

CS783: Theoretical Foundations of Cryptography

Lecture 5 (13/Aug/24)

Instructor: Chethan Kamath

Recall from Last Lecture

■ Length extension of PRG and hybrid argument

Recall from Last Lecture

■ Length extension of PRG and hybrid argument

- Pseudorandomness vs unpredictability
 - Equivalence between the two notions

Recall from Last Lecture

■ Length extension of PRG and hybrid argument

- Pseudorandomness vs unpredictability
 Equivalence between the two notions
- Unpredictable sequences from integer factoring

Recall from Last Lecture...

General template: secret communication of longer messages

- 1 Identify the task
- 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities? Eavesd (opper
 Security Goal: What does it mean to be secure? (ormpvrational secrecy)
- 3 Construct a scheme I Computational One-time pad from PRG
- 4 Formally prove that Π in secure in model M(Securely reduction from PRG

General *template*: I Idortif

- 1 Identify the task
- 2 Come up with precise threat model *M* (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities? Eavesdropper*
 Security Goal: What does it mean to be secure? (computational secrecy)
- 3 Construct a scheme I Computational One-time pad from PRG
- 4 Formally prove that Π in secure in model M(Securely reduction from PRG

General *template*: I Idontifier

- 1 Identify the task
- 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities? Eavesdropper*
 Security Goal: What does it mean to be secure? (computational secrecy)
- Construct a scheme Π Compriational Ore-time pad from that PAF
 Formally prove that Π in secure in model M
 Securely reduction from that PAF

General *template*: <u>secret</u> communication of bologer messages

- Identify the task chosen plaintext attach
 Come up with precise threat model M (a.k.a security model) 1+1
 - Adversary/Attack: What are the adversary's capabilities? Eavesd (oppa*
 Security Goal: What does it mean to be secure? (ormpvrationa) secrecy
- Construct a scheme Π Comprational Ore-time pad from that PAF
 Formally prove that Π in secure in model M
 Securely reduction from that PAF

2 Goldreich-Goldwasser-Micali (GGM) Construction

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

- SKE construction: use output of G as *n* pseudorandom OTPs
- Problem: construction stateful; synchrony must be maintained
 - We lose correctness if (e.g.) ciphertexts delivered out of order

Setting: Caeser and his general share a key $k \in \{0, 1\}^n$ and want to secretly communicate n messages from $\{0, 1\}^n$ in presence of eavesdropper Eve*

- SKE construction: use output of **G** as *n* pseudorandom OTPs
- Problem: construction stateful; synchrony must be maintained
 - We lose correctness if (e.g.) ciphertexts delivered out of order
 Come up with a scenario that leads to loss of secrecy

(?) What if the stretch is n^3 ?

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$ **Problem**? Collision

■ Underlying problem: only poly. pseudorandom OTPs available

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$ **Problem**? Collision

Underlying problem: only poly. pseudorandom OTPs available
 What if we stretch the PRG exponentially?

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$ **Problem**? Collision

Underlying problem: only poly. pseudorandom OTPs available
 What if we stretch the PRG exponentially?

■ Not all pseudorandom OTPs are efficiently "accessible"

What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$ **Problem**? Collision

Underlying problem: only poly. pseudorandom OTPs available
What if we stretch the PRG exponentially?

- Not all pseudorandom OTPs are efficiently "accessible"
- Need "PRG" with
 - 1 Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^*) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

 \bigcirc How will you construct a stateless encryption scheme given R?

■ Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

 \bigcirc How will you construct a stateless encryption scheme given R?

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n}$

■ Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n}$

How will you construct a stateless encryption scheme given R?
 Hint: R helps generate exponentially-many random OTPs

■ Setting:

- Caeser and his general have shared a key $k \in \{0, 1\}^n$
- Everyone (including Eve^{*}) has access to a *random function* oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{n}$

How will you construct a stateless encryption scheme given R?
 Hint: R helps generate exponentially-many random OTPs

Setting:

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

How will you construct a stateless encryption scheme given R?
 Hint: R helps generate exponentially-many random OTPs

Setting:

- Caeser and his general have shared a key $k \in \{0,1\}^n$
- Everyone (including Eve^{*}) has access to a random function oracle $R : \{0, 1\}^{2n} \rightarrow \{0, 1\}^n$

How will you construct a stateless encryption scheme given R?
 Hint: R helps generate exponentially-many random OTPs

Exercise 1

What if Caeser and his general did not have the shared key k? Can they still do something given the oracle in the sky?

Plan for This Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction

■ A function *F* that "seems like" a random function oracle to PPT distinguishers

- A function *F* that "seems like" a random function oracle to PPT distinguishers
- More formally:
 - \bigcirc **F**_k sampled at random from a (smallish) family of functions

$$\& \{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$$

 \bigcirc A random function, sampled from the set of *all* functions \mathcal{F}_{n_j}

{f: {o, 1} → {o, 1} }

- A function *F* that "seems like" a random function oracle to PPT distinguishers
- More formally:
 - \bigcirc **F**_k sampled at random from a (smallish) family of functions

$$\mathbb{X} \{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$$

 \mathfrak{B}_{\bullet} A random function, sampled from the set of *all* functions \mathcal{F}_{n}

{f: {o, 1} → {o, 1} }

- A function *F* that "seems like" a random function oracle to PPT distinguishers
- More formally:
 - \bigcirc F_k sampled at random from a (smallish) family of functions

$$\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$$

 \mathfrak{B} A random function, sampled from the set of *all* functions \mathcal{F}_{n_j}

{f: {o,1} → {o,1} }

- A function *F* that "seems like" a random function oracle to PPT distinguishers
- More formally:
 - \bigcup F_k sampled at random from a (smallish) family of functions

$$\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$$

 \fbox{I} A random function, sampled from the set of *all* functions \mathcal{F}_n

Number of functions in {F_k} vs. number of functions F_n?
 Why is it still useful?

■ Helps generate exponentially-many *pseudorandom* OTPs

{f:{o,1} → {o,1} }

■ A function *F* that "seems like" random function oracle to PPT distinguishers

- A function *F* that "seems like" random function oracle to PPT distinguishers
- Recall how we defined pseudorandomness for PRG (Lecture 3)

-G is PRG if for every PPT distinguisher D

$$\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^n} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$$

is negligible.

- A function *F* that "seems like" random function oracle to PPT distinguishers
- Recall how we defined pseudorandomness for PRG (Lecture 3)

- A function *F* that "seems like" random function oracle to PPT distinguishers
- Recall how we defined pseudorandomness for PRG (Lecture 3)

·G is PRG if for every PPT distinguisher <mark>D</mark>

 $\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^{n}} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$ is negligible. (pseudorondom world (rondom world))

 \bigcirc

Can we give the distinguisher *full description* of the function (e.g., as a table)?

- No, then it becomes easy to distinguish
- How? (Recall: run-time measured w.r.to size of input)

- A function *F* that "seems like" random function oracle to PPT distinguishers
- Recall how we defined pseudorandomness for PRG (Lecture 3)

-G is PRG if for every PPT distinguisher D

 $\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^{n}} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$ is negligible. (pseudorondom world (rondom world))

?

Can we give the distinguisher *full description* of the function (e.g., as a table)?

- No, then it becomes easy to distinguish
- How? (Recall: run-time measured w.r.to size of input)
- Way around:
 - Distinguisher given *oracle* access to the functions
 - One query=one unit of running time → efficient PPT distinguisher can only make polynomially-many queries

Definiton 1 (PRF, via Imitation Game)

A family of functions $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D

$$\delta(n) := \left| \Pr_{k \leftarrow \{0,1\}^n} [\mathsf{D}^{F_k(\cdot)}(1^n) = 0] - \Pr_{f \leftarrow \mathcal{F}_n} [\mathsf{D}^{f(\cdot)}(1^n) = 0] \right|$$

is negligible.

Definiton 1 (PRF, via Imitation Game)

A family of functions $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D

Definiton 1 (PRF, via Imitation Game)

A family of functions $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D

Let's Check if You Understood Defintion 1

PRF or not? Below $F^{(1)}$ and $F^{(2)}$ are PRFs 1 $F_k(x) := k \oplus x$ 2 $F_{k_1k_2}(x) := F_{k_1}^{(1)}(x)F_{k_2}^{(2)}(x)$ 3 $F_k(x_1x_2) := F_k^{(1)}(x_1)F_k^{(2)}(x_2)$

Let's Check if You Understood Defintion 1

(?) PRF or not? Below
$$F^{(1)}$$
 and $F^{(2)}$ are PRFs
1 $F_k(x) := k \oplus x$
2 $F_{k_1k_2}(x) := F^{(1)}_{k_1}(x)F^{(2)}_{k_2}(x)$
3 $F_k(x_1x_2) := F^{(1)}_k(x_1)F^{(2)}_k(x_2)$

PRG or not? Below, F is a PRF
 1 G(s) := F_s(1)F_s(2) \cdots F_s(n-1)F_s(n)
 2 G(s) := F_s(2^0)F_s(2^1) \cdots F_s(2^{n-1})F_s(2^n)
 3 G(s) := F_1(s)F_2(s) \cdots F_{n-1}(s)F_n(s)

Let's Check if You Understood Defintion 1

PRF or not? Below
$$F^{(1)}$$
 and $F^{(2)}$ are PRFs
1 $F_k(x) := k \oplus x$
2 $F_{k_1k_2}(x) := F_{k_1}^{(1)}(x)F_{k_2}^{(2)}(x)$
3 $F_k(x_1x_2) := F_k^{(1)}(x_1)F_k^{(2)}(x_2)$

PRG or not? Below, *F* is a PRF

$$f_{s}(1) = F_{s}(1)F_{s}(2) \cdots F_{s}(n-1)F_{s}(n)$$

 $f_{s}(2) = F_{s}(2^{0})F_{s}(2^{1}) \cdots F_{s}(2^{n-1})F_{s}(2^{n})$
 $f_{s}(3) = F_{1}(s)F_{2}(s) \cdots F_{n-1}(s)F_{n}(s)$

Exercise 2

In all the "yes" cases above, formally prove; in all the "no" cases, describe a counter-example.

Construction 1 (Replace random oracle with PRF)

Construction 1 (Replace random oracle with PRF)

 Note: encryption is randomised and thus length of ciphertext is longer than plaintext (first such scheme in this course)

Exercise 3 (Hint: reduction similar to pseudorandom OTP)

Prove that Construction 1 is secure against eavesdroppers.

$$k \leftarrow Gen(1^{n}) \qquad Enc(k_{y}) \qquad m \qquad k \leftarrow Gen(k_{y}) \qquad Enc(k_{y}) \qquad m \qquad k \leftarrow \{o_{1}, i\} \qquad (c \leftarrow Enc(k_{y})) \qquad (c$$
■ Stronger adversaries who can influence Caeser's messages

$$k \leftarrow Gen(1^{n})$$

$$c \leftarrow Enc(k,m)$$

$$Enc(k,r)$$

$$b \leftarrow \{o_{1}1\}$$

$$Challerge_{b}(\cdot, \cdot)$$

$$A$$

■ Stronger adversaries who can influence Caeser's messages

$$k \leftarrow Gen(1^{n})$$

$$c \leftarrow Enc(k,m)$$

$$Enc(k,y)$$

$$m_{0}m_{1}$$

$$h \leftarrow \{o_{1},j\}$$

$$C \leftarrow Enc(k,m_{b})$$

$$Challengeb(\cdot,\cdot)$$

$$m_{0}m_{1}$$

$$A$$

■ Stronger adversaries who can influence Caeser's messages

A wins if
$$b_{\pm b}$$

 $k \leftarrow Gen(1^n)$
 $c \leftarrow Enc(k,m)$ Enc (k, \cdot) m
 $b \leftarrow \{o_1, i\}$
 $(t \leftarrow Enc(k,m_b)$ Challenge $b(\cdot, \cdot)$ m h
 $c \leftarrow Enc(k,m_b)$

Stronger adversaries who can influence Caeser's messages

Definition 2 (Secrecy against chosen-plaintext attack (CPA))

An SKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT CPA adversary A $\Pr[A \text{ wins}] - \frac{1}{2}$ is negligible. $k \leftarrow Gen(1^n)$ $c \leftarrow Enc(k,m)$ $k \leftarrow Gen(1^n)$ $c \leftarrow Enc(k,m)$ $c \leftarrow Enc(k,m)$

Stronger adversaries who can influence Caeser's messages

Definition 2 (Secrecy against chosen-plaintext attack (CPA)) An SKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT CPA adversary A $\Pr[A \ wins] - \frac{1}{2}$ is negligible. $k \in Gen(I^n)$ Enc(k_1): m $k \in Gen(I^n)$ Enc(k_2): m $k \in Gen(I^n)$ Enc(k_1): m $k \in Gen(I^n)$ Enc(k_2): m $k \in Gen$

Exercise 4 (CPA model)

- 1 Show that computational OTP (Lecture 3) is not CPA-secret
- 2 Prove that Construction 1 is CPA-secret

PRFs IRL

- Coming up: theoretical construction, but inefficient for practice
 Practical PRFs: block ciphers like AES, which however only support certain key-sizes (128, 192, 256)
 - Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)

PRFs IRL

- Coming up: theoretical construction, but inefficient for practice
 Practical PRFs: block ciphers like AES, which however only support certain key-sizes (128, 192, 256)
 - Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)
- For encrypting larger messages (e.g., for disk encryption) "modes of operation" used
 - E.g: Cipher block-chaining (CBC) mode

PRFs IRL

- Coming up: theoretical construction, but inefficient for practice
 Practical PRFs: block ciphers like AES, which however only support certain key-sizes (128, 192, 256)
 - Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)
- For encrypting larger messages (e.g., for disk encryption) "modes of operation" used
 - E.g: Cipher block-chaining (CBC) mode

■ My laptop uses LUKS for disk encryption, which uses AES-XTS

Size 510 GB (5,10,10,91,55,328 bytes) Contents LUKS Encryption (version 2) — Unlocked

Plan for this Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction

Let's Try to Construct a PRF

- Recall construction of length-extending PRG from last lectureRecall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs

Let's Try to Construct a PRF

- Recall construction of length-extending PRG from last lecture
- Recall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs
- Need "PRG" with
 - 1 Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)
- How to reconcile the two requirements?
 - Hint: Use length-doubling PRG

Let's Try to Construct a PRF

- Recall construction of length-extending PRG from last lecture
- Recall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs
- Need "PRG" with
 - 1 Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)
- How to reconcile the two requirements?
 - 🗑 Hint: Use length-doubling PRG
 - Use binary tree instead of chain!

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

Tree-Based Construction from Length-Doubling PRG G_{κ} $n \rightarrow n^2$ Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

 $n \rightarrow n^2$

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

 $n \rightarrow n^2$

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)

 $n \rightarrow n^2$

Exercise 5

- 1 Write down the construction formally.
- 2 What if we use *d*-ary tree instead of binary tree?

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random H.: hybrid world

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Hi: hybrid world

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H₂: hybrid world S_1 S_2 S_3 S_2 S_3 S_2 S_3 S_3 S_4 S_2 S_3 S_3 S_4 S_4 S

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H3: hybrid world

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H2ntl: random world

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Hybrid orgument: If O ian distinguish Ho from
$$H_{2n+1} w/pr$$
. S
If $F(0, z^{n+1}-1)$ such that D distinguishes H_1 from H_{1+1}
 w/pr . $\delta/2^{n+1}$
How do We Prove that Construction 2 is a PRF?

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

Hybrid orgument: If D can distinguish H, from
$$H_2n+1$$
 w/ pr. 8
 H
 $\exists i \in [0, 2^{n+1}-1]$ such that D distinguishes H_1 from H_{1+1}
 $\omega/$ pr. $\delta/2^{n+1}$

Problem: exponential number of hybrids

×

How do We Prove that Construction 2 is a PRF?...

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

- Switching every single value to random is overkill
- Only switch values required to answer distinguisher's queries

How do We Prove that Construction 2 is a PRF?...

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

- Switching every single value to random is overkill
- Only switch values required to answer distinguisher's queries
 - Distinguisher makes at most Q queries \Rightarrow number of switches per level of the tree is at most Q

How do We Prove that Construction 2 is a PRF?...

Theorem 1

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

- Switching every single value to random is overkill
- Only switch values required to answer distinguisher's queries
 - Distinguisher makes at most Q queries \Rightarrow number of switches per level of the tree is at most Q
- The hybrid worlds:
 - Each level $i \in [1, n]$ has at most Q hybrid worlds
 - Hybrid worlds at level $i \in [1, n]$ (think of $2^i \gg Q$):
 - *H_{i,0}*, · · · , *H_{i,Q}*, where in *H_{i,q}* the values used to answer first *q* queries are switched from pseudorandom to random

To Recap

Defined and constructed PRFs

- GGM tree-based construction from length-doubling PRGs
- Another application of hybrid argument

To Recap

To Recap

Next Lecture

- Hardness vs. pseudorandomness
- One-way function and one-way permutation
- Hardcore predicates

Next Lecture

- Hardness vs. pseudorandomness
- One-way function and one-way permutation
- Hardcore predicates

More Questions?

Scott Aaronson.

Is P versus NP formally independent? Bull. EATCS, 81:109–136, 2003.

Timothy Y Chow. What is... a natural proof? Notices of the AMS, 58(11):1586–1587, 2011.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended abstract). In *25th FOCS*, pages 464–479. IEEE Computer Society Press, October 1984.

Oded Goldreich.

The Foundations of Cryptography – Volume 1: Basic Techniques. Cambridge University Press, 2001.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.