
CS783: Theoretical Foundations of Cryptography
Lecture 3 (30/Jul/24)

Instructor: Chethan Kamath
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Recall from Last Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M
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Plan for This Lecture...

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP
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1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



Shannon’s Impossibility
Theorem 1 (Shannon’49)
Let Π = (���, ���,���) be any perfectly-secret encryption scheme
with message space M and key-space K. Then |K| ≥ |M|.
Proof Sketch. Idea: proof by contradiction.

2 / 19



What Do We Do in Face of Shannon’s Impossibility?

Defintion 1 (SKE Imitation Game)
An SKE Π = (���, ���,���) is perfectly-secret if for every
eavesdropper Eve and pair of messages (m�,m�) ∈ M:

Pr
k←���

c←���(k,m�)
[���(c) = �] − Pr

k←���
c←���(k,m�)

[���(c) = �] = �
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[���(c) = �] = �

Compromise two aspects of Defintion 1:
1 Restrict to computationally-bounded ���

2 Allow “slack”: ��� may distinguish, but with “very small” prob.
Turns out both compromises necessary!
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Plan for This Lecture

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP



First Compromise: Computationally Bound Eve...
Restrict to probabilistic polynomial-time (PPT) ���s:
randomised ��� that runs in time p(n), for some polynomial p
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Why PPT?
“Captures” efficient computationThe exact model of computation (Turing Machines, RandomAccess Machine) doesn’t matter

Church-Turing thesis: all models of computation are polynomially
equivalent

Polynomials have nice closure properties
Randomness allowed since it is allowed for honest algorithms
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randomised ��� that runs in time p(n), for some polynomial p

Why PPT?
“Captures” efficient computationThe exact model of computation (Turing Machines, RandomAccess Machine) doesn’t matter

Church-Turing thesis: all models of computation are polynomially
equivalent

Polynomials have nice closure properties
Randomness allowed since it is allowed for honest algorithms

Some stronger models for ���:
Polynomial-sized family of circuits: allows “non-uniform” advice
Quantum polynomial-time algorithms (Lecture 10)
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Exercise 1
Show that Shannon’s impossibility extends to Candidate
Defintion 1.

Hint: use similar strategy to Theorem 1.
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[���(c) = �] − Pr(m�,m�)←���

k←���
c←���(k,m�)

[���(c) = �] = �

Exercise 1
Show that Shannon’s impossibility extends to Candidate
Defintion 1.

Hint: use similar strategy to Theorem 1.
Take-away: ��� can distinguish with a “very small” probability
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Second Compromise: Allow “Slack”...
Okay if ��� distinguishes with “very small” probability
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Okay if ��� distinguishes with “very small” probability
Quantify “very small” using negligible function:

Intuitive def.: function eventually smaller than every inverse
polynomial

Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Why negligible? Like PPT, it behaves nicely.
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Second Compromise: Allow “Slack”...
Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
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Defintion 2
A function f : N → R+ is negligible if for every polynomial p and
sufficiently large n, f (n) < �/p(n) holds.

Negligible or not?
1 f�(n) := �/������n������
2 f�(n) := �/�n
3 f�(n) :=

(
�/�n for odd n

�/������n������ for even n

4 f�(n) := n−log (n)
5 f�(n) := p(n)/�n , for a very large polynomial p(n)
6 f�(n) := nlog (n)/�n

To show that f (n) is non-negligible, show that there exists a
polynomial p such that f (n) > �/p(n) for infinitely often ns.
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Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:
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Incorporating Security Parameter into SKE Definition
Definition 2 (Shared/Symmetric-Key Encryption (SKE))
An SKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

Correctness of decryption: for every n ∈ N, message m ∈ Mn ,
Pr

k←���(�n),c←���(k,m)[���(k , c) = m] = �

8 / 19
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Let’s Finally Define Computational Secrecy...
Defintion 3 (SKE Imitation Game for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �] − Pr(m�,m�)←���(�n)
k←���(�n)

c←���(k,m�)

[���(c) = �]

is negligible.
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PPT eavesdropper Eve
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is negligible.

What if we quantify for every pair of messages (m�,m�)?
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Let’s Finally Define Computational Secrecy...
Defintion 4 (Adversarial Indistinguishability for PPT ���s)
An SKE Π = (���, ���,���) is computationally-secret if for every
PPT eavesdropper Eve

δ(n) := Pr(m�,m�)←���(�n)
k←���(�n)
b←{�,�}

c←���(k,mb )

[���(c) = b] − �

�

is negligible.

9 / 19
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The Two Definitions are Equivalent!
Claim 1 (Other direction exercise!)
Defintion 4 implies Defintion 3.
Proof.
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Plan for This Lecture

1 Limitations of Perfect Secrecy: Shannon’s Impossibility

2 Bypassing Shannon’s Impossibility

3 Pseudo-Random Generators (PRGs) and Computational OTP



Recall One-Time Pad (Vernam’s Cipher)
Construction 1 (Message space {�, �}ℓ )

Pseudocode 1 (Message space {�, �}ℓ )
Key generation ���(�ℓ ): output k ← {�, �}ℓ
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c
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Pseudo-Random Generator (PRG)...
Intuitive definition: expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.
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� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r ) = �]

is negligible.
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Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r ) = �]

is negligible.
Exercise 2

1 Write up “adversarial indistinguishability” definition of PRG.
2 Show that the two definitions are equivalent.
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If � = �� can PRGs exist?
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s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r ) = �]

is negligible.
Let’s check if you understood the notion of PRG

How can an unbounded distinguisher break PRG?
If � = �� can PRGs exist?Is G a PRG or not? Below G� and G� are PRGs

1 G (s) := G�(s)�
2 G (s�s�) := G�(s�)G�(s�)
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Pseudo-Random Generator...
Defintion 5 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) := Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r ) = �]

is negligible.
Let’s check if you understood the notion of PRG

How can an unbounded distinguisher break PRG?
If � = �� can PRGs exist?Is G a PRG or not? Below G� and G� are PRGs

1 G (s) := G�(s)�
2 G (s�s�) := G�(s�)G�(s�)
3 G (s) := G�(s)G�(s)
4 G (s) := G�(s) ⊕ G�(s)
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“Computational” One-Time Pad from PRG �

Construction 2 (Message space {�, �}ℓ(n))
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Proof of Computational Secrecy...
Theorem 3
Assuming � is a PRG, Construction 2 is computationally secret.
Proof by reduction. ∃��� breaking Construction 2 ⇒ ∃� for �.
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Proof of Computational Secrecy...
Exercise 3 (Formalise proof of Theorem 3)
Write down the proof formally:

1 Why does the reduction work?
2 In the analysis, explicitly write down expression for “not

negligible”.
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Proof of Computational Secrecy...
Exercise 3 (Formalise proof of Theorem 3)
Write down the proof formally:

1 Why does the reduction work?
2 In the analysis, explicitly write down expression for “not

negligible”.
Exercise 4 (Strengthening Theorem 3)

Understand how to model non-uniform adversaries in the
circuit model.
Show that assuming PRG secure against non-uniform
distinguishers, one can achieve computational OTP against
non-uniform eavesdroppers.
Does the reduction work for quantum adversaries?
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Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.
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Do PRGs Exist?
Recall from earlier that they don’t if � = ��.

Thus they only exist conditioned on � ̸= ��.

Lecture 4 (next): PRGs from next-bitunpredictable (NBU) functions (stream ciphers)
Next-bit unpredictability can be achieved
assuming hardness of factoring integers

Lecture 7: pseudorandomness from one-wayness
One-wayness can be achieved under weaker
assumptions (e.g., discrete logarithm)

Note. If pseudorandomness against fixed-poly.distinguishers suffices, then we can constructPRG under complexity-theoretic assumptions
Look up Nisan-Wigderson PRGs!
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Applications of PRG

Saw application of PRG to construct SKE
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Applications of PRG

Saw application of PRG to construct SKE

Other applications
Fundamental to cryptography since most algorithms are
randomised: helps reduce the amount of “pure” randomness
required
Derandomisation, i.e., turn a randomised algorithm into
deterministicNon-cryptographic PRGs (e.g., LFSR): simulation in physics

But broken in cryptographic sense
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To Recap
We started off with Shannon’s impossibility
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Learned two new notions: PPT and negligibleThere exist alternative ways
E.g.: bounded-storage model, where ���’s storage is limited

Saw construction of computational OTP
First security reduction!
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Learned how to overcome Shannon’s impossibility via PRGs

Learned two new notions: PPT and negligibleThere exist alternative ways
E.g.: bounded-storage model, where ���’s storage is limited

Saw construction of computational OTP
First security reduction!

The security definitions can be seen through the lens of:
Defintion 6 (computational indistinguishability)
Two distributions X� and X� are computationally indistinguishable
if for every PPT distinguisher D ,

δ(n) := Pr
x←X�

[�(x ) = �] − Pr
x←X�

[�(x ) = �]
is negligible.
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Next Lecture

Yet another way to look at PRGs: next-bit unpredictability(stream ciphers)
Concrete construction of PRG

Length-extension for PRG
First hybrid (security) argument!
Introduce pseudo-random functions (PRFs)
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Next Lecture

Yet another way to look at PRGs: next-bit unpredictability(stream ciphers)
Concrete construction of PRG

Length-extension for PRG
First hybrid (security) argument!
Introduce pseudo-random functions (PRFs)

More Questions?
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