going from a foliage environment to direct
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line-of-sight environment, when using a grid antenna at the transmitter and internal antenna

at the receiver. In the line-of-sight environment, replacing the internal 3.1dBi antenna to an

8dBi omni at the receiver, increased the range further by 300m.

Signal strength and Error rate variability :

We have conducted another series of experiments in different environments, with the

same setup as that in Figure 4.1 in order to observe the behaviour of links over time. The

environments we have considered are air-strip, road, foliage, corridor of a student hostel and

structures lab.

With the same setup as described, the data analyzed this time is the RSSI and the packet

error rate. The division of the packets into bins and further analysis is similar to that of

the link range experiments. Since RSSI can be observed only for the packets successfully

received, to capture the full extent of RSSI variability, we restrict ourselves to data points

where we observed an overall error rate of less than 0.1%. The results that we got in all

these environments are having almost the same patterns. So, we show here a representative

set of readings that we got in case of narrow road environment.

Figure 4.2 Correlation between RSSI and Error rate(road)

Figure 4.2 shows the plot between packet error rate and the RSSI, which implies that

there is a very sharp region of RSSIs where the error rate varies a lot. Thus we can observe

that there is a good correlation between RSSI and the packet error rate.

Figure 4.3 shows the variation of RSSI with time. We can observe that the variation

is too much even in time scale of 2 seconds (which was the duration of each run of the
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Figure 4.3 Temporal variability of RSSI

Figure 4.4 Temporal variability of error rate at average RSSI of -87dBm

experiment). Having seen the correlation between RSSI and error rate, we expect a similar

temporal variation in packet error rate too and this is indeed true, as shown by the plot of

Error rate Vs. time in Figure 4.4. Note that this variability in RSSI is observed only when

the average RSSI (-87dBm in case of Figure 4.4) falls into the steep region in Figure 4.2.

The table shown in Figure 4.5 captures the RSSI variability in terms of the difference

between the 95th percentile and the 5th percentile in the range of RSSI values. This metric,

instead of the standard deviation, removes the effect of outliers. In the table, the different

distances indicated in the first column are the distances between the transmitter and the

receiver.

4.2 Purpose of Routing Protocol and Challenges

Referring to the the clustered architecture in BriMon presented in Section 2.3, the nodes

within a cluster have to be connected with the cluster head, so as to enable the head node

perform the cluster management tasks. These include gathering the data collected by the

nodes, time synchronizing the nodes in the cluster etc. The link range results in Section 4.1
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Figure 4.5 RSSI variation (95th - 5th percentile)

show that individual direct links can almost always be established between the cluster head

and remaining nodes, like in a star topology. So, a question of what is the purpose of routing

may arise.

Once again, refering to the Figure 4.4 in Section 4.1, we find that the there is a lot

of scope for temporal variation of packet error rates, while operating on weak links. If we

operate a star topology on long spans of the order of 100m, the links between root node and

nodes at the other end of the span would certainly be so weak that they can face temporal

instabilities (the degree of weakness being decided by the environment) [6]. This will be

discussed in more detail in Section 4.3.

A better solution is thus to have a simple routing algorithm that is based on the use

of strong and stable links, even if it may lead to a multihop network topology. Another

resultant problem that has to be addressed by the algorithm is to keep the active nodes in

a cluster connected, even during the failure of intermediate nodes in their path towards the

cluster head.

Further, there are more challenges that the Routing Protocol in BriMon need to address:

• The application requires the duty cycle to be low. Due to this, the routing protocol

cannot be a continuous process like in [1] & [5], but it has to run only for a finite

duration.
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• The routing module at each node must be able to provide the children information of

the node, apart from its path to the cluster head. This information will be used by

the Time Synchronization protocol as will be explained in Section 5.2 and also by the

command system as explained in Section 2.3.

4.3 Link Stability and Routing

4.3.1 Link stability studies

Let us now look into the results from our experiments on link stability, given in Sec-

tion 4.1. It can be seen from Figure 4.3 that in a given environment, there could be large

RSSI variability. This means that in the course of a run, we could have cases where the

RSSI falls in the steep region of Figure 4.2, although the average RSSI may well be above

the sensitivity limit (-95dBm) of the CC2420 radio [19] used. Now, put together the obser-

vation that there is a good correlation between RSSI and the packet error rate, there will an

variability in the observed error rate.

We thus have the implication that we would observe variability in the error rate too (at

the same time scales as variability in RSSI). This is illustrated by the plot in Figure 4.4.

In case the overlap of the RSSIs with the steep region is higher, the variability is even

higher. For instance, we can see that the error-rate variation is all the way from about 0%

to about 90% in Figure 4.4, where the average RSSI was -87dBm, falling into the steep

region of Figure 4.2. In fact, throughout all our experiments in these studies, we observed

high variability in error rate whenever the error rate was significant (say, over 5%). This

observation essentially implies that a routing metric such as 1/PSR (PSR is the Packet

Success Rate) [1] would not really work. That is, by the time we end up measuring the

packet error rate meaningfully, it would have already changed.

These measurements of RSSI and error-rate variability have far reaching implications

with respect to routing protocol design. The variability means that we cannot reliably use

a mechanism whereby we measure the RSSI (or the packet error rate) at one wake-up time,

and use it for routing during the next wake-up time. The measurement done earlier would

likely not be valid by the time of the next wake-up period.

But then, an important point to note here is that the instability in error rate is only when

the RSSI variability window overlaps with the steep region of Figure 4.2 i.e., when the link
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sometimes operates close to the receive sensitivity, and the overall error rate is significant

(over 5%). The immediate next question then is whether it is possible to say when a link

has a stable error-rate. The answer to this is suggested by the data in Figure 4.5. We could

take into account the RSSI variability to provide sufficient link margin to operate away from

the steep region. We could make a worst-case assumption of say 11 dBm (as suggested by

the data in the Figure 4.5) for the RSSI variability. If the average RSSI measured at given

time does not come closer with the steep region by this margin of 11dBm, we could say for

sure that the link would have stable and low error rate. With such a high margin, we might

be erring on the side of safety while determining a link to be stable i.e., we could potentially

miss out on some stable links, but would not classify unstable links as being stable. Thus,

we are in a position to distinguish between good and bad links.

4.3.2 Applicability to Routing in BriMon

We now consider the usability of above implications for the routing protocol. The basis

of C2P Routing protocol is the use of stable (good) links. The methodology of distinguishing

between good/bad links is based on a threshold RSSI as described. Thus the variability in

link behaviour would be considerably less. Also, since the RSSI for these links is high, the

packet error rate is inherently low.

Since we operate six nodes in a span of bridge (which in general is less than 120m) with

the locations as mentioned in Figure 4.6, the maximum distance between adjacent nodes can

be 30m. Given this, the link range and RSSI results in Section 4.1 Table 4.2 shows that a

(multihop) network topology that contains (only) stable links can be most likely formed.

Figure 4.6 Nodes on adjacent spans of a multi-span long bridge

Also, since we are using only stable links a topology formed at some wakeup duration
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can be used for communication during many subsequent wakeup cycles, thereby avoiding

the necessity of routing protocol running continuosly in background (like in [1] & [5]) which

is what is required for BriMon as the section 4.2 points out.

We now look into the design of the routing protocol.

4.4 Protocol Design: C2P Routing

An important design decision made here is to go for a centralized routing. It is the head

node of the cluster that completely manages the routing protocol. It will always be the root

of the routing tree. It assigns parents to the rest of the nodes in its cluster as explained

below.

The reason for choosing a centralized approach is simplicity. Since it is only six nodes

(or twelve in case of double span) that constitute a cluster, it would be possible for a central

node to manage the routing process, given its simplicity, while spending very less resources

in terms of computation and memory. Also, as will be explained later in Section 5.3, the

time taken for synchronization denoted by tps is proportional to the number of non-leaf

nodes in the network. So we need to minimize the number of nonleaf nodes. A centralized

routing approach can optimize this much more easily as compared to a distributed approach.

Similarly, any load balancing based on the available power at the nodes is also more easily

done in a centralized routing approach.

We now turn into the description of the protocol.

As the name indicates, this algorithm consists of two phases: Neighbourhood Discovery

& Link State Query.

Neighbourhood Discovery :

This phase is initiated by the cluster head, during which each node sends a finite number of

beacons that contain the respective node address. Also, on reception of such beacon from

other nodes, the average of the RSSI at which the beacons are received from the sender of

that beacon is calculated. This phase ends when all the nodes are done sending their finite

number of beacons.

At the end of this phase each node will have the information of who all its neighbours

are and the respective averages of RSSI. This information will be called as Link State in the
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following description.

Link State Query :

The central idea of the protocol is to classify links as good/bad depending on a threshold of

RSSI (Rth). All the nodes whose link states indicate an average RSSI of above Rth, will be

called good neighbours. After the neighbourhood discovery, the head node proceeds with the

formation of the tree. It starts by deciding who all can be its children. It essentially chooses

all of its good neighbours as children. It then queries and obtains the link states of the

children nodes and updates the tree, once again with the good neighbours. This procedure

continues until all nodes with good neighbours are connected.

Thus, the root node initially tries to make a path to all nodes in the cluster through

stable (good) links, even if it may be multiple hops away. After this, if some nodes are not

yet connected, the root node assigns parents to such nodes based on the criteria of minimum

hops, since anyway they are bad neighbours to all the other nodes.

A flow chart showing the algorithm run by the cluster head is shown in Figure 4.7.

Handling Node Failures :

Following through the algorithm in Figure 4.7, we see the case where the tree is incomplete

(meaning that some of the nodes have not yet been assigned parent) as well as no other nodes

remained to query. This joint case occurs when a node fails, and subsequently have not been

heard by any node during the neighbourhood discovery phase. At this point, the root node

finishes the routing algorithm by dispatching the routing tree formed. The tree will be

flooded to all the nodes in the network.

When to run the Routing Protocol :

The routing protocol can be run infrequently, or whenever a failure is detected. This is

because the links in the network are often stable, as per the protocol explained. A node

can detect itself to be disconnected from the current routing tree, if it fails to receive any

messages for a certain timeout. It can then cease its cycle of sleep-wakeup and join the

network during the next run of the routing protocol, since it is not accommodated in the

present routing tree. A better approach would be to announce immediately that it has been
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Figure 4.7 C2P Routing Algorithm run by the Cluster Head

orphaned. This announcement, if heard by a node connected to the routing tree, is passed

on to the head node. The head node can then initiate the above routing protocol again. The

latter is just a suggestion, while the former is the implemented version. Such a laid-back

approach to fixing failures is possible because we are relying upon stable links.

4.5 Implementation Details

This section discusses various message types and the values of parameters used in the

implementation of C2P Routing. For clarity, the description proceeds in the order of actual

stages of the protocol. The discussion below will also go through the stages of routing in an

example of six nodes cluster shown in Figure 4.8(a).

Neighbourhood Discovery :
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Figure 4.8 Stages in routing - an example

The beacons used for neighbourhood discovery, here after called ‘Hello’ messages consists of

the source address, which can be from 1 to 6. It also contains the sequence number of that

Hello message from its source.

The phase is initiated when the root node starts sending the Hello messages. Any node

that hears to these will start sending its own Hello messages. This flooding type of process

further continues till all the nodes in the network are done with sending the designated num-

ber of messages. We have chosen it to be a value near to 10 in the current implementation,

since if it is very low, the nodes may not be able to hear to each other due to losses. Also,

it cannot be much high because it will increase the duration of routing and may not be of

much added advantage. Figure 4.8(b) shows this stage.

Since we are using flooding for sending Hello messages, there may be contention among

nodes while sending. The underlying MAC layer (CSMA/CA) will have the provision of

randomizing the instants at which the nodes send so as to avoid contention among the

nodes.
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But even then, our observations reveal that the MAC layer does not have flow control,

due to which, if receiver is overwhelmed with packets, it simply drops them. More details

of this is given in Chapter 5 on time synchronization. To overcome this problem in a simple

way, a random inter-message pause ranging from 0ms to 10ms is also incorporated at the

routing layer during this phase. Note that this timing is of higher granularity than the

back-off periods (fraction of ms) of MAC layer.

On receiving a beacon, nodes calculate the current average RSSI of the beacons received

from that source and form a link state table that looks like Table 4.3.

Node Address RSSI (dBm)

1 ..

2 ..

.. ..

Table 4.3 Link State table formed by each node during neighbourhood discovery phase

Before proceeding to the next phase, the root node must make it sure that this phase

has ended. Since there is randomness involved in the timing of the messages, we do the

following estimate for the total time of the phase. We assume that a hello message reaches

the farthest (in terms of hops) node out of the remaining 5 nodes from the root node in

a maximum of 3 hops. This assumption is based on the location of the nodes on a span

as given in Figure 4.6. With this in mind we do the worst case estimate of the duration

of the phase. In the worst case, the nodes at each of the 4 stages of the 3 hops transmit

one after another, with maximum inter-message pause between the nodes. This would take

4 ∗ 10 ∗ 10 = 400ms (10 packets with inter-packet pause of 10ms). Since, there would be a

transmission time involved per each packet, which is of the order of 0.5ms∗, we add a further

50ms interval. Thus, the root node proceeds to the next phase only after this much amount

of time after initiating neighbourhood discovery.

Table 4.5 shows the details of the message structures used in this phase.

Link State Query :

∗Hello message to be sent on air consists of 2 Byte source ID + 2 Byte sequence number + 12 Byte
MAC header = 16 Bytes. For CC2420 at 250Kbps, this would take 16 ∗ 8÷ 250K = 0.5ms
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Now we shall look into the details of the Link State Query phase. By the starting of this

stage, all the nodes in the network would have formed the Link state Table 4.3. This phase

is under the sole control of the root node. It maintains the information given in Table 4.4,

which it updates while going through the phase.

Node Address Parent Good neighbour vector Bad neighbour vector

1 0 0—1—1—1—0—0 0—0—0—0—0—1

2 1 1—0—1—1—0—0 0—0—0—0—0—1

3 1 1—1—0—0—0—1 0—0—0—1—1—0

4 1 1—1—0—0—0—0 0—0—1—0—0—1

5 3 0—0—0—0—0—0 0—0—1—0—0—1

6 3 0—0—1—0—0—0 1—1—0—1—1—0

Table 4.4 Information maintained by root node during C2P Routing - Entries specific to
example in Fig 4.8

We make use of bit vectors to maintain the neighbourhood information. The root node

starts with setting the appropriate bits of its own neighbourhood bit vectors using its link

state table. For this, it will have to decide whether a node is a good or bad neighbour to

it, based on a threshold RSSI Rth (with a typical value of around -75dBm) and then set the

appropriate bit of good/bad neighbour vector. It may occur to us that there is no need to

maintain a bad neighbour vector separately, since we are anyway setting the good neighbour

vector bit only if current RSSI > Rth. But there may be cases where a node may not be

heard at all during the neighbourhood discovery, meaning that it is not a neighbour at all.

So, it is required to maintain a separate bad neighbour vector to distinguish a bad neighbour

from a non-neighbour node.

After updating the its own neighbour vectors, the root node uses the good neighbour

vector to update the routing tree, which is represented as a list of node addresses against

their parent node addresses. Thus the root node, as explained in Section 4.4, proceeds

forming the tree with good neighbours. At the same time, it forms a Breadth First List of

the nodes getting added to the tree, which will infact be the order in which the nodes will

be queried as explained later.
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In the example, the nodes 2,3 and 4 happened to be good neighbours to node 1, as can

be seen from the Table 4.4. Thus, node 1 chooses nodes 2,3 and 4 as its children and the

resultant state of the network is shown in Figure 4.8(c).

At this stage, the root node has chosen who all its children are. Now, it checks if the tree

is complete, essentially by looking into the Parent column of Table 4.4. If it finds that some

nodes are not yet connected, it will query the next node in the list of nodes to be queried,

by sending a LinkStateQueryMessage that has the format shown in Table 4.5. When the

destination receives this query message, it will reply by sending its LinkStateMessage.

In our example, node 3 reports on query that node 6 is its good neighbour. Thus, node

3 is assigned as parent to node 6. The resultant network is as shown in Figure 4.8(d).

Once again, seeing the new link state obtained, the process of updating the neighbour

vectors, and subsequent tree updation will be performed by the root node. During this

course, if the LinkStateMessage does not arrive with in some duration, the root node will

query the node again. The duration for which it has to wait is dependent on the number

hops that this query message has to go (which is same as the number of hops over which

the reply comes) and the message transfer time at each hop. In our current implementation,

the time out is (2 ∗Numberofhops ∗ 10ms). Thus we are giving 10ms time for the message

transfer at each hop, even though it can be reduced. There is also a maximum limit to the

number of times the query is retried, which is currently 20 (such a high value since it is the

common limit that we use for querying bad nodes also).

When the root node is done forming the tree with nodes having good neighbours, it then

proceeds to add bad neighbours to the tree with minimum hop criteria. For this, it just

needs to look into the bad neighbour vectors of the nodes as per the Breadth First List. A

bad node may also need to be queried, if the tree formed is still incomplete. The procedure

is repeated until the tree formed is complete.

In our example, node 1 could not find node 5 as good neighbour to any of the nodes

queried (2,3,4,6 in order). Thus it starts looking at the bad neighbour vectors built, as

shown in Table 4.4. It finds that node 3 is a bad neighbour to node 5, and also leads to

shortest path towards node 5. Thus, node 3 will be assigned as parent to node 5 as shown

in Figure 4.8(e).
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Later, it dispatches the tree using RouteMessage structure given in Table 4.5. The

remaining nodes on hearing to this, will again flood the same (with the random inter-packet

interval, just like the Hello messages), for a fixed number of times and this phase ends when

all the nodes are done. Thus, all the nodes will have a knowledge of the complete tree

formed.

Message Contents(Payload in Bytes) Stage Tx type

Hello Source(2) & Seq No(2) Neighb Disc Broadcast

LinkStateQuery HopsToGo(2) & Path(6) Link State Query Unicast

LinkState Source(2) & avgRSSI(6 ∗ 2) Link State Query Unicast

Route Source(2) & Parent(6 ∗ 2) Routing Complete Broadcast

Table 4.5 Summary of message types used in C2P Routing



CHAPTER 5

Time Synchronization Protocol

This chapter deals with the Time Synchronization protocol used for BriMon. The chapter

starts by describing the purpose of time synchronism in our application. Then, having

justified the unusability of the existing protocols in literature like FTSP [10] & RBS [9] in

Section 3.3.2, we proceed to explain the light-weight time synchronization protocol that we

have designed. Later the implementation details of the protocol are explained in detail.

5.1 Role of Time Synchronization in BriMon

The Time Synchronization protocol in BriMon has two purposes to serve:

• The application requires that the nodes on a span, i.e. a cluster of nodes need to

collect the data in synchrony, so as to be able to correlate the samples collected across

the nodes. The degree of synchrony, often specified as the maximum permissible error,

depends on the frequency range of vibrations that are of interest. As explained in

Section 2.1, for structures like bridges the maximum permissible synchronizaion error

can be 5ms.

• As explained in the architecture of the application in Section 2.3, the nodes need to do

sleep-wakeup in order to conserve energy. While doing so, the nodes in a cluster will

have to follow the commands from the cluster head that specify the operations to be

carried out by the nodes like Data Collection, Data Gathering apart from participating

in Routing and Time Synchronization itself. For this to happen it will be required that

the nodes in a cluster have to be AWAKE during the same period of time while going

through their sleep-wakeup cycle. Time Synchronization is thus a necessity here.

The minimum AWAKE duration of the nodes will be directly related to the synchro-

nization error as per the discussion in Section 2.3 and shown in Figure 5.1. Thus the

error has to be kept to as minimum as possible. (Note that the SLEEP duration is

dependent more on the range of Event Detection, as opposed to the clock drift as

explained in Section 2.3, which will affect the duty cycle).
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The following sections describe the design and implementation details of the protocol,

whereas the evaluation of the protocol will be presented in Chapter 6.

Figure 5.1 Sleep-Wakeup Cycle showing different components

5.2 Protocol Design

One of the main goals in designing the time synchronization protocol is to keep the time

required for synchronization, denoted by tps as minimum as possible so as to keep the duty

cycle to a minimum. The time synchronization protocol assumes the following:

• Each node knows who its parent is. And it knows its children set. This assumption

is valid since, as explained in Chapter 4, each node will have information about the

entire routing tree.

• The packet error rate on individual links would be very low. This assumption is valid in

our application, since only strong links are formed most of the times as was described

in detail in Chapter 4.

With these assumptions and also observing the fact that it just takes a single message transfer

for any two given nodes to get synchronized, the protocol proceeds in the following steps:

1. The head node sends a few Sync messages to its children in a broadcast packet.

2. When a node receives a Sync message from its parent, if it has children, it generates

its own Sync message and broadcasts it. This procedure will continue until the Sync

messages reach the leaf node.

A subtle point here is that all the nodes in a cluster are made to synchronize to the

clock of the cluster head, i.e. the Global time observed by the nodes is the Local time of the
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head node. Each Sync message contains the Global time (as assumed by the sender) at the

instant when the message is just about to be sent on air. The receiver of the message can

thus have a knowledge of the global time at the same instant. Message transmission time

can be accounted for, as given in the next section on implementation details.

Two important design choices that we have made here are that:

1. There are no acknowledgements and further complexities like time-outs, which renders

the process simple, thus keeping tps low.

2. The nodes follow a TDMA scheme while sending Sync messages. This is possible since

each node has knowledge about the entire routing tree. The order in which the nodes

transmit the sync messages can be a simple scheme like a breadth-first or depth-first,

the only constraint being that a node will transmit only after its parent. The reason

why we had to make this choice, rather than having the nodes just flooding randomly

(which is more simpler) will be explained in the next section under the flow control

problem.

Thus, at the end of execution of the protocol, all the nodes in a cluster will be synchro-

nized to the clock of the head node, thus satisfying the purposes mentioned in the previous

section. We now move on to the implementation details.

5.3 Implementation Details

The implementation details mentioned below are specific to the tmote platform, using a

CC2420 radio chip. These should in general also be similar for any other 802.15.4 compliant

platforms.

For simplicity, let us start by understanding how two nodes can be made to get synchro-

nized by a single message transfer, before proceeding to the case of a cluster of nodes.

5.3.1 Time Synchronizing two nodes

Consider two nodes ‘A’ and ‘B’. Each node will be having its own clock, running at

32khz∗. The state of the clock i.e. the current time is specified as the number of clock

∗All precisions presented are in binary units with respect to one second i.e. one second contains 1024
binary milliseconds. Thus, Time period of the 32khz clock = 1÷ 32768 ≈ 30.5µ seconds, often called
a clock tick duration
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ticks elapsed after the node has been booted (which in TinyOS is represented by a 32 bit

unsigned integer). Thus, depending on the instant when the nodes are booted, there will be

a difference in their local times. This is often called offset and is represented as a difference

between the local times of the two nodes at the same instant. Thus in order to synchronize

to node A’s clock, B has to know this offset. But how does the node B know about the

instantaneous time at node A?

The answer is to have node A transfer a message containing its local time stamp and the

other node on reception, will take its own local time stamp at the same instant and finds

the difference so as to know the offset.

This all may seem simple, and indeed is, if we can tolerate high synchronization errors

of the order of few tens of milli seconds if the time stamps are taken at the time sync layer.

This is so because, there would be a non-zero message transmission time, meaning that the

local time stamps taken at nodes A and B are not exactly at the same instant. The break

up of the events that take place during a message transfer and their respective durations are

provided in Figure 5.2 and Table 5.1.

However, the degree of error (of the order of tens of ms) obtained in the above manner

will not be acceptable to the application itself, keeping aside the requirement from low duty

cycle operation.

The solution for this problem will be to take the time stamp at the sender as late as

possible (i.e. at lower layers than time sync) before sending the message over the air and

taking the receiver time stamp as early as possible after the reception. The solution proposed

in [12] for platforms using CC2420 radio is to use the Start of Frame Delimiter (SFD)∗

interrupt from the radio chip as a reference to take the time stamp, both at the sender and

the receiver. The specifications of the CC2420 radio [19] say that the SFD interrupt at the

receiver lags that at the sender only by few micro seconds. Thus, making use of this will

significantly reduce the synchronization error, putting it down to the order of clock ticks.

Implementation in TinyOS:

What we need for high degree of synchronization is capturing of SFD interrupt, and adding

a time stamp to the same out going message corresponding to that SFD interrupt. The set

∗The PHY layer header in 802.15.4 consists of four Bytes of preamble used for synchronization purposes
and one Byte of SFD to mark the start of a frame
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of components that does it for us are readily available in the Boomerang version of TinyOS

from moteiv corporation [20], which is supposed to have the key features of TinyOS 2.x.

The Time Sync message must be having a field that carries the local time stamp of

the sender. It is suggested by the documentaion of TinyOS that the location of this field

in the message to be sent must be put towards the end of the payload of the message.

This is because, the process of inserting the time stamp into the out-going message involves

modifying the content of RAM of the CC2420 radio. This has to be done after the packet

transmission over air has started. So, the more time we give for this writing, the more

reliably it is written. Thus in our implementation, we use the last 4 Bytes of the message

structure (which is of a total of 38 Bytes in case of 6 node network and 44 Bytes in case of a

12 node cluster) for this purpose. The exact components used for this purpose and relevant

details are given in Appendix A. We now proceed to explain our method to synchronize a

cluster of nodes.

5.3.2 Time Synchronizing a cluster

Let us consider a six node cluster for simplicity. All the nodes in the cluster will be made

to synchronize with the clock of the cluster head, hereafter called global clock. As we have

seen, it takes a single message exchange between two nodes for them to get synchronized.

Thus, one may expect that synchronizing a cluster may be just done by flooding of Time

Sync messages across the entire cluster, with each sender mentioning its local time stamp

and its offset from the global clock in the time sync message, hearing to which a receiver can

calculate the current global time.

The exact procedure how it proceeds might be that the head node starts sending the

time sync messages, since it’s is the global clock. Whatever nodes that listen to it will in

turn send their time sync messages. The procedure should continue until all the nodes in

the network receive atleast one time sync message. Since finding when this ending happens

itself is not clear (similar to what we had in the Routing Protocol in Chapter 4), we might

have to make a worst case estimate of the time it takes and would have to live with it.

It may seem that it would be enough if each node sends only a few time sync messages

(to be sure that atleast one time sync message would reach its peers even if some of them

are lost), thereby reducing the total time it takes even in the worst case. We did exactly the
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same, where in we kept the number of time sync messages from each node to a moderate

value of 3.

In the above mechanism, there is a subtle implementation detail, that of flow control at

the MAC Layer:

Flow Control Problem :

While experimenting with the above said time sync method of flooding with 3 messages

each from all the senders, we anticipated that even if there would be contention among the

senders, it would be taken care of by the underlying CSMA/CA in the MAC layer.

But even with this, we found that some nodes were not getting synchronized, even in a

small network of six nodes, all placed in close vicinity to each other.

Figure 5.2 Timeline of events at sender and receiver during a message transfer (Packet size of
44 Bytes)

The experiments conducted by Nilesh∗ in order to find out the time interval between

several events during send/receive of a packet over air, the results of which are presented

in Figure 5.2 and Table 5.1, have shown that the problem is not with the senders but it is

with the receivers. He explained from these observations that since the receiver radio has a

limited buffer of 128 Bytes [19], if it receives several messages before they are transmitted

over SPI bus to the RAM, it flushes off the entire buffer! This can happen in the method

described above since the senders are just relying on CSMA/CA, which has backoffs only in

the range of fraction of milliseconds (of the order of 15 clock ticks = 450 µs), where as the

transfer time from radio to RAM over the SPI is a few milliseconds as shown in Figure 5.2.

Thus, we chose to have a simple but effective scheme of TDMA-based flooding.

∗Nilesh Mishra, Research Associate, CSE & lab colleague. We report the results from these experiments
here since there are no prior reports on the same
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Sender Side

Event Description

S1 SendMsg command issued at time sync layer

S2 Start of data tx from Micro-controller to Radio over SPI bus

S3 End of Data Transfer over SPI bus

S4 SFD interrupt (sent the preamble 4 Bytes and SFD 1 Byte over air)

S5 Tx of packet over air done

S6 SendDone Event signalled to time sync layer

Receiver Side

Event Description

R1 SFD interrupt (Preamble and SFD received)

R2 Complete packet received by radio

R3 Start of data tx from radio to micro-controller over SPI bus

R4 End of data tx over SPI bus

R5 ReceiveMsg signalled to time sync layer

Table 5.1 Events during a message transfer over air

TDMA based Flooding :

If we can allot individual time slots to different senders, it will be a robust solution to the

problem described above. Since there would be no contenders during a node’s time slot, we

further move a step ahead to disable the backoffs at the MAC layer during the execution

of time synchronization protocol. Now the question arises, how to allocate the slots to the

nodes? A related question is whether it is needed to allocate slots to all the nodes in the

network.

The answers to these questions lie in the fact that each node will have information about

the entire routing tree of the cluster ss explained in Chapter 4. Thus a simple scheme like

Depth First would do, which is indeed used in our current implementation.

The process starts with the head node sending its time sync message, (which may or may

not contain the slots information), that contains its local time stamp. All the children of

head node, on hearing to this message, will know when the process has started by looking at

the time stamp of the head node, called base time and then calculate when their respective
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slots start, if they have one. Only the non-leaf nodes in the network need not be alloted slots

because the leaf nodes are in the last tier of the network and they get synchronized when

they receive time sync messages from their respective parents. The leaf nodes do not need

to transmit any message.

In our current implementation, the inter time sync message pause is kept to be 0ms

(meaning the packets are sent back-to-back), which has been chosen since the time difference

between the send time (between the events S1 and S6) and receive time (between the events

R1 and R5) for a 44 Byte packet is almost zero, as shown in Figure 5.2. We chose to send

3 of such time sync messages from each sender because, there may be packet losses due to

noise in the environment. A too high value is also not needed because the links used are

mostly strong as explained in Chapter 4. The duration of each slot is 12ms, since each time

sync message takes 4.14ms of send duration (as shown in Figure 5.2) and there are 3 such

messages in a slot.

Figure 5.3 Time sync in an example six node cluster

To illustrate with a an example, consider a six node cluster as shown in Figure 5.3(a).

Here, only the nodes 1,3 and 6 will be alloted slots (since they are the only non-leaf nodes)

and in the same order(since its the only possible Depth First order) as shown by the stages

in Figure 5.3 as per Table 5.2.

Thus, we can observe that the time taken for synchronization is directly proportional to
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Node Address Children Slot number

1 2,3,4 0(initiator)

2 - -

3 6 1

4 - -

5 - -

6 5 2

Table 5.2 Slot information for network shown in Figure 5.3

the number of non-leaf nodes in the network. The same is the case with duration for com-

mand propagation because we use the same method of TDMA based flooding for command

propagation also as explained in Section 2.3.



CHAPTER 6

Experiments and Results

This chapter gives the details about the experiments conducted and the results obtained.

Next, we proceed to the experiments carried out to strengthen the realizability of event

detection mechanism in BriMon. Then, we proceed to the evaluation of the protocols we

have designed especially for BriMon: the routing protocol and the time synchronization

protocol.

In all the experiments described, we used Moteiv Tmote Sky motes [21] for our exper-

iments. These motes come with a Chipcon CC2420 radio chip that is compliant with the

802.15.4 standard. To connect the external antennas to the motes (wherever applicable),

we soldered an SMA (Sub-Miniature ver-A) connector while also disconnecting the internal

antenna. Note that the Tmote Sky comes with a 3.1 dBi internal antenna [21].

Since the design decisions and the implementation details are explained in the previous

chapters, the contents of this chapter serve mostly as a documentation of the experiments

and results, but may not explain the reasons about the choices made or the implications of

the results obtained, unless they were not covered in the previous chapters.

6.1 Event Detection Experiments

These experiments are intended to find the distance Dd at which a mobile train arrival is

detected by the head node of the cluster before commanding the nodes in its cluster to start

sleep-wakeup. Link range measurements in the Section 4.1 indicate that if we use external

antennas connected to 802.15.4 radios, we can achieve radio ranges of a few hundred metres

in line-of-sight environments. However, there we did not consider mobile 802.15.4 radios.

Hence we performed a series of careful experiments with one stationary node and one mobile

node.

6.1.1 Experiment Setup

We note that we usually have about a 1Km approach zone ahead of a bridge. This is

straight and does not have any bends. This is true for most bridges, except in hilly regions.

For our experiments too, we use a line-of-sight setting. We used a 900m long air-strip. We
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mounted the stationary node on a mast about 3m tall. We placed the mobile node in a car,

and connected it to an antenna affixed to the outside of the car at a height of about 2m.

Both nodes were connected to 8dBi omni-directional antennas. During all these experiments,

the transmit power at the mobile node was 0 dBm, the maximum possible with the CC2420

chips.

The mobile node beacons constantly, every 10ms. It starts from one end of the air-strip,

accelerates to a designated speed at a specified point and maintains that speed (within

human error). The stationary node is 100m away from the other end (so that the car can

pass the stationary node at full speed, but still come to a halt before the air-strip ends).

For each beacon received at the receiver, we note down the sequence number and the RSSI

value. We marked out points on the air-strip every 100m, to enable us to determine where

the sender was when a particular beacon sequence number was sent∗. Figure 6.1 shows a

schematic of the experiment setup.

Figure 6.1 Setup for event detection experiments

6.1.2 Results

Figure 6.2 shows a plot of the RSSI as a function of the distance of the mobile sender from

the receiver. We observe from the figure that we start to receive packets when the mobile is

as far away as 450m, and this is more or less independent of the mobiles speed. The RSSI

∗We had a person sitting in the car press the user button of the Tmote sky whenever the car passed a
100m mark; this gives us a mapping between the motes timestamp and its physical position
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measurements versus distance also have implications for the link range in the (stationary)

network on the bridge. If we follow a threshold-based link model (as we are doing in our

routing as explained in Chapter 4, with a threshold of -80dBm, as described earlier, we can

have link ranges as high as 150-200m.

The difference in range from that reported in the Table 4.2 is due to the difference in

environments as well as antennas’ heights.

Figure 6.2 RSSI vs. distance between sender & receiver

Another interesting observation to note in Figure 6.2 is the pattern of variation in the

RSSI as we get closer to the stationary node, for all mobile speeds. Any RSSI variations

observed are generally attributed to unpredictable environmental aspects. In our experiment

however, the pattern is entirely predictable: these are due to the alternating constructive

and destructive interference of ground reflection which happens at different distances. The

exact distance at which this happens depends on the heights of the sender/receiver from the

ground. Such variations can be eliminated by using diversity antennas, but the tmote sky

hardware does not have such a facility.

During all the above experiments, the transmit power at the mobile node was 0 dBm,

the maximum possible with the CC2420 chips. We also tried an experiment with an 802.11

transmitter, which allowed transmission at 20dBm. Now, it is possible to detect transmis-

sions from an 802.11 sender at an 802.15.4 receiver since they operate in the same frequency
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(2.4GHz). For this, we can use the CCA (Clear Channel Assessment) detection at the

802.15.4 receiver, as explained in [17]. We used such an arrangement for our experiment,

and determined the range to be at least 800m. At this distance, we were limited by the

length of the air-strip (900m), and the range is likely more than 800m. In this experiment

too, we saw no significant effect of the mobiles speed on this range. What this likely im-

plies is that we can further improve the detection range, if we have a built-in or an external

amplifier for the CC2420 chip. We expect that with the use of an external amplifier at the

trains node, we can have a range of the order of 800m or more. (Note that the additional

power consumption at the trains node is not a concern).

To summarize the above measurements, when the train is coming at a speed of 80 Kmph,

and with Dd = 800m, we have tdc = 36s, where tdc = Dd÷V , as per notation in Section 2.3.

6.2 Evaluation of Routing Protocol

From this experiement, we would like to know what could be the frequency with which

routing has to be performed and the hop distribution that we can expect. We also intend to

obtain an estimate of the duration for which routing takes place, so as to know the extent

of overhead caused.

Setup :

For these experiments, we placed six nodes as shown in Figure 6.3. This setup is intended

to mimic the way we expect nodes to be placed on a bridge span of about 60m length and

10m width. The nodes go through a sleep-wake up cycle, with a sleep duration of 36 seconds

(corresponding to the results of event detection range we have obtained in Section 6.1.2).

On every wakeup, the operations of routing and time synchronization happen and then the

nodes go to sleep again on getting the appropriate command from their parent. The RSSI

threshold for good neighbour is kept at a high value of -75dBm because the adjacent nodes

are in a close range of 15m. The setup is shown in Figure 6.3.

Routing was made to run at every wakeup and the head node logs all the routing trees

formed. This is so as to know the hop distribution during the course of experiment, along

with the data of which all are bad links i.e., links operating below the designated threshold

(as explained in Chapter 4). The idea behind running routing on every wake up was to run
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Figure 6.3 Setup for routing protocol evaluation (dotted lines show the links of the most
frequently formed tree)

it at the minimum granularity possible and on observing the frequency of changes in the

routing trees formed, we can decide upon the required frequency at which routing has to

be run, in that particular setting. Also, the time taken for routing during each run is also

logged by the root node.

Observations and implications :

The cycle of routing and time synchronization, followed by sleep-wakeup was run continu-

ously without any interruption for about 7 hours. The sleep duration was fixed to 36 seconds

following the result from event detection experiments explained in Section 6.1. Thus, during

the 7 hours, we had about 700 of these cycles.

We observed from the logs that :

• Most of the time (about 99%), the tree as shown by dotted lines in Figure 6.3 was

formed.

What this implies is that routing protocol can be run quite infrequently, only when

a node fails or when a node gets disconnected. Thus, our routing protocol meets the

application requirement.

• In the most frequently formed tree (shown in Figure 6.3), all the links were good i.e.

the link RSSIs were greater than -75dBm.

Good links i.e. links with RSSIs greater than -75dBm imply that the error rate is close

to 0%, from the plot of RSSI vs. Error rate from Figure 4.2.
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• In the most frequently formed tree shown in Figure 6.3, four out of the five nodes

(other than cluster head which in our setup is node 1) are having a direct link to root

node, where as one node has a 2 hop path to root.

This implies that most of the nodes in the network may have a direct link to root node.

Thus most of the nodes in the network may be leaf nodes, thus reducing the non-leaf

nodes. As explained in Chapter 5, this has a direct effect on the time of command

propagation (tpc), duration for time synchronization (tps) and thus the duty cycle.

• The average duration of routing was about 567ms, with a standard deviation of 51ms.

The minimum duration was 467ms, whereas the maximum duration was 819ms.

Thus, the duration for topology formation is less than a second on average, which is

a desired feature to keep the duty cycle minimum, even if we run routing protocol

frequently (than required).

6.3 Evaluation of Time Synchronization Protocol

The experiments carried for the evaluation of time synchronization protocol fall into

two categories: measurement of tps (time taken for synchronization) and estimation of t∆

(synchronization error). Recall from Section 5.1 that the synchronization error does not

account for clock drift and is just the maximum difference between the global times as

thought by the nodes in the entire cluster.

Measurement of tps :

We chose to measure tps in a cluster of twelve nodes with the topology fixed as shown in

Figure 6.4. All the twelve nodes are kept in close vicinity as the static routing tree has

already been imposed. In this network, there are five parent nodes apart from the root node,

which means that six time sync slots have to be allocated as was explained in Section 5.3.2.

The process of time synchronization starts on pressing the user button on the root node.

All the nodes transmit time sync messages during their respective slots as per the protocol.

The setup also includes a passive Logger node, that hears to each and every packet on

air and logs it into its RAM, along with a local time stamp attached to each message. Later,

on pushing the User button on the logger, it transmits the log collected at a low transfer
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rate with an inter-packet pause of 20ms (so as not to miss any packet due to buffer overflow

at the receiver) to a node running TOSBase, which forwards all the packets to a computer.

Figure 6.4 shows the setup.

Figure 6.4 Setup for tps measurement

In the experiment, we gave the inter packet pause for the sync messages from a node to

be 0ms (i.e. the packets are sent back-to-back) as explained in 5.3.2 and each node (which

has a slot) sends 3 Time Sync messages in its slot duration, which is kept as 12ms. This is

due to the fact that each time-sync packet (of size 44 Bytes) takes 4.14 ms as was shown in

Section 5.3.2. Figure 6.5 shows a log collected along with a column showing the time from

start of the process.

From this table, we can see that the process took approximately 80ms. This is tallying

with the expected value since there are six nodes, and each node is given a slot of 12ms, we

expect it to take around 12 ∗ 6 = 72ms. The same results are obtained on several runs.

Measurement of t∆ :

We use the same topology of twelve nodes for these experiments too, the setup of which

is shown in Figure 6.6. All the nodes in the setup are in close vicinity to each other. First,

all the nodes are synchronized as per the protocol. Immediately after that, a poller node will

send a single broadcast message. On hearing this message, each will take its respective local

time stamp and global time stamp (=local time stamp + offset). Then, after a duration of

20ms ∗ nodeID, nodeID = 1,2..6, all the nodes transfer their time stamps to a TOSBase

node, which forwards them to a PC. This duration of 20 ∗ nodeID is based on the node

address just to avoid contention among the nodes while sending their time stamps. The
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Figure 6.5 The log taken during tps measurement

factor 20 ms is chosen so as to provide adequate interval between the nodes sending their

time stamp log.

Figure 6.6 Setup for t∆ measurement

Since the message sent by the poller node is heard by all the nodes at the same time

instant, they all should report the same global times, since they are synchronized. A log

obtained during a run is shown in Figure 6.7. From the figure, we can see that the global

time stamps reported by the nodes differ by a maximum of 0.183ms or 6 clock ticks. This

is the difference between the maximum and the minimum values of the global time stamps

reported by all the nodes in the network, shown in the second column in the Figure 6.7

(maximum and minimum values are indicated in bold font). Infact this is the worst case
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that we obtained during several runs carried out.

Figure 6.7 The log taken during t∆ measurement

This had been intuitively clear for us, since when we tried to synchronize two nodes (one

hop), we obtained that the maximum synchronization error was two clock ticks. Now, in the

twelve node test network used for the above experiment, the longest path is of three hops.

So, in the worst case, the adjacent nodes can differ by two clock ticks and the difference

increases as we go toward the other end of the path.

Thus, in general we can say that the maximum synchronization error in the cluster

depends on the depth of the routing tree: the more the depth, the more might be the error.

Significance: As explained in Section 2.3, the command system also uses the same TDMA

based flooding as done by time synchronization. Thus, the importance of this result is also

with respect to the duty cycle of the nodes. The wakeup duration, tw = tpc+2∗t∆, is directly

affected by the values tps(= tpc) and t∆ obtained in these experiments. Thus, for the values

obtained, we anticipate that the wake-up duration can be tw = tpc+2∗t∆ = (72+2∗0.183) ≈

72.5ms. With the sleep duration of 36 seconds from the results in Section 6.1.2, we obtain

that the minimum duty cycle can be 72.5÷ (36000 + 72.5) ≈ 0.2%.



CHAPTER 7

Conclusion and Future Work

Railways are the most prevalent transport infrastructure in many parts of the world.

For instance, Indian Railways is one of the largest enterprises in the world. And bridges

form a critical part of railways. Indian Railways has approximately 127,000 bridges of which

about 51,000 are more than 100 years old. In order for this system to operate smoothly,

assurance of safety of travel over bridges is crucial. Existing techniques for this are mostly

wired solutions and require technical personnel to be present at the inspection site. These

suffer from the disadvantages the use of bulky equipment and long setup duration.

In this work, we present a new system for long term monitoring of railway bridges, named

BriMon. The system is based on the technology of Wireless Sensor Networks. The proposed

system has a number of advantages over the currently used wired systems. Our system is

easier to deploy, lower in cost and autonomous in its operation. The design allows the whole

setup to be left on site and the data can be retrieved on demand.

We propose a novel event detection mechanism that allows a very low duty cycle of the

nodes. We also propose a new approach to fetch the data from the remote site using the

train itself.

Our design choices for protocols have been made to aid specific application requirements.

The protocols designed for routing, time synchronization are very much application specific,

which rendered them simple in design. These protocols have been implemented and evaluated

separately. Then they are integrated to the other components of duty cycling and event

detection.

In a parallel work on the same project [22], the elements of data acquisition, reliable data

transfer, and a data analysis tool have been developed. We integrated all these components

to make it a complete system as per the guidelines we have formulated. These guidelines are

discussed in Appendix B.

Although many design choices were made specific to this application, we believe that

the same set of protocols would be relevant to many other applications too, particularly by

grouping a few tens of sensor nodes into a cluster. In view of this, we are in the process of

making a software release to the open source community.
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Future Work :

In the current system, we do not estimate the speed at which a train is coming. This will

be required since the trains may some times slow down at some distance from the bridge

due to traffic signals. If the event detection happens by then, the nodes will already start

collection, even before the train arrives over the bridge. Thus, estimation of speed and/or

position of the train during the event detection will be a good feature that can be added.

Also, the present system has been designed to measure the vibration of bridge during the

passage of train (forced vibration measurement) and after passage of train (free vibration

measurement). But there can be instances where an earth quake occurs in the vicinity of

the bridge due to which the bridge may get damaged. During such a situation, one would

like to assess the condition of the bridge before passing on any train over that bridge. The

current system does not have the feature of data collection being triggered by events like

earth quake. The future work may thus involve having a complementary add-on providing

such feature to the current system.



Appendix A

Time Synchronization in TinyOS

This appendix gives a description of the modules in Boomerang version of TinyOS [20],

which are used for time synchronization purpose. These modules were not present in the

TinyOS 1.x version. This discussion is specific to the platforms using CC2420 radio.

A common technique employed for time synchronization is using transfer of messages

containing time stamps. As was explained in Chapter 5, the uncertainities involved at the

sender side and the receiver side can be removed by putting the time stamp at MAC layer

of the communication protocol stack. In TinyOS, the implementation of MAC layer is done

in a module called CC2420RadioM.

In order to perform time stamping at the MAC layer, we need a component that de-

tects the rise of Start of Frame Delimiter (SFD) pin of the CC2420 radio and instanta-

neously takes the time stamp of the local clock. The component which does it for us is

the CC2420TimeStampingC. This capturing of SFD is already done at the MAC layer (i.e.

in CC2420RadioM) for its own operation. CC2420RadioM provides an interface that signals

about the change in state of this SFD to the CC2420TimeStampingC, which is called RadioCo-

ordinator. Apart from this interface, the other interfaces required by the CC2420TimeStampingC

component are the LocalTime (in order to take time stamp during sending and/or reception)

and the HPLCC2420RAM (used to write the time stamp taken during SFD of a send event to

the specified byte position in the RAM of CC2420 radio chip). The whole implementation

of this process is in CC2420TimeStampingM.

Figure A.1 Wiring of TinyOS components (in the context of time synchronization)

Now, whenever an application needs to use the service of MAC level time-stamping pro-
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vided by CC2420TimeStampingC component, it needs to use the TimeStamping interface pro-

vided by CC2420TimeStampingC. The interface consists of the commands addStamp(TOS MsgPtr

msg, int8 t offset) and getReceiveStamp(TOS Msg *msg) which can be used to put send time

stamp and get receive time stamp respectively.

A diagram showing the wiring of these components is shown in Figure A.1.



Appendix B

BriMon Integration Guidelines

In this appendix, we describe the guidelines/assumptions under which the current inte-

grated version of BriMon is implemented.

To start with we identified different states in which a node in BriMon can find itself,

at any point of time. Later, the actions and events at various layers/modules that are

responsible for a node to move from one state to the other are identified. Thus, at this point

we can be clear about what are the interfaces to be provided/used by any module of BriMon.

The state diagram of a BriMon cluster, showing different actions/events at head node

and a non head node is shown in Figure B.1. Note that this diagram depicts the case in

which a node does not get out of synchronization/unconnected due to message losses. The

actions/events are now listed as follows.

Figure B.1 State Diagram of BriMon cluster (Ideal case of no message losses)

Actions taken & events generated at a non-head node :

1. The event SyncMsg Received is generated by TimeSync layer and signaled to the Bri-

MonApp layer. (Offset to the global clock reported)

2. BriMonApp receives a SleepCommand from parent node. Then, the BriMonApp issues

the command for the node to start Sleep Wakeup cycle after X interval, where
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X = ( currentGlobalT ime
SleepWakeupPeriod

+ 1) ∗ SleepWakeupPeriod− currentGlobalT ime and

currentGlobalT ime = LocalT ime + Offset.

3. The SleepTimer/AwakeTimer fires at the layer in which sleep-wakeup is implemented.

4. BriMonApp receives Data CollectMsg message from parent node, mentioning the global

time ’Y’ to start sampling the ADC. Then, the BriMonApp stops the sleep-wakeup

cycle and issues the command to Data Collection Module to start sampling after T2

interval, where T2 = Y − presentGlobalT ime.

5. BriMonApp receives a Data Transfer message from parent/head node. The BriMon-

App then issues the command to Transport Layer to send the collected data.

Actions taken & events generated at a head node :

(a) On boot up, BriMonApp issues a command to TimeSync Layer to start synchronization.

Then the TimeSync layer reports back to the BriMonApp that synchronization is done.

(b) BriMonApp issues a command to start sleep/wakeup cycle.

(c) BriMonApp receives an Event Detected message from EventDetection layer. Then, it

stops its own sleep-wakeup cycle and will issue a command to the nodes to start data

collection at a global time ‘Y’. The head node itself also does the data collection.

(d) On completion of data collection, the BriMonApp issues a command to each node, one

by one, requesting for the transer of data.

(e) After the data transfer from all the nodes is done, the BriMonApp issues the command

to the TimeSync layer to start synchronization.
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