
CS783: Theoretical Foundations of Cryptography
Lecture 3 (30/Jul/24)

Instructor: Chethan Kamath

Recall from Last Lecture...

1 / 19Credit for images: Wikipedia

Recall from Last Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

1 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

1 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

1 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

1 / 19

Plan for This Lecture...

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP

Credit: Tekniska Museet

Plan for This Lecture

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19

What Do We Do in Face of Shannon’s Impossibility?

Defintion 1 (SKE Imitation Game)
An SKE Π = (���, ���,���) is perfectly-secret if for every
eavesdropper Eve and pair of messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) = �] − Pr

k←���
c←���(k,m�)

[���(c) = �] = �

3 / 19

What Do We Do in Face of Shannon’s Impossibility?
You compromise.

Kerckhoffs’ principle: “The system should be, if not theoretically
unbreakable, unbreakable in practice.”

Defintion 1 (SKE Imitation Game)
An SKE Π = (���, ���,���) is perfectly-secret if for every
eavesdropper Eve and pair of messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) = �] − Pr

k←���
c←���(k,m�)

[���(c) = �] = �

3 / 19

What Do We Do in Face of Shannon’s Impossibility?
You compromise.

Kerckhoffs’ principle: “The system should be, if not theoretically
unbreakable, unbreakable in practice.”

Defintion 1 (SKE Imitation Game)
An SKE Π = (���, ���,���) is perfectly-secret if for every
eavesdropper Eve and pair of messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) = �] − Pr

k←���
c←���(k,m�)

[���(c) = �] = �

Compromise two aspects of Defintion 1:
1 Restrict to computationally-bounded ���

2 Allow “slack”: ��� may distinguish, but with “very small” prob.

3 / 19

What Do We Do in Face of Shannon’s Impossibility?
You compromise.

Kerckhoffs’ principle: “The system should be, if not theoretically
unbreakable, unbreakable in practice.”

Defintion 1 (SKE Imitation Game)
An SKE Π = (���, ���,���) is perfectly-secret if for every
eavesdropper Eve and pair of messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) = �] − Pr

k←���
c←���(k,m�)

[���(c) = �] = �

Compromise two aspects of Defintion 1:
1 Restrict to computationally-bounded ���

2 Allow “slack”: ��� may distinguish, but with “very small” prob.
Turns out both compromises necessary!

3 / 19

Plan for This Lecture

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP

First Compromise: Computationally Bound Eve...
Restrict to probabilistic polynomial-time (PPT) ���s:
randomised ��� that runs in time p(n), for some polynomial p

4 / 19

First Compromise: Computationally Bound Eve...
Restrict to probabilistic polynomial-time (PPT) ���s:
randomised ��� that runs in time p(n), for some polynomial p

Why PPT?
“Captures” efficient computationThe exact model of computation (Turing Machines, RandomAccess Machine) doesn’t matter

Church-Turing thesis: all models of computation are polynomially
equivalent

Polynomials have nice closure properties
Randomness allowed since it is allowed for honest algorithms

4 / 19

First Compromise: Computationally Bound Eve...
Restrict to probabilistic polynomial-time (PPT) ���s:
randomised ��� that runs in time p(n), for some polynomial p

Why PPT?
“Captures” efficient computationThe exact model of computation (Turing Machines, RandomAccess Machine) doesn’t matter

Church-Turing thesis: all models of computation are polynomially
equivalent

Polynomials have nice closure properties
Randomness allowed since it is allowed for honest algorithms

Some stronger models for ���:
Polynomial-sized family of circuits: allows “non-uniform” advice
Quantum polynomial-time algorithms (Lecture 10)

4 / 19

First Compromise: Computationally Bound Eve...
Candidate Defintion 1
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] = �

5 / 19

First Compromise: Computationally Bound Eve...
Candidate Defintion 1
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] = �

Exercise 1
Show that Shannon’s impossibility extends to Candidate
Defintion 1.

Hint: use similar strategy to Theorem 1.

5 / 19

First Compromise: Computationally Bound Eve...
Candidate Defintion 1
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] = �

Exercise 1
Show that Shannon’s impossibility extends to Candidate
Defintion 1.

Hint: use similar strategy to Theorem 1.
Take-away: ��� can distinguish with a “very small” probability

5 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability

6 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

6 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

6 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

6 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

6 / 19

Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Why negligible? Like PPT, it behaves nicely.
6 / 19

Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n

7 / 19

Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
3 f�(n) :=

(
�/�n for odd n

�/������n������ for even n

7 / 19

Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
3 f�(n) :=

(
�/�n for odd n

�/������n������ for even n

4 f�(n) := n−log (n)

7 / 19

Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
3 f�(n) :=

(
�/�n for odd n

�/������n������ for even n

4 f�(n) := n−log (n)
5 f�(n) := p(n)/�n , for a very large polynomial p(n)
6 f�(n) := nlog (n)/�n

7 / 19

Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
3 f�(n) :=

(
�/�n for odd n

�/������n������ for even n

4 f�(n) := n−log (n)
5 f�(n) := p(n)/�n , for a very large polynomial p(n)
6 f�(n) := nlog (n)/�n

To show that f (n) is non-negligible, show that there exists a
polynomial p such that f (n) > �/p(n) for infinitely often ns.

7 / 19

Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

8 / 19

Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

8 / 19

Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

8 / 19

$

Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

8 / 19

$

$

$

Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

Correctness of decryption: for every n ∈ N, message m ∈ Mn ,
Pr

k←���(�n),c←���(k,m)[���(k , c) = m] = �

8 / 19

$

$

$

Let’s Finally Define Computational Secrecy...

9 / 19

$

$

$

$

Let’s Finally Define Computational Secrecy...

9 / 19

$

$

$

$

Let’s Finally Define Computational Secrecy...
Defintion 3 (SKE Imitation Game for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �]

is negligible.

9 / 19

$

$

$

$

Let’s Finally Define Computational Secrecy...
Defintion 3 (SKE Imitation Game for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �]

is negligible.

9 / 19

$

$

$

$

Let’s Finally Define Computational Secrecy...
Defintion 3 (SKE Imitation Game for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �]

is negligible.

What if we quantify for every pair of messages (m�,m�)?
9 / 19

$

$

$

$

Let’s Finally Define Computational Secrecy...

9 / 19

Let’s Finally Define Computational Secrecy...

9 / 19

Let’s Finally Define Computational Secrecy...

9 / 19

Let’s Finally Define Computational Secrecy...

9 / 19
$

Let’s Finally Define Computational Secrecy...

9 / 19
$

Let’s Finally Define Computational Secrecy...

9 / 19
$

Let’s Finally Define Computational Secrecy...
Defintion 4 (Adversarial Indistinguishability for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)
b←{�,�}

c←���(k,mb)

[���(c) = b] − �

�

is negligible.

9 / 19
$

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.

10 / 19

Plan for This Lecture

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP

Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ)

Pseudocode 1 (Message space {�, �}ℓ)
Key generation ���(�ℓ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

11 / 19

Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ)

Pseudocode 1 (Message space {�, �}ℓ)
Key generation ���(�ℓ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

11 / 19

Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ)

Pseudocode 1 (Message space {�, �}ℓ)
Key generation ���(�ℓ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

11 / 19

Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ)

Pseudocode 1 (Message space {�, �}ℓ)
Key generation ���(�ℓ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

11 / 19

Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ)

Pseudocode 1 (Message space {�, �}ℓ)
Key generation ���(�ℓ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

11 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.

12 / 19

Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.

Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.
Exercise 2

1 Write up “adversarial indistinguishability” definition of PRG.
2 Show that the two definitions are equivalent.

12 / 19

Pseudo-Random Generator...
Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.

13 / 19

Pseudo-Random Generator...
Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.
Let’s check if you understood the notion of PRG

How can an unbounded distinguisher break PRG?
If � = �� can PRGs exist?

13 / 19

Pseudo-Random Generator...
Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.
Let’s check if you understood the notion of PRG

How can an unbounded distinguisher break PRG?
If � = �� can PRGs exist?Is G a PRG or not? Below G� and G� are PRGs

1 G (s) := G�(s)�
2 G (s�s�) := G�(s�)G�(s�)

13 / 19

Pseudo-Random Generator...
Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r) = �]

is negligible.
Let’s check if you understood the notion of PRG

How can an unbounded distinguisher break PRG?
If � = �� can PRGs exist?Is G a PRG or not? Below G� and G� are PRGs

1 G (s) := G�(s)�
2 G (s�s�) := G�(s�)G�(s�)
3 G (s) := G�(s)G�(s)
4 G (s) := G�(s) ⊕ G�(s)

13 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

Pseudocode 2 (Message space {�, �}ℓ(n))
Key generation ���(�n): output k ← {�, �}n
Encryption ���(k ,m): output c := G (k) ⊕ m

Decryption ���(k , c): output m := G (k) ⊕ c

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

Pseudocode 2 (Message space {�, �}ℓ(n))
Key generation ���(�n): output k ← {�, �}n
Encryption ���(k ,m): output c := G (k) ⊕ m

Decryption ���(k , c): output m := G (k) ⊕ c

Correctness of decryption: for every n ∈ N and m ∈ {�, �}ℓ(n),

14 / 19

“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))

Pseudocode 2 (Message space {�, �}ℓ(n))
Key generation ���(�n): output k ← {�, �}n
Encryption ���(k ,m): output c := G (k) ⊕ m

Decryption ���(k , c): output m := G (k) ⊕ c

Correctness of decryption: for every n ∈ N and m ∈ {�, �}ℓ(n),

14 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.

15 / 19

Proof of Computational Secrecy...
Exercise 3 (Formalise proof of Theorem 3)
Write down the proof formally:

1 Why does the reduction work?
2 In the analysis, explicitly write down expression for “not

negligible”.

15 / 19

Proof of Computational Secrecy...
Exercise 3 (Formalise proof of Theorem 3)
Write down the proof formally:

1 Why does the reduction work?
2 In the analysis, explicitly write down expression for “not

negligible”.
Exercise 4 (Strengthening Theorem 3)

Understand how to model non-uniform adversaries in the
circuit model.
Show that assuming PRG secure against non-uniform
distinguishers, one can achieve computational OTP against
non-uniform eavesdroppers.
Does the reduction work for quantum adversaries?

15 / 19

Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.

16 / 19

Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.

Lecture 4 (next): PRGs from next-bitunpredictable (NBU) functions (stream ciphers)
Next-bit unpredictability can be achieved
assuming hardness of factoring integers

16 / 19

Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.

Lecture 4 (next): PRGs from next-bitunpredictable (NBU) functions (stream ciphers)
Next-bit unpredictability can be achieved
assuming hardness of factoring integers

Lecture 7: pseudorandomness from one-wayness
One-wayness can be achieved under weaker
assumptions (e.g., discrete logarithm)

16 / 19

Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.

Lecture 4 (next): PRGs from next-bitunpredictable (NBU) functions (stream ciphers)
Next-bit unpredictability can be achieved
assuming hardness of factoring integers

Lecture 7: pseudorandomness from one-wayness
One-wayness can be achieved under weaker
assumptions (e.g., discrete logarithm)

Note. If pseudorandomness against fixed-poly.distinguishers suffices, then we can constructPRG under complexity-theoretic assumptions
Look up Nisan-Wigderson PRGs!

16 / 19

Applications of PRG

Saw application of PRG to construct SKE

17 / 19

Applications of PRG

Saw application of PRG to construct SKE

Other applications
Fundamental to cryptography since most algorithms are
randomised: helps reduce the amount of “pure” randomness
required
Derandomisation, i.e., turn a randomised algorithm into
deterministicNon-cryptographic PRGs (e.g., LFSR): simulation in physics

But broken in cryptographic sense

17 / 19

To Recap
We started off with Shannon’s impossibility

18 / 19

To Recap
We started off with Shannon’s impossibility
Learned how to overcome Shannon’s impossibility via PRGs

Learned two new notions: PPT and negligibleThere exist alternative ways
E.g.: bounded-storage model, where ���’s storage is limited

Saw construction of computational OTP
First security reduction!

18 / 19

To Recap
We started off with Shannon’s impossibility
Learned how to overcome Shannon’s impossibility via PRGs

Learned two new notions: PPT and negligibleThere exist alternative ways
E.g.: bounded-storage model, where ���’s storage is limited

Saw construction of computational OTP
First security reduction!

The security definitions can be seen through the lens of:
Defintion 6 (computational indistinguishability)
Two distributions X� and X� are computationally indistinguishable
if for every PPT distinguisher D ,

δ(n) := Pr
x←X�

[�(x) = �] − Pr
x←X�

[�(x) = �]
is negligible.

18 / 19

Next Lecture

Yet another way to look at PRGs: next-bit unpredictability(stream ciphers)
Concrete construction of PRG

Length-extension for PRG
First hybrid (security) argument!
Introduce pseudo-random functions (PRFs)

19 / 19

Next Lecture

Yet another way to look at PRGs: next-bit unpredictability(stream ciphers)
Concrete construction of PRG

Length-extension for PRG
First hybrid (security) argument!
Introduce pseudo-random functions (PRFs)

More Questions?

19 / 19

References

1 [KL14, §3.1-3.3] for details about this lecture
2 [Gol01, §1.3] for a thorough treatment of the computational

model used in cryptography (including a discussion of the
non-uniform circuit model).

3 Foundational works on pseudorandomness were done by Blum
and Micali [BM84] Yao [Yao82].

4 You can read about how PRGs are used for derandomisation in
[AB09, Chapter 20]. This is also a great source for reading
about complexity-theoretic (i.e., Nisan-Wigderson) PRG.

5 You can read about how Shannon’s impossibility can be
bypassed in the bounded storage model in [Mau92]

19 / 19

Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.
Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo-random bits.
SIAM J. Comput., 13(4):850–864, 1984.
Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Ueli M. Maurer.
Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, January 1992.
Andrew Chi-Chih Yao.
Theory and applications of trapdoor functions (extended abstract).
In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

19 / 19

	Limitations of Perfect Secrecy: Shannon's Impossibility
	Bypassing Shannon's Impossibility
	Pseudo-Random Generators (PRGs) and Computational OTP

