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Exercise 1 (Robustness of definition of interactive proof (IP)). Recall Definition 1 (IP)
from Lecture 14. The correctness error ϵc and soundness error ϵs in that definition are
both set to constant 1/3. Show that if a language L has an IP Π according to Definition
1, then it has an IP Π′ according to a definition where ϵc and ϵs are set to

1. negligible: ϵc = ϵs ≤ 1/2n

2. noticeable: ϵc = ϵs ≤ 1/2− 1/n,

where n denotes the size of the instance. (Hint: just like in Exercise 3 of Assignment 3,
Π′ reduces the error by repeating Π and then taking a majority vote. The analysis is then
using Chernoff bound.)

Exercise 2 (Randomness is useful for verification).

1. Show that an IP with deterministic verifier can only exist for L ∈ NP. (Hint:
Observe that prover’s messages are fixed if the verifier is deterministic.)

2. A language L is in the class BPP (bounded-error probabilistic polynomial-time) if
there exists a probabilistic polynomial-time decider D such that:

� ∀x ∈ L: Pr[D(x) = 1] ≥ 2/3

� ∀x ̸∈ L: Pr[D(x) = 1] ≤ 1/3,

where the probabilities are over random coins of D. Note that BPP has a trivial ZK
protocol: the prover sends nothing and the verifier simply decides the membership
of an instance x in L on her own. Show that a zero knowledge proof (ZKP) with
deterministic verifier can only exist for L ∈ BPP.

Exercise 3 (A sanity check). Recall from Lecture 14 that the NP proof for graph iso-
morphism of (G0, G1) involves the prover sending the witness, i.e., the isomorphism π
between G0 and G1. As noted in the lecture this protocol is a perfect IP for graph iso-
morphism problem (where the IP verifier simply runs the NP verifier). However, this
protocol should not satisfy Definition 2 (ZKP) in Lecture 14. Point out where exactly it
fails to satisfy Definition 2. (Hint: Write down the contrapositive of Definition 2.)

Exercise 4 (More trivial ZK). In this exercise, we will see more cases where ZK can
only exist for trivial languages, i.e, those in BPP.

1. Recall that when defining the simulator for honest-verifier (HV) computational ZK
in Lecture 14 (Definition 2), the real view and simulated view are only required to
be indistinguishable for x ∈ L. Show that if the distribution of simulator’s output
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on x ∈ L and x ̸∈ L are computationally distinguishable, then L ∈ BPP. (Hint:
use simulator and distinguisher for the simulator’s output to construct a decider for
L.)

2. Show that non-interactive (NI) perfect ZK proof can only exist for L ∈ BPP. (Hint:
keeping in mind Exercise 4.1, analyse what happens when your run the verifier on
simulated transcript)

3. Extend Exercise 4.2 to NI computational ZK proof.

Exercise 5 (Non-interactive bit commitments (NIBC)). Recall that in Definition 1
(NIBC) from Lecture 16, our requirements were computational hiding and perfect binding.
In the following exercises, we will try to better understand NIBC.

1. Given an NIBC Σ = (S,R), construct a OWF f. Explain why f is one-way.

2. Consider the dual of Definition 1, where we require computational binding (i.e., a
PPT adversary should not be able to find commitment c and decommitments r0 and
r1 such that R(c, r0, 0) = 1 and R(c, r1, 1) = 1 both hold) and perfect hiding (i.e.,
commitments to 0 and 1 are identically distributed). Given an NIBC Σ that satisfies
the dual definition, construct a OWF f. Explain why f is one-way.

3. We have now seen two definitions of NIBC. Now consider a strengthening of the
two where we require both binding and hiding to be perfect. Show that perfectly
binding and perfectly hiding NIBCs cannot exist.

4. Construct a NIBC in the random-oracle model (ROM). Recall that in ROM, all
parties have oracle access to a random function, say, Hn : {0, 1}n → {0, 1}n.

Exercise 6. In Lecture 16, we showed that Schnorr’s protocol is HVZK. What happens
to ZK when you consider Schnorr’s protocol with malicious verifiers?
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