
CS783: Theoretical Foundations of Cryptography
Lecture 4 (09/Aug/24)

Instructor: Chethan Kamath
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Recall from Last Lecture

We started off with Shannon’s impossibility
One way around Shannon’s impossibility is to settle forcomputational secrecy

Needed two new notions: PPT and negligible

Defined pseudo-random generators (PRGs)
Saw construction of computational OTP from PRG

First security reduction!
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Applications of PRG
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Several other applications
Helps reduce the amount of uniform random bits required:
crucial to cryptography since most algorithms are randomisedDerandomisation, i.e., convert a randomised algorithm into adeterministic algorithm

Yao: if “strong” PRGs exist, then ��� = �

Non-cryptographic PRGs (e.g., LFSR): physics simulation
But not pseudorandom in cryptographic sense
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Recall from Lecture 3: they don’t if � = ��.

Thus PRGs only exist conditioned on � ̸= ��.
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Recall from Lecture 3: they don’t if � = ��.

Thus PRGs only exist conditioned on � ̸= ��.

This lecture: Unpredictable sequences → PRG
Theoretical e.g.: Based on hardness of factoring integers
Practical e.g.: stream ciphers like Salsa20 and ChaCha

Lecture 6: Hard functions → PRG
E.g.: one-way function (OWF) and one-way permutation
OWF is the minimal assumption required for cryptography

Thus, seemingly different notions of pseudorandomness,
unpredictability and hardness are the same!

Note. If PRGs against fixed-poly. distinguishers suffices, then:complexity-theoretic assumptions → PRG
Look up Nisan-Wigderson PRG!
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Let’s Start by Stretching
Recall: PRG is an expanding function whose output (on
uniformly random input) “seems random” to PPT distinguishers.
Goal: PRG � with stretch n + � → PRG �′ with stretch �n

Construction 1

Exercise 1
Formally write down the construction of �′.
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Before the Proof, Recall Definition of PRG
Defintion 1 (PRG, via Imitation Game)
Let � be an efficient deterministic algorithm that for any n ∈ N and
input s ∈ {�, �}n , outputs a string of length ℓ(n) > n.
� is PRG if for every PPT distinguisher D

δ(n) :=
����� Pr
s←{�,�}n[�(G (s)) = �] − Pr

r←{�,�}ℓ(n)[�(r ) = �]
�����

is negligible.
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Proving Pseudorandomness: a Hybrid (Security) Argument
Theorem 1
If � is a PRG, then so is �′.
Proof. .
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Let’s Take Stock of Theorem 1
Construction 1 and Theorem 1 work for any polynomial stretch

What happens if we stretch it exponentially?

There is also a “loss in pseudorandomness”
�′ distinguishes with some probability �/p(n) ⇒
� distinguishes with probability only ≈ �/p(n)·�n
More the stretch, greater the loss

More generally: “loss in security” of a security reduction
One way to measure how “wasteful” the reduction is

Exercise 2
Think of a less wasteful reduction strategy for Theorem 1. Do you
feel it is possible?
Maybe need a different construction?
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Plan for this Lecture

1 Length-Extension of PRG

2 Unpredictability
Unpredictability is Equivalent to Pseudorandomness
Unpredictable Sequence from Integer Factoring
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Unpredictability is Equivalent to Pseudorandomness

Which definition do you feel is easier to achieve?

Easier direction:
Exercise 3
Show that pseudorandomness (Defintion 1) implies next-bitunpredictability (Defintion 2). Hint:

Goal: ∃ distinguisher � for � ⇐ ∃ predictor � for �
Feed � with prefix of challenge w (r or �(s)) of random length.
If � predicts the next bit of w correctly, then we’re likely in the
pseudorandom world
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Theorem 2
If � is next-bit unpredictable, then it is a pseudorandom.
Proof Sketch. .
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Given a integer N , find a factor p that divides N

Let’s try to sample hard-to-factor integer N
Let’s start with random integer N?
What about a random odd integer N?
· · ·Pick two large random primes p and q and set N = pq

Factoring assumption: the probability with which any PPT
adversary factors N sampled as above is negligible
Believed to be hardest instances to factor: best known factoring
algorithms require sub-exponential time

Assumption does not hold against quantum adversaries! Shor’s
algorithm computes factors in quantum polynomial time

Exercise 4
Show that taking square roots modulo N allows you to factor N
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We’re interested in cycle structure of Z∗

N , the multiplicativegroup of integers modulo N

Z∗
N := {� < x < N : GCD(x ,N) = �}

Let’s consider the squaring map: x 7→ x� mod N

Exercise 5
Show that the squaring map cycles, and has
super-polynomially-long period π (with overwhelming probability)

14 / 17



The Squaring (Blum-Blum-Shub) Generator
Given a random square (quadratic residue) as seed, square in
each step and output the LSB (or parity bit)
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The Squaring (Blum-Blum-Shub) Generator
Given a random square (quadratic residue) as seed, square in
each step and output the LSB (or parity bit)

Theorem 3 (Blum, Blum and Shub’84, Vazirani-Vazirani’82)
Assuming factoring (Blum) integers is hard, the squaring generator
is unpredictable (on the left).

Intuition: Why is the sequence unpredictable?
Non-linear operation in each step (linearity can be exploited)
Taking square root is hard (Exercise 4)
Period of the cycle hidden (which can be exploited: e.g., LFSR)
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Unpredictability in the Wild
The squaring generator is provably unpredictable, but is
inefficient in practice
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The squaring generator is provably unpredictable, but is
inefficient in practice
In practice stream ciphers like ChaCha and Salsa20 are used

Non-linear Boolean operations
Cryptanalysis instead of security proof
Drawback: sometimes broken (e.g., RC4)

Salsa20 implemented in eStream, NACL, OpenSSL etc

16 / 17Image credit: Wikipedia (*Sissssou) (**Tony Arcieri)
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To Recap

We saw an equivalent formulation of pseudorandomness via
unpredictability
Described construction of an unpredictable sequence underfactoring assumption

Actually yields PRG of arbitrary stretch
Saw how length-extension for PRG works

Reduces task to constructing PRG that stretches by single bit
Modular design always useful: will re-use theorem in Lecture 6
Proof technique: hybrid argument!
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