CS783: Theoretical Foundations of Cryptography

Lecture 4 (09/Aug/24)

Instructor: Chethan Kamath
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Recall from Last Lecture

m We started off with Shannon'’s impossibility

m One way around Shannon's impossibility is to settle for
computational secrecy

m Needed two new notions: PPT and negligible

m Defined pseudo-random generators (PRGs)
m Saw construction of computational OTP from PRG
m First security reduction!

*Credit: Tekniska Museet 1117



m Already saw application of PRG: constructing SKE that allows
encrypting longer messages
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encrypting longer messages

m Several other applications

m Helps reduce the amount of uniform random bits required:
crucial to cryptography since most algorithms are randomised

m Derandomisation, i.e., convert a randomised algorithm into a
deterministic algorithm

m Yao: if “strong” PRGs exist, then BPP = P

! \

. *

m Non-cryptographic PRGs (e.g., LFSR): physics simulation

But not pseudorandom in cryptographic sense

*Credit: Kyoto-prize.org 2117



m Recall from Lecture 3: they don't if P = NP.
m Thus PRGs only exist conditioned on P = NP.
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Do PRGs Exist?

Recall from Lecture 3: they don't if P = NP.
m Thus PRGs only exist conditioned on P = NP. § 5
PRGNS LS
Loyl

This lecture: Unpredictable sequences — PRG ¢ b, b
m Theoretical e.g.: Based on hardness of factoring integers -

m Practical e.g.: stream ciphers like Salsa20 and ChaChay El
Lecture 6: Hard functions — PRG \ @:@

m E.g.: one-way function (OWF) and one-way permutatioh»\ "
m OWF is the minimal assumption required for crgptographg);:
Ve

Thus, seemingly different notions of pseudorandomness, @/
unpredictability and hardness are the samel - — — 7 /- “‘ j

Note. If PRGs against fixed-poly. distinguishers suffices, then:
complexity-theoretic assumptions — PRG Hardness vs Randomness*
m Look up lean—WLgderson PRG! NoaM Nisan' AND Avi WIGDERSON?

Institute of Computer Science,
Hebrew University of Jerusalem, Israel
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Let's Start by Stretching

m Recall: PRG is an expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.
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Let's Start by Stretching

m Recall: PRG is an expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.
m Coal: PRG G with stretch n+1 — PRG G’ with stretch 2n

Construction 1

Blﬂ—f

‘5%2114 R ;’, R lﬁn
20
Yanq Yan

Exercise 1

Formally write down the construction of G’.
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Before the Proof, Recall Definition of PRG

Defintion 1 (PRG, via Imitation Game)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length €(n) > n. ~"Serdn/

1/
G is PRG if for every PPT distinguisher DO e)(Par\SlOﬂ faﬁor
o(n):=| Pr [D(G(s))=0— P D(r) =0
(n =] P D@ =0— P [D()=0

is negligible.
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Defintion 1 (PRG, via Imitation Game)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length €(n) > n. ~"Serdn/

glon facor”
G is PRG if for every PPT distinguisher DO et‘)m
o(n) = Pr [D(G(s))=0]— P D(r) =0
(n) S<—{0I:1]—"[ ( (S)) } r<—{0,;}€(")[ (r) ]
is negligible. Cgﬁeuo\omndom woidd ¢ mn_dﬂo.r}(\_.ggor\d
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Proving Pseudorandomness: a Hybrid (Security) Argument

Theorem 1
If G is a PRG, then so is G'.

Proof. Inkuition

/o
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m Construction 1 and Theorem 1 work for any polynomial stretch
@ What happens if we stretch it exponentially?
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@ What happens if we stretch it exponentially?

m There is also a “loss in pseudorandomness”
m D’ distinguishes with some probability 1/p(n) =
D distinguishes with probability only = 1/p(n)-2n
m More the stretch, greater the loss

m More generally: “loss in security” of a security reduction
m One way to measure how “wasteful” the reduction is

Exercise 2

m Think of a less wasteful reduction strategy for Theorem 1. Do you
feel it is possible?
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Plan for this Lecture

2 Unpredictability
Unpredictability is Equivalent to Pseudorandomness
Unpredictable Sequence from Integer Factoring
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Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length n + 1.
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1 Length-Extension of PRG

2 Unpredictability
© Unpredictability is Equivalent to Pseudorandomness
Unpredictable Sequence from Integer Factoring



Unpredictability is Equivalent to Pseudorandomness

@ Which definition do you feel is easier to achieve?
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Unpredictability is Equivalent to Pseudorandomness

@ Which definition do you feel is easier to achieve?

m Easier direction:

Exercise 3

Show that pseudorandomness (Defintion 1) implies next-bit
unpredictability (Defintion 2).
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Unpredictability is Equivalent to Pseudorandomness

@ Which deﬁmtton do you feel is easier to achieve?

m Easier direction:

Exercise 3
Show that pseudorandomness (Defintion 1) implies next-bit
unpredictability (Defintion 2). Hint:
m Goal: 3 distinguisher D for G < 3 predictor P for G
m feed P with prefix of challenge w (r or G(s)) of random length.
m /f P predicts the next bit of w correctly, then we're likely in the
pseudorandom world
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. |t i0n: \) hgb(\d O(ﬁumeﬂt
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. [ntuition:\) hybrd or3Um@nt
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|
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. [ntuit100:1) fybrid argument
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hpadwodd HTT CHE N
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. [ntuit100:1) fybrid argument
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. [ntuit100:1) fybrid argument
@ Dsbinguidher for G e s

?ﬁi j) P [(C(H) 0) 78 ‘. IEE RS -reioﬁ‘“

O(Rpy)=0) — ¥ 0)=V| 7
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. [ntuition:\) hybrid oraummt 2) d\shngo\sher» fedictor

@ Diskingu1her for G 123 WLl minan
il S s EH R
=0 - P O(Ho)=0] 7
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
Psevdorgndomine s

Predictor Dtskmgou\ner

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
U“WS(%W‘@ Psevdorgndoming $S

O

Predickor Distingsher
“Redockion by

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
U”Ws@w‘fg Pseudorgndoming §

Predickor Distingsher
“Redockion kg

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
UWPYQAS(WW‘@ Pseudorgndoming §

Predickor Distingsher
“Redockion kg

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
UWPYQAS(WW‘@ Pseudorgndoming §

Predickor Distingsher
“Redockion kg

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinquisher D for G.
U”pfeds@b*f‘fg Pseudorgndoming §

DGuessot Y ey, nal]
X LS
Y4, Yk D

Predickor Distingsher
“Redockion kg

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinguisher D for G.
U”PY%MW‘@ Psevdorsndoming S

L Guess of Yi b1, 0]
. \—/\/‘\l
Y, U D Gy Vol

, : random '
¢ (9
Predickor Distingsher
“Beduckion kg

12/17



Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinguisher D for G.
U”PYQASMW‘@ Psevdorsndoming S

L Guess of Yi b1, 0]
. \—/\/‘\l
Y, U D Gy Vol

: : random 5

9 : "
1-0-9‘.*,‘ Y, ‘dz"":i'l‘ﬁs b (UL ow
_ien el (
Predictor Dnstmgo\sher
“Redockion

12/17



Unpredictability Implies Pseudorandomness

Theorem 2
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Unpredictability Implies Pseudorandomness

Theorem 2

If G is next-bit unpredictable, then it is a pseudorandom.

Proof Sketch. 3 predictor P for G « 3 distinguisher D for G.
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1 Length-Extension of PRG

2 Unpredictability
Unpredictability is Equivalent to Pseudorandomness
© Unpredictable Sequence from Integer Factoring



m Given a integer NV, find a factor p that divides N
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Integer Factoring

m Given a integer N, find a factor p that divides N
m Let's try to sample hard-to-factor integer N
m Let's start with random integer N?
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m Let's try to sample hard-to-factor integer N
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m What about a random odd integer N?
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Integer Factoring

m Given a integer N, find a factor p that divides N
m Let's try to sample hard-to-factor integer N
m Let's start with random integer N?
m What about a random odd integer N?
m Pick two large random primes p and g and set N = pq
m factoring assumption: the probability with which any PPT
adversary factors N sampled as above is negligible
m Believed to be hardest instances to factor: best known factoring
algorithms require sub-exponential time
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Integer Factoring

m Given a integer N, find a factor p that divides N
m Let's try to sample hard-to-factor integer N

m Let's start with random integer N?
m What about a random odd integer N?
"
m Pick two large random primes p and g and set N = pq
m factoring assumption: the probability with which any PPT
adversary factors N sampled as above is negligible
m Believed to be hardest instances to factor: best known factoring
algorithms require sub-exponential time

Assumption does not hold against quantum adversaries! Shor's
algorithm computes factors in quantum polynomial time

Exercise 4

Show that taking square roots modulo N allows you to factor N
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Integer Factoring..

m We're interested in cycle structure of Z}, the multiplicative
group of integers modulo N

mZy ={0<x<N:GCD(x, N)=1}
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Integer Factoring..

m We're interested in cycle structure of Z}, the multiplicative
group of integers modulo N

mZy ={0<x<N:GCD(x, N)=1}

m Let's consider the squaring map: x > x? mod N

Q T X Q@
Y4 x
Q ’
4y

(
% 4
N * 2 ¢ o
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Integer Factoring..

m We're interested in cycle structure of Zj,, the multiplicative
group of integers modulo N

mZy ={0<x<N:GCD(x, N)=1}

m Let's consider the squaring map: x > x? mod N

Q T, @
1 @ 7T N,
YV x
Q l
A

( g
P

4

7 2 3/ Q

Ay TR

Exercise b

Show that the squaring map cycles, and has
super-polynomially-long period 7 (with overwhelming probability)
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The Squaring (Blum-Blum-Shub) Generator

m Given a random square (quadratic residue) as seed, square in
each step and output the LSB (or parity bit)

“JW{N)& Gjm% X . K
/7% F\’/ﬁ’a L’jl: ng @‘ >
(e
K
| / > ‘42

; 7
Ll ) =1 % &
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The Squaring (Blum-Blum-Shub) Generator

m Given a random square (quadratic residue) as seed, square in
each step and output the LSB (or parity bit)
Yrr() 1“% X . X
>% \’0@’4 4= LB )
R \LL
Xl
i\ ( 1 / 7 g
Lsphl ) =9 < s
Theorem 3 (Blum, Blum and Shub’84, Vazirani-Vazirani'82)

Assuming factoring (Blum) integers is hard, the squaring generator
is unpredictable (on the left).

m Intuition: Why is the sequence unpredictable?
m Non-linear operation in each step (linearity can be exploited)
m Taking square root is hard (Exercise 4)
m Period of the cycle hidden (which can be exploited: e.g., LFSR)
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m The squaring generator is provably unpredictable, but is
inefficient in practice
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Unpredictability in the Wild

m The squaring generator is provably unpredictable, but is

inefficient in practice
m In practice stream ciphers like ChaCha and Salsa20 are used
m Non-linear Boolean operations
m Cryptanalysis instead of security proof
m Drawback: sometimes broken (e.g., RC4)
i@ﬂ e
B
[suulﬂ-_l 1L HH]
-d

l S[i) s(j)

S[i]+S[j] r‘h

P * ‘* )

[SE

55)

@
e

]
=)

)
52)

K
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Unpredictability in the Wild

m The squaring generator is provably unpredictable, but is

inefficient in practice
m In practice stream ciphers like ChaCha and Salsa20 are used

m Non-linear Boolean operations
m Cryptanalysis instead of security proof

m Drawback: sometimes broken (e.g., RC4) ) . )
ibﬂ e

[s\"\’ﬁ EomnEn f”f'ﬁ] E g =4
H o . B |

GF; *

|

m Salsa20 implemented in eStream, NACL, OpenSSL etc

16/17
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To Recap

m We saw an equivalent formulation of pseudorandomness via
unpredictability
m Described construction of an unpredictable sequence under
factoring assumption
m Actually yields PRG of arbitrary stretch
m Saw how length-extension for PRG works

m Reduces task to constructing PRG that stretches by single bit
m Modular design always useful: will re-use theorem in Lecture 6
m Proof technique: hybrid argument!
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