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Exercise 1 (Unpredictability vs. pseudorandomness).

1. (Lecture 4, Exercise 3) Let’s start by writing down a simple reduction. Recall the
definitions of pseudorandomness and next-bit unpredictability (a.k.a. unpredictabil-
ity on the right) from Lecture 4. Show that if a PRG G is pseudorandom, then it is
also next-bit unpredictable.

2. Recall the definition of first-bit unpredictability (a.k.a unpredictability on the left)
as defined in Lecture 4: the predictor can ask for bits y2, · · · , yi (for i ∈ [1, n + 1]
of its choice) and has to predict the first bit y1.

(a) Show that if a PRG G is pseudorandom, then it is also first-bit unpredictable.

(b) Does the converse hold? That is, does first-bit unpredictability imply pseudo-
randomness? Come up with a proof or a counter-example.

(c) Does first-bit unpredictability imply next-bit unpredictability? Come up with a
proof or a counter-example.

Exercise 2 (Hybrid argument). In this exercise, we will practice hybrid arguments. In
each question, describe the hybrid worlds, and explain why consecutive worlds are indis-
tinguishable.

1. Let G be a PRG that with expansion factor n+1. Consider the following construction
of length-doubling PRG G′ that came up during discussions in Lecture 4. To compute
G′(s),

� Set s0 := s and ℓ := |s|
� For each i ∈ [1, ℓ], compute si = G(si−1)

� Output sℓ

Prove that G′ is a PRG using a hybrid argument. What are the advantages and
disadvantages of this construction over the one in the lecture?

2. Recall the two-world definition of PRF from Definition 1, Lecture 5. Now consider
the alternative definition, Definition 1′, via the following experiment:

� The distinguisher D is given query access to the PRF Fk(·), and it can (adap-
tively) make polynomially-many queries x1, · · · , xq to obtain Fk(x1), · · · , Fk(xq).

� In the end, D issues a challenge x∗ /∈ {x1, . . . , xq}: in the pseudorandom world
it gets y∗ := Fk(x

∗) and in the random world it gets a uniformly random value
r∗ from the co-domain of the PRF.
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F is a PRF if the behaviour of the distinguisher changes only by a negligible value in
the two worlds. Using a hybrid argument, show that Definition 1′ implies Definition
1, that is, any PRF that satisfies Definition 1′ also satisfies Definition 1.

� Hint: given a distinguisher in the sense of Definition 1, construct a distin-
guisher in the sense of Definition 1′; note that the distinguisher in Definition
1′ has much more flexibility.

Exercise 3 (PRF or not).

1. For a PRF {Fk : {0, 1}n → {0, 1}n}k∈{0,1}n, the “complementing” PRF defined as

F ′k(x) := Fk(x) (where the overline denotes bit-string complement)?

2. For F as above, a second “complementing” PRF defined as F ′k(x) := Fk(x)?

3. Recall the tree-based construction of PRF from length-doubling PRF (Construction
2) we saw in Lecture 5. Recall that the value Fk(x), x ∈ {0, 1}n, was computed
by taking the key k as the seed of the root PRG, and computing the leaf output sx.
What about the “dual” construction where to compute Fk(x), you use the input x
as the seed of the root PRG, and then output the leaf value sk?

Exercise 4 (Weak PRFs). Recall that in the definition of PRFs, the distinguisher can
(adaptively) query its oracle (which is either the PRF or a random function) on inputs of
its choice. Let’s consider a weaker notion where the distinguisher only gets to see output
value on random input points. To be precise, {Fk : {0, 1}n → {0, 1}n}k∈{0,1}n is a weak
PRF if for all PPT (oracle) distinguishers D, the following is negligible

δ(n) :=

∣∣∣∣ Pr
k←{0,1}n

[DFk($)(1n) = 0]− Pr
f←Fn

[Df($)(1n) = 0]

∣∣∣∣.
Here the $ in the oracle (instead of (·)) denotes access to output on random input points.

1. Show that if F is a PRF then it is also a weak PRF.

2. If F is a PRF, show that F ′, defined below, is a weak PRF, but not a PRF:

F ′k(x) :=

{
Fk(x) if x is even

Fk(x+ 1) otherwise

Exercise 5 (Chosen Plaintext Attack (CPA)). Recall the definition of CPA from Lec-
ture 5 (cf. [KL14, Definition 3.21] for a formal definition). This exercise will help you
understand CPA secrecy better.

1. Let Π = (Gen,Enc,Dec) be a symmetric-key encryption (SKE) scheme with deter-
ministic encryption. Show that Π cannot be CPA-secret.

2. Let Π1 = (Gen1,Enc1,Dec1) and Π2 = (Gen2,Enc2,Dec2) be two SKE schemes. We
are in a situation where only one of the two schemes is CPA-secret (and we don’t
know which one). Construct a SKE scheme Π that is CPA-secret as long as Π1 or
Π2 is secure. (Such a construction is called a “combiner”.)
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� Hint: it is instructive to first think about constructing such schemes against
eavesdroppers.

3. (Easier version of Lecture 5, Exercise 4) Consider the following restriction of CPA,
denoted CPA′, where the adversary cannot make any queries after the challenge.
Show that, if the underlying PRF is secure, then Construction 1 from Lecture 5 is
CPA′-secret. To make your life easier, assume that the PRF satisfies Definition 1′

above.

� Hint: Use the fact that in the random world in Definition 1′ the challenge
output is uniformly random and thus a OTP.
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