CS783: Theoretical Foundations of Cryptography

Fall 2024

Assignment 6

November 7, 2024

Instructor: Chethan Kamath

Exercise 1 (One-way function (OWF) and $\mathbf{NP} \cap \mathbf{coNP}$). Recall the separation of OWF and one-way permutation from Lecture 21. Adapt this argument to show that OWF does not imply hardness of $\mathbf{NP} \cap \mathbf{coNP}$. (Hint: Consider a language $\mathcal{L} \in \mathbf{NP} \cap \mathbf{coNP}$. Let \mathcal{R} and $\overline{\mathcal{R}}$ denote the \mathbf{NP} relations corresponding to \mathcal{L} and $\overline{\mathcal{L}}$, respectively. Observe that for every x there exists either $w : (x, w) \in \mathcal{R}$ or $\overline{w} : (x, \overline{w}) \in \overline{\mathcal{R}}$. Use this fact to learn a fresh query about x's "witness" w or "non-witness" \overline{w} .)

Exercise 2 (How to use virtual black-box obfuscator (VBBO)). Recall the definition of VBBO from Lecture 22 (Definition 1). Given VBBO, construct:

- 1. one-way function (Hint: try obfuscating a point function)
- 2. trapdoor permutation
- 3. non-interactive commitment
- 4. fully-homomorphic encryption (FHE) from any SKE

If you need more properties of VBBO (e.g., auxiliary-input VBBO), first formally define them.

Exercise 3 (Obfuscation of obfuscation). Suppose Obf is an indistinguishability obfuscator (IO). Consider Obf' defined as $Obf'(P; r_1 || r_2) := Obf(Obf(P; r_1); r_2)$. Is Obf' also an IO? If you believe it is, provide a formal proof; otherwise, come up with a counter-example. What happens when Obf is a VBB obfuscator?

Exercise 4 (IO is "best-possible obfuscation"). Show that if it is possible to VBB obfuscate a program P, then obfuscating P with an IO results in VBB obfuscating P. (Hint: prove and use the observation that IO of VBBO is still VBBO.)

Exercise 5 (Constructing puncturable pseudo-random function (PPRF)). Recall our informal definition of PPRF from Lecture 23 (Definition 2).

- 1. Formalise this definition. (Hint: define pseudorandomness at punctured point for fixed $x^* \in \{0,1\}^n$)
- 2. Tweak the tree-based construction of PRF from Lecture 5 to construction a puncturable PRF. (Hint: the punctured key depends on the path from x^* to the root in the tree.)