INTERFERENCE ESTIMATION AND AUTOMATED GENERATION OF SPATIAL REUSE MAP FOR WIRELESS MESH NETWORKS

> Pradeep Gopaluni IIT Kanpur

> > Advisors

Dr Bhaskaran Raman (External) IIT Bombay Dr Dheeraj Sanghi (Internal) IIT Kanpur

Outline

□ Introduction

- Motivation
- Problem statement
- RSSI based prediction
- □ Interference Estimation
 - Measurements performed
 - **SIR** based interference estimation
- Time-Period Analysis
 - Measurement duration
 - Measurement interval
- □ Putting it all together
- Conclusion and Future work

Introduction

Wireless Mesh Networks

- Co-operative set of wireless nodes organized as mesh-clients and meshrouters to form a communication network
- Low cost, last-hop internet access networks
- □ WMN's are
 - Flexible => links are unplanned
 - Scalable => May vary form small indoor settings to large and long-distance community networks.

Source: http://research.microsoft.com/mesh/

FRACTEL

- wi-Fi based Rural ACcess
 TELephony.
- Low cost : uses off-theshelf WiFi hardware
- Long Distance Network
 - Connect local-gateways to wired backbone network.
- Local ACcess Networks
 - Connect various nodes in the village to local-gateways to
- TDMA based MAC for provisioning voice and video capabilities

FRACTEL Network [14]

Motivation

- Interference is one of the key factors that influence(degrade) the performance of WMNs
- Interference Map in TDMAbased network
 - Indicates the possibility of spatial re-use.
 - Key input to channel assignment and routing.
- Automated Interference Estimation
 - Helps us establish scalable, flexible and unplanned wireless mesh networks.
 - Allows dynamic changes in the network.

Motivation

- Interference is one of the key factors that influence(degrade) the performance of WMNs
- Interference Map in TDMAbased network
 - Indicates the possibility of spatial re-use.
 - Key input to channel assignment and routing.
- Automated Interference Estimation
 - Helps us establish scalable, flexible and unplanned wireless mesh networks.
 - Allows dynamic changes in the network.

Our work : Problem statement

- Study interference characteristics specific to TDMA-based networks, by careful and detailed experimentation
- Formulate an effective strategy for estimating interference based on measurements.
- Develop an automated mechanism to generate the spatial re-use map using regular measurement.
- Envisioned for medium range out-door meshes (LACN).

RSSI based Interference Estimation

- Premise : There exists strong correlation between the received signal strength at a particular receiver from different senders and the amount of interference that a each of them exerts upon the other.
- Only O(N) measurements required for N-nodes.
- Interference measurements are reliable compared to prediction based methods

Interference @ Sender

□ At sender.

- If signal strength is above the sensitivity of radio, it will back-off while carrier sensing
- Non-destructive Interference
- RSSI received by S2 from S1- RSSI^{S1} in Fig1 will determine the amount of carrier sense caused by S1 at S2
- This relation need not be symmetric.

Interference @ Receiver

- □ At receiver.
 - Depends on the difference between interferer and sender signals strengths- SIR (signal to interference ratio)
 - Capture effect : If above SIR doesn't exceed by some capture threshold packets are lost due to collision during reception
 - Destructive Interference.
- The difference RSSI^{S1}_{R1} RSSi^{S2}_{R1}
 Figure will determine how much the pair of links L1 and L2 interfere at R1

Background and Related Work

Multi-way interference

- Does two or more non interfering links, when acting together cause interference? (Y. Charlie Hu et.al – Characterizing MultiWay Interference In Wireless Mesh Networks)
- What is the combined effect multiple interferers? (Correlation with distance (Dragosz Niculescu -Interference Map for 802.11 Networks)

Background and Related Work

- Pair-wise measurements (Venkata N. Padmanabhan et.al Estimation of Link Interference in Static Multi-hop Wireless Networks)
 - Pair-wise broadcast
 - O(N²) complexity
- RSSI based interference estimation
 - O(N) methods
 - Maya Rodrig et.al Measurement-based models of delivery and interference in static wireless networks.
 - Complex probabilistic modeling of physical layer behavior.
 - Used measured delivery probability, and RSSI to estimate interference.
 - Wonho Kim et.al RSS-based Carrier Sensing and Interference Estimation in 802.11 Wireless Networks
 - RSSI measurements to predict throughput of the model
 - No- proper evaluation and detail.
 - **Both** models not specific to TDMA-based networks and out-door networks.

Interference Estimation

- 1. Measurement Setup and Procedure
- 2. SNR based prediction model
- 3. Three way classification using SNR band

Measurements

- AIM: To gauge the relation between interferer signal strength and error rate observed.
- □ Triplet
 - □ S1 : Sender
 - **S2** : Interferer
 - **R1** : Receiver
- No carrier sensing in TDMA based networks
- hidden-node interferer to generate interference analogous to TDMA networks

Measurement Locations

Hostel 12, IITB

Main building - GG building - KReSIT

Courtesy : Google Maps

Measurement Procedure

- □ At each location, various experiments by varying
 - Transmit rate
 - Sender Tx Power
 - Interferer Tx Power
- S1 acts as central control node to exchange experiment parameters.
- □ The nodes use NTP for synchronization.

Measurement Procedure

- Simultaneous broadcasts: S1 and S2, broadcast at the same time
 - **1000** byte UDP packets
 - Back to back
 - **3**0 seconds
 - We measure the delivery probability of S1, in presence of interference from S2
- Individual broadcasts : Individual S1 transmission followed by
 - 1000 byte UDP packets, back-to-back, for 30 seconds
 - We measure the RSSI values at S1 and S2.

SIR based prediction

Signal to Interference Ratio

- SINR is the ratio of the signal strength of the wanted signal to that of the background signal from other links and noise
- Our interference is continuous and very high compared to noise, hence noise factor in SINR is ignored
- SIR v/s Delivery Probability curve
 - Sharp transition from very less (10%) to very high (90%) delivery probability.
- Signal to Interference Ratio
 - As RSSI varies so does SNR

Signal to Interference Ratio

SINR versus Delivery Probability measured during an emulator experiment. Source:Roofnet measurement study

Signal to Interference Ratio

- RSSI can be approximated with a discrete PDF
- Can be calculated from individual sender and interferer approximated RSSI distributions using discrete convolution

$$\square P_{SIR}(\alpha) = \sum P_x(k) * P_y(k-\alpha)$$

Estimation of Delivery Probability

Since we use different hardware, from roofnet. Along with the actual SIR v/s DP curve, we take curves shifted to the right and left of actual curves. We call them roofnet+1 roofnet+2, roofnet-1 and roofnet-2 and roofnet.

Results

Why?

- How variable is the RSSI?
 - Divide each 30 second experiment into small windows of five seconds
 - Difference in the area under the PDF curve is high
 - **•** The band remains stable
- Due to the variability, accurate prediction of RSSI is not possible

Three-way classification using SIR band

- □ Use 2.5th to 97.5th percentile band.
- □ If SIR band lies
 - completely outside the steep region, link delivery probability would be stable and can be predicted.
 - intersects with the steep region, it is impossible to gauge the DP.
- □ Three way classification
 - Non-interfering Links
 - Interfering Links
 - Intermediate / variable links

Results 1 Mbps

(c) Location2 (type 3)

(d) Location2 (type 4)

RATE	1 Mbps	2 Mbps	5.5 Mbps	11 Mbps
ACCURACY	94.8%	90.7%	87.2%	84.6%

Classification: conclusions

- The accurate prediction of delivery probability based on the approximated SIR is not possible. Because of the completely random variability in the link RSSI.
- The inaccuracy is more for the cases with intermediate delivery probability.
- It is possible to classify the link-pairs into one of three categories: interfering, non interfering and variable links, based on SIR band and the SIR versus delivery probability curve.

Time-Period analysis

- 1. Spectral analysis
- 2. T measurement interval
- 3. t measurement duration

Time period analysis

Two important aspects of automation

- What should be the time-period (T) (interval between two successive measurements) of measurements, such that the error during the prediction is minimized?
- What should be the duration (t) of each measurement, such that we collect enough information to predict the RSSI pattern for next T time?
- Analyze long-duration RSSI data from FRACTEL measurement work.

Spectral Analysis

- Use discrete Fourier transforms
 - Convert time domain to frequency domain
 - Prominent frequencies will have peaks in periodogram.
- □ Auto-correlation
 - Measures the correlation of time-series with itself.
 - No significant pattern found.

(h) Perindoeram detail

Measurement duration (*t*)

- □ Take different values of *'t'* and determine the error each of them.
- Divide the time series data into 10 second windows.
- Calculate average error between first 't' seconds and every 10 second window
 - The measured window should cover the variability in the link
 - $\square Error = max(x_i x_j, o) + max(y_j y_i, o)$
 - Where $\langle x_i, y_i \rangle \ll \langle x_j, y_j \rangle$ are the 2.5th and 97.5th percentile bands.

Measurement duration (*t*)

Measurement time period (*T*)

- □ RSSI data is first divided into windows of size *t* we call them $w_1, w_2, w_3, \dots, w_n$
- □ Suppose :
 - □ If T is 1 minute and t is 10 seconds → First six windows would use w_1 's predicted SIR band.
 - For a particular *T*, error is the sum of error-difference between the actual window and the window used for prediction.

Measurement time period (*T*)

- □ The error increases with increase in T.
- The increase in error slows down after T crosses roughly 30 minutes
- T can be sufficiently large to maintain the network down time.
- Passive measurements can be used to trigger measurement cycle instead of a fixed cycle
Putting it together

Automation : Introduction

Objectives

- To perform regular controlled measurements at all the nodes according to the schedule given by the central node.
- To generate the interference map, that provides complete information on inter-link interference among all the links in the network, at the central node.
- To create the schedule of transmission for next interference measurements.

Assumptions

- The network will have a central authority, which can control other nodes in the network and can bring the network down for measurements.
- The central node is a computationally more capable node, and generates the interference map from the data sent by other nodes.
- The network has timesynchronization; clocks on all nodes must be synchronized to a global clock.

Interference Map

Α	А	В	С	D	В	Α	В	С	D
А	Х	Х	Х	Х	А	Х	Х	Ν	Ν
В	Х	Х	3	Ν	В	Х	Х	Х	Х
С	Х	1	Х	3	С	Ν	Х	Х	Ν
D	Х	Ν	3	Х	D	Ν	Х	1	Х
С	А	В	С	D	D	А	В	С	D
А	Х	1	Х	Ν	А	Х	-3	Ν	Х
В	3	Х	Х	Ν	В	3	Х	1	Х
С	Х	Х	Х	Х	С	Ν	3	Х	Х
D	Ν	Ν	Х	Х	D	Х	Х	Х	Х

Automation : Active measurement

Central Server

- Creates broadcast schedule according to t and T
 - a) Broadcast time-stamp
 - b) Start time
 - c) End time
- 2. Sends schedule to each node using TCP connection
- 3. Collect the results of measurements (RSSI matrix).

Client Nodes

- 1. Continuously listens for schedule
- 2. Once schedule is received
 - i. Start listening at Start time
 - ii. Broadcast 1400 byte packets for 't' seconds
 - iii. Stop listening at End time
 - iv. Generate RSSI matrix
- 3. Send RSSI matrix to central node

Conclusions and Future Work

Conclusion

- We have performed controlled measurement and studied interference properties
- Developed a 3-way classification strategy for generating interference map
- Performed time-period analysis for determination of ideal
 - Measurement duration
 - Measurement interval
- Developed an automated procedure to generate interference map.

Future Work

- Proper hardware calibration and further evaluation
- Integration with passive measurement
- Evaluating gain in using spatial reuse map in real TDMA-based networks
- □ 802.11g and 802.11a measurements

Results 2 Mbps

(a) Location1, Type1

(b) Location 1, Type 2

(c) Location 2, Type 3

(d) location 2, Type 4

RATE	1 Mbps	2 Mbps	5.5 Mbps	11 Mbps
ACCURACY	94.8%	90.7%	87.2%	84.6%

Results 5.5 Mbps

⁽c) Location 2, Type 3

⁽d) location 2, Type 4

RATE	1 Mbps	2 Mbps	5.5 Mbps	11 Mbps
ACCURACY	94.8%	90.7%	87.2%	84.6%

Results 11 Mbps

1Mbps

Type of	Number	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
experi-	of Exper-	(Roofnet)	(Roofnet	(Roofnet	(Roofnet	(Roofnet
ment	iments		-1)	+1)	-2)	+2)
Location 1	48	66.6%	60.4%	81.25%	58.33%	87.5%
(Type 1)						
Location 1	36	75.0%	61.1%	97.2%	44.44%	97.2%
(Type 2)						
Location 2	36	86.1%	91.7%	91.7%	69.44%	100%
(Type 3)						
Location 2	36	88.0%	80.5%	91.7%	77.78%	94.4%
(Type 4)						
All	156	78.20%	72.4%	89.7%	59.62%	94.8%

2 Mbps

Type of experi- ment	Number of Exper- iments	Accuracy (Roofnet)	Accuracy (Roofnet -1)	$\begin{array}{c} {\bf Accuracy} \\ ({\bf Roofnet} \\ +1) \end{array}$	Accuracy (Roofnet -2)	$\begin{array}{c} {\rm Accuracy} \\ {\rm (Roofnet} \\ +2) \end{array}$
Location 1 (Type 1)	48	97.9%	91.7%	95.8%	83.33%	85.4%
Location 1 (Type 2)	36	94.4%	97.2%	86.1%	88.89%	83.3%
Location 2 (Type 3)	36	77.8%	77.8%	75.0%	80.56%	75.0%
Location 2 (Type 4)	30	90.0%	90.0%	86.7%	86.67%	83.3%
All	152	90.7%	89.3%	86.7%	84.67%	80.0%

5.5 Mbps

Type of	Number	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
experi-	of Exper-	(Roofnet)	(Roofnet	(Roofnet	(Roofnet	(Roofnet
ment	iments		-1)	+1)	-2)	+2)
Location 1	48	66.6%	85.4%	75.0%	91.67%	68.7%
(Type 1)						
Location 1	36	77.08%	86.1%	69.4%	94.44%	58.3%
(Type 2)						
Location 2	36	75.1%	88.9%	75.0%	86.11%	72.2%
(Type 3)						
Location 2	36	88/0%	88.9%	88.9%	72.22%	88.8%
(Type 4)						
All	158	80.8%	87.2%	76.9%	86.54%	71.7%

11 Mbps

Type of experi- ment	Number of Exper- iments	Accuracy (Roofnet)	Accuracy (Roofnet -1)	$\begin{array}{c} {\bf Accuracy} \\ ({\bf Roofnet} \\ +1) \end{array}$	Accuracy (Roofnet -2)	$\begin{array}{c} {\rm Accuracy} \\ {\rm (Roofnet} \\ +2) \end{array}$
Location 1 (Type 1)	48	72.9%	68.7%	83.3%	68.75%	95.8%
Location 1 (Type 2)	36	75.0%	72.2%	91.6%	72.22%	83.3%
Location 2 (Type 3)	36	75.0%	66.6%	75.0%	66.67%	83.3%
Location 2 (Type 4)	36	83.3%	97.2%	75.0%	97.22%	72.2%
All	158	76.9%	76.9%	80.7%	76.92%	84.6%