
CS783: Theoretical Foundations of Cryptography
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Recall from Last Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M
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Some Notation and Conventions
Sets:

Denoted using calligraphic font: e.g., M, C
Sampling uniformly at random from a set is denoted using ‘←’:
e.g., k ← {�, �}ℓ
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Denoted using calligraphic font: e.g., M, C
Sampling uniformly at random from a set is denoted using ‘←’:
e.g., k ← {�, �}ℓ

Algorithms
Algorithms will be denoted using straight font: e.g., �, ��� ...
For a randomised algorithm �, y ← �(x ) denotes running � on
input x to get a (random) output y

Probability notation:
For a distribution M over a set M and element m ∈ M,
m = M denotes the event: ‘a random sample from M equals m”
Following denotes probability that �(x ) = � when x ← {�, �}n:

Pr
x←{�,�}n [�(x ) = �]
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Syntax of Shared/Symmetric-Key Encryption
Definition 1 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π for message space M is a triple of efficient algorithms
(���, ���,���) with the following syntax:
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Definition 1 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π for message space M is a triple of efficient algorithms
(���, ���,���) with the following syntax:

Correctness of decryption: for all message m ∈ M,
Pr

k←���,c←���(k,m)[���(k , c) = m] = �
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Syntax of Shared/Symmetric-Key Encryption
Definition 1 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π for message space M is a triple of efficient algorithms
(���, ���,���) with the following syntax:

Correctness of decryption: for all message m ∈ M,
Pr

k←���,c←���(k,m)[���(k , c) = m] = �

Why can we assume that ��� is deterministic w.l.o.g.?
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1 Syntax of Shared/Symmetric-Key Encryption (SKE)

2 Classical ciphers

3 Perfect Secrecy and One-Time Pad (OTP)



Shift Cipher (Caeser Cipher)...
Construction 1 (for message space {�, · · · , �}ℓ )
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Key generation, ���: output k ← {�, · · · , ��}
Encryption, ���(k ,m = m� · · ·mℓ ):

Output c := c� · · · cℓ , where ci := mi + k mod ��

Decryption, ���(k , c = c� · · · cℓ ):
Output m := m� · · ·mℓ , where mi := ci − k mod ��

Why does correctness of decryption hold? 5 / 22



Shift Cipher (Caeser Cipher)...
Construction 2 (for message space {�, · · · , �}ℓ )
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1 What is the key-space? What is the ciphertext-space?
2 What is the probability that k = ��? What is ���(��, ������)?
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Shift Cipher (Caeser Cipher)...
Construction 2 (for message space {�, · · · , �}ℓ )

Exercise 1
1 What is the key-space? What is the ciphertext-space?
2 What is the probability that k = ��? What is ���(��, ������)?

Assume that Caeser only sends either ������ or ������.
3 What is the probability that the ciphertext is ������, (resp.
������)?

4 If ciphertext is ������, is it possible that message is ������?
5 / 22
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Can be modelled as an algorithm
What does ��� have access to?

Description of the algorithms? Yes, Kerckhoffs’ principle:
‘One ought to design systems under the assumption that the
enemy will immediately gain full familiarity with them.’

What about the key? No, then everything is open
Randomness used to derive the key? No, can then rederive key
Randomness used to encrypt?
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Shift Cipher (Caeser Cipher)...
Construction 3

What can ��� learn?
Whole message, by exhaustive key search (brute force).

What have we learnt?
Large-enough key-space is necessary to thwart brute force

Exercise 2
What happens if the length of the message ℓ = �?
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8 / 22



Substitution Cipher...

Construction 4 (Message space {�, · · · , �}ℓ )

Key is a permutation of {�, · · · , �}.

8 / 22



Substitution Cipher...

Construction 4 (Message space {�, · · · , �}ℓ )

Key is a permutation of {�, · · · , �}.

8 / 22



Substitution Cipher...

Construction 4 (Message space {�, · · · , �}ℓ )

Key is a permutation of {�, · · · , �}.

8 / 22



Substitution Cipher...

Construction 4 (Message space {�, · · · , �}ℓ )

Key is a permutation of {�, · · · , �}.
What is the key-space? How large is it?

8 / 22



Substitution Cipher...

Construction 4 (Message space {�, · · · , �}ℓ )

Key is a permutation of {�, · · · , �}.
What is the key-space? How large is it?

Exercise 3
Write down the pseudocode for substitution cipher.
Why does correctness of decryption hold?
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Polyalphabetic Ciphers...
Let’s map a plaintext character to different ciphertext characters

Construction 6 (Polyalphabetic shift cipher (Vignère cipher))

Exercise 4
1 Write down the pseudocode for polyalphabetic shift cipher.
2 Work out the details of polyalphabetic substitution cipher.
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Polyalphabetic Ciphers...
Construction 7 (Polyalphabetic shift cipher (Vignère cipher))

What can ��� learn?
Can still distinguish certain messages. Any guesses?
Can still recover key (more complicated frequency analysis)

What have we learnt?
Must hide all statistical patterns of the plaintext
Equivalently: ��� must learn no information about the plaintext

11 / 22



Plan for this Lecture

1 Syntax of Shared/Symmetric-Key Encryption (SKE)

2 Classical ciphers

3 Perfect Secrecy and One-Time Pad (OTP)



How to Model ‘No Information Learnt’?
We will look at two ways:
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Definition 2 (Shannon’49)
Let Π = (���, ���,���) be an SKE with message space M.
Π is perfectly-secure if for any message distribution M over M,
message m∗ ∈ M and ciphertext c∗ ∈ C (in support):

Pr
k←���

[M = m∗|C = c∗] = Pr[M = m∗]

Intuition: ‘observing a ciphertext must have no effect on ���’s
knowledge about the message being sent’
Definition essentially says M and C are independent random
variables
Definition does not refer to ��� at all!
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Modelling ‘No Information Learnt’: Imitation Game...
Turing’s Imitation Game (Turing Test)

Turing, on artificial intelligence: "Are there imaginable digital
computers which would do well in the imitation game?"
To paraphrase: sign of artificial (human) intelligence if no
human can tell the two worlds apart.
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Definition 4
An SKE Π = (���, ���,���) is perfectly-secure if for any
eavesdropper Eve and messages (m�,m�) ∈ M:
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c←���(k,m�)
[���(c) outputs ‘left’] = Pr
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Modelling ‘No Information Learnt’: Imitation Game...
What are our two worlds?
‘Left” world: always encrypt m�“Right” world: always encrypt m�

Definition 4
An SKE Π = (���, ���,���) is perfectly-secure if for any
eavesdropper Eve and messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) outputs ‘left’] = Pr

k←���
c←���(k,m�)

[���(c) = outputs ‘left’]

Exercise 5
Show that shift and substitution ciphers are not perfectly secure
w.r.to above definition.
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How to Model ‘No Information Learnt’?...
We saw two definitions. There are two more.

‘Semantic-security’: ciphertext contains no info. about plaintext
Ciphertext indistinguishability: variant of imitation game

Exercise 6
Show equivalence of all these definitions. 17 / 22
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Pseudocode 2 (Message space {�, �}ℓ )
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One-Time Pad (Vernam’ Cipher)...
Construction 8 (Message space {�, �}ℓ )

Pseudocode 2 (Message space {�, �}ℓ )
Key generation ���: output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

Exercise 7
1 Design OTP for message space {�, · · · , �}ℓ
2 How is this different from polyalphabetic shift cipher?

18 / 22



One-Time Pad is Perfectly Secure...
Theorem 5 (Shannon’49)
One-time pad is perfectly secure.
Proof.
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