
CS783: Theoretical Foundations of Cryptography Fall 2024

Assignment 1
Instructor: Chethan Kamath

Exercise 1 (Classical ciphers [KL14]). Let’s understand the conditions under which some
of the classical ciphers we discussed in Lecture 2 become perfectly secure.

1. Show that (monoalphabetic) shift cipher is perfectly secure for messages of length
one, i.e., message-space {a, · · · , z}.

2. What is the maximum message-space for which (monoalphabetic) substitution cipher
is perfectly secure?

Exercise 2 (Statistical secrecy). An SKE Π = (Gen,Enc,Dec) is said to be statistically-
secret if for every eavesdropper Eve

δ(n) :=

∣∣∣∣∣∣∣∣∣ Pr
(m0,m1)←Eve(1n)

k←Gen(1n)
c←Enc(k,m0)

[Eve(c) = 0]− Pr
(m0,m1)←Eve(1n)

k←Gen(1n)
c←Enc(k,m1)

[Eve(c) = 0]

∣∣∣∣∣∣∣∣∣
is negligible (as defined in Lecture 3). Since we allow a slack, this is a weaker requirement
than perfect secrecy. Does Shannon’s impossibility still extend to statistically-secret SKE
schemes?

Exercise 3 (One-time pad (OTP)). Recall the definition of OTP from Lecture 2.

1. The goal of this exercise is to help you understand more about randomness in en-
cryption algorithm. Recall that the encryption algorithm of OTP is deterministic.
Modify OTP to come up with two perfectly-secure SKE schemes PS1 and PS2 that
have randomised encryption algorithm, and such that leaking the random coins used
in encryption leads (a) PS1 to become insecure (b) PS2 to remain secure.

2. Let’s consider OTP against a tampering adversary Tam who can modify a cipher-
text c of some message m = m0 · · ·mℓ−1 ∈ {0, 1}ℓ before it reaches the recipient,
Caeser’s general. Can Tam tamper c to some ciphertext c′ such that Caeser’s gen-
eral decrypts c′ to the following. If your answer is ‘yes’, then describe Tam; if it is
‘no’, justify.

(a) m⊕ (110ℓ−2), i.e., m with first two bit flipped (asssume ℓ ≥ 2)

(b) 0n

(c) m1m0m2 · · ·mℓ−1, i.e., the first two bits of m swapped

3. Suppose an OTP key is used to encrypt two messages m0 and m1 of your choice.
Is it possible to recover the key with certainty?
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Exercise 4 (Negligible functions). Recall the definition of negligible functions from Lec-
ture 3.

1. Are fp and fM negligible, and why? Here, a Mersenne prime is a prime of the form
Mn := 2n − 1.

fp(n) :=

{
1/n314159 if n is a prime

1/2n otherwise

fM(n) :=

{
1/n314159 if Mn is a Mersenne prime

1/nlog(n) otherwise

2. If ν1 and ν2 are negligible function, which of these following functions are also
(always) negligible? In case the function is negligible, provide a security reduction;
in case not, provide a counter-example.

(a) f+(n) := ν1(n) + ν2(n)

(b) f×(n) := ν1(n)× ν2(n)

(c) f÷(n) := ν1(n)÷ ν2(n)

Exercise 5 (Message length in definitions [KL14]). Recall the definition of adversarial
indistinguishability (Definition 4) from Lecture 3. I didn’t stress during the lecture that
the messages m0,m1 that Eve outputs must be of same length (i.e., |m0| = |m1|). You will
try to understand why through this exercise. Prove that a Π that supports arbitrary length
messages (i.e., the message-space is {0, 1}∗) cannot satisfy adversarial indistinguishability
if Eve is not restricted to challenging on equal length messages.

Exercise 6 (PRGs). Recall the definition of PRGs from Lecture 3.

1. Let G be a PRG that stretches from n bits to n+1 bits. Which of the following can-
didates based on G are also (always) PRGs? In case your claim is that a candidate
is a PRG, provide a proof; in case not, provide a counter-example and the efficient
distinguisher.

(a) Duplicating PRG: Gd(s) := s∥s, where ∥ denotes string concatenation

(b) Leaky PRG: Gℓ(s∥b) := G(s)∥b, where b ∈ {0, 1}
(c) Complementary PRGs G1(s) := G(s) and G2(s) := G(s), where for a bit-string

s, s denotes bit-complement.

(d) Singly punctured PRG:

Gp(s) :=

{
0|s|+1 if s of the form 0|s|

G(s) otherwise

(e) Mildly punctured PRG:

Gm(s) :=

{
0|s|+1 if s of the form 0

⌈√
|s|

⌉
∥{0, 1}∗

G(s) otherwise
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(f) Heavily punctured PRG:

Gh(s) :=

{
0|s|+1 if s of the form 0⌊log(|s|)⌋∥{0, 1}∗

G(s) otherwise

(g) Prefixing PRG: Gf (s) := G(0|s|∥s)

2. Recall the definition of computational indistinguishability (CI) at the end of Lecture
3. Show formally that CI is a transitive property. That is, if X1 is CI from X2,
and X2 is CI from X3, then X1 is CI also from X3.
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