CS783: Theoretical Foundations of Cryptography

Fall 2024

Assignment 4

October 9, 2024

Instructor: Chethan Kamath

Exercise 1 (Robustness of definition of interactive proof (IP)). Recall Definition 1 (IP) from Lecture 14. The correctness error ϵ_c and soundness error ϵ_s in that definition are both set to constant 1/3. Show that if a language \mathcal{L} has an IP Π according to Definition 1, then it has an IP Π' according to a definition where ϵ_c and ϵ_s are set to

- 1. negligible: $\epsilon_c = \epsilon_s \le 1/2^n$
- 2. noticeable: $\epsilon_c = \epsilon_s \leq 1/2 1/n$,

where n denotes the size of the instance. (Hint: just like in Exercise 3 of Assignment 3, Π' reduces the error by repeating Π and then taking a majority vote. The analysis is then using Chernoff bound.)

Exercise 2 (Randomness is useful for verification).

- 1. Show that an IP with deterministic verifier can only exist for $\mathcal{L} \in \mathbf{NP}$. (Hint: Observe that prover's messages are fixed if the verifier is deterministic.)
- 2. A language \mathcal{L} is in the class **BPP** (bounded-error probabilistic polynomial-time) if there exists a probabilistic polynomial-time decider D such that:
 - $\forall x \in \mathcal{L}: \Pr[\mathsf{D}(x) = 1] \ge 2/3$
 - $\forall x \notin \mathcal{L}: \Pr[\mathsf{D}(x) = 1] \le 1/3,$

where the probabilities are over random coins of D. Note that **BPP** has a trivial ZK protocol: the prover sends nothing and the verifier simply decides the membership of an instance x in \mathcal{L} on her own. Show that a zero knowledge proof (ZKP) with deterministic verifier can only exist for $\mathcal{L} \in \mathbf{BPP}$.

Exercise 3 (A sanity check). Recall from Lecture 14 that the **NP** proof for graph isomorphism of (G_0, G_1) involves the prover sending the witness, i.e., the isomorphism π between G_0 and G_1 . As noted in the lecture this protocol is a perfect IP for graph isomorphism problem (where the IP verifier simply runs the **NP** verifier). However, this protocol should not satisfy Definition 2 (ZKP) in Lecture 14. Point out where exactly it fails to satisfy Definition 2. (Hint: Write down the contrapositive of Definition 2.)

Exercise 4 (More trivial ZK). In this exercise, we will see more cases where ZK can only exist for trivial languages, i.e, those in **BPP**.

1. Recall that when defining the simulator for honest-verifier (HV) computational ZK in Lecture 14 (Definition 2), the real view and simulated view are only required to be indistinguishable for $x \in \mathcal{L}$. Show that if the distribution of simulator's output

on $x \in \mathcal{L}$ and $x \notin \mathcal{L}$ are computationally distinguishable, then $\mathcal{L} \in \mathbf{BPP}$. (Hint: use simulator and distinguisher for the simulator's output to construct a decider for \mathcal{L} .)

- 2. Show that non-interactive (NI) perfect ZK proof can only exist for $\mathcal{L} \in \mathbf{BPP}$. (Hint: keeping in mind Exercise 4.1, analyse what happens when your run the verifier on simulated transcript)
- 3. Extend Exercise 4.2 to NI computational ZK proof.

Exercise 5 (Non-interactive bit commitments (NIBC)). Recall that in Definition 1 (NIBC) from Lecture 16, our requirements were computational hiding and perfect binding. In the following exercises, we will try to better understand NIBC.

- 1. Given an NIBC $\Sigma = (S, R)$, construct a OWF f. Explain why f is one-way.
- 2. Consider the dual of Definition 1, where we require computational binding (i.e., a PPT adversary should not be able to find commitment c and decommitments r_0 and r_1 such that $R(c, r_0, 0) = 1$ and $R(c, r_1, 1) = 1$ both hold) and perfect hiding (i.e., commitments to 0 and 1 are identically distributed). Given an NIBC Σ that satisfies the dual definition, construct a OWF f. Explain why f is one-way.
- 3. We have now seen two definitions of NIBC. Now consider a strengthening of the two where we require both binding and hiding to be perfect. Show that perfectly binding and perfectly hiding NIBCs cannot exist.
- 4. Construct a NIBC in the random-oracle model (ROM). Recall that in ROM, all parties have oracle access to a random function, say, $H_n : \{0,1\}^n \to \{0,1\}^n$.

Exercise 6. In Lecture 16, we showed that Schnorr's protocol is HVZK. What happens to ZK when you consider Schnorr's protocol with malicious verifiers?