
CS783: Theoretical Foundations of Cryptography
Lecture 5 (13/Aug/24)

Instructor: Chethan Kamath



Recall from Last Lecture...

Length extension of PRG and hybrid argument

1 / 17



Recall from Last Lecture...

Length extension of PRG and hybrid argument
Pseudorandomness vs unpredictability

Equivalence between the two notions

1 / 17



Recall from Last Lecture...

Length extension of PRG and hybrid argument
Pseudorandomness vs unpredictability

Equivalence between the two notions
Unpredictable sequences from
integer factoring

1 / 17



Recall from Last Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

1 / 17



Plan for This Lecture

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 17



Plan for This Lecture

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 17



Plan for This Lecture

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 17



Plan for This Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs
Problem: construction stateful; synchrony must be maintained

We lose correctness if (e.g.) ciphertexts delivered out of order

3 / 17



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs
Problem: construction stateful; synchrony must be maintained

We lose correctness if (e.g.) ciphertexts delivered out of order
Come up with a scenario that leads to loss of secrecy

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�?

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]
Problem? Collision

Underlying problem: only poly. pseudorandom OTPs available

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]
Problem? Collision

Underlying problem: only poly. pseudorandom OTPs available
What if we stretch the PRG exponentially?

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]
Problem? Collision

Underlying problem: only poly. pseudorandom OTPs available
What if we stretch the PRG exponentially?

Not all pseudorandom OTPs are efficiently “accessible”

3 / 17



Let’s Encrypt Many Messages Using PRG �...

What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]
Problem? Collision

Underlying problem: only poly. pseudorandom OTPs available
What if we stretch the PRG exponentially?

Not all pseudorandom OTPs are efficiently “accessible”
Need “PRG” with

1 Exponential stretch
2 Output bits “efficiently” accessible (also called locality)

3 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

4 / 17



Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

Exercise 1
What if Caeser and his general did not have the shared key k? Can
they still do something given the oracle in the sky?

4 / 17



Plan for This Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction



PRF: Computational Analogue of Oracle in the Sky
A function F that “seems like” a random function oracle to PPT
distinguishers

5 / 17



PRF: Computational Analogue of Oracle in the Sky
A function F that “seems like” a random function oracle to PPT
distinguishers
More formally:

Fk sampled at random from a (smallish) family of functions
{Fk : {�, �}n → {�, �}n}k∈{�,�}nA random function, sampled from the set of all functions Fn

5 / 17



PRF: Computational Analogue of Oracle in the Sky
A function F that “seems like” a random function oracle to PPT
distinguishers
More formally:

Fk sampled at random from a (smallish) family of functions
{Fk : {�, �}n → {�, �}n}k∈{�,�}nA random function, sampled from the set of all functions Fn

5 / 17



PRF: Computational Analogue of Oracle in the Sky
A function F that “seems like” a random function oracle to PPT
distinguishers
More formally:

Fk sampled at random from a (smallish) family of functions
{Fk : {�, �}n → {�, �}n}k∈{�,�}nA random function, sampled from the set of all functions Fn

5 / 17



PRF: Computational Analogue of Oracle in the Sky
A function F that “seems like” a random function oracle to PPT
distinguishers
More formally:

Fk sampled at random from a (smallish) family of functions
{Fk : {�, �}n → {�, �}n}k∈{�,�}nA random function, sampled from the set of all functions Fn

Number of functions in {Fk} vs. number of functions Fn?
Why is it still useful?

Helps generate exponentially-many pseudorandom OTPs
5 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
distinguishers

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 3)

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 3)

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 3)

Can we give the distinguisher full description of the function(e.g., as a table)?
No, then it becomes easy to distinguish
How? (Recall: run-time measured w.r.to size of input)

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 3)

Can we give the distinguisher full description of the function(e.g., as a table)?
No, then it becomes easy to distinguish
How? (Recall: run-time measured w.r.to size of input)

Way around:
Distinguisher given oracle access to the functions
One query=one unit of running time → efficient PPT
distinguisher can only make polynomially-many queries

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
Defintion 1 (PRF, via Imitation Game)
A family of functions {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF if
for every PPT oracle distinguisher D

δ(n) :=
���� Pr
k←{�,�}n[�

Fk (·)(�n) = �] − Pr
f ←Fn

[�f (·)(�n) = �]
����

is negligible.

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
Defintion 1 (PRF, via Imitation Game)
A family of functions {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF if
for every PPT oracle distinguisher D

δ(n) :=
���� Pr
k←{�,�}n[�

Fk (·)(�n) = �] − Pr
f ←Fn

[�f (·)(�n) = �]
����

is negligible.

6 / 17



How Exactly to Define Pseudorandomess for Functions?...
Defintion 1 (PRF, via Imitation Game)
A family of functions {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF if
for every PPT oracle distinguisher D

δ(n) :=
���� Pr
k←{�,�}n[�

Fk (·)(�n) = �] − Pr
f ←Fn

[�f (·)(�n) = �]
����

is negligible.

6 / 17



Let’s Check if You Understood Defintion 1
PRF or not? Below F (�) and F (�) are PRFs

1 Fk (x ) := k ⊕ x

2 Fk�k� (x ) := F
(�)
k�

(x )F (�)
k�

(x )
3 Fk (x�x�) := F

(�)
k (x�)F (�)

k (x�)

7 / 17



Let’s Check if You Understood Defintion 1
PRF or not? Below F (�) and F (�) are PRFs

1 Fk (x ) := k ⊕ x

2 Fk�k� (x ) := F
(�)
k�

(x )F (�)
k�

(x )
3 Fk (x�x�) := F

(�)
k (x�)F (�)

k (x�)

PRG or not? Below, F is a PRF
1 �(s) := Fs (�)Fs (�) · · ·Fs (n − �)Fs (n)
2 �(s) := Fs (��)Fs (��) · · ·Fs (�n−�)Fs (�n)
3 �(s) := F�(s)F�(s) · · ·Fn−�(s)Fn(s)

7 / 17



Let’s Check if You Understood Defintion 1
PRF or not? Below F (�) and F (�) are PRFs

1 Fk (x ) := k ⊕ x

2 Fk�k� (x ) := F
(�)
k�

(x )F (�)
k�

(x )
3 Fk (x�x�) := F

(�)
k (x�)F (�)

k (x�)

PRG or not? Below, F is a PRF
1 �(s) := Fs (�)Fs (�) · · ·Fs (n − �)Fs (n)
2 �(s) := Fs (��)Fs (��) · · ·Fs (�n−�)Fs (�n)
3 �(s) := F�(s)F�(s) · · ·Fn−�(s)Fn(s)

Exercise 2
In all the “yes” cases above, formally prove; in all the “no” cases,
describe a counter-example.

7 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

8 / 17



Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

Note: encryption is randomised and thus length of ciphertext is
longer than plaintext (first such scheme in this course)

Exercise 3 (Hint: reduction similar to pseudorandom OTP)
Prove that Construction 1 is secure against eavesdroppers.

8 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

Defintion 2 (Secrecy against chosen-plaintext attack (CPA))
An SKE Π = (���, ���,���) is CPA-secret if for every PPT CPA
adversary A

is negligible.

9 / 17



In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

Defintion 2 (Secrecy against chosen-plaintext attack (CPA))
An SKE Π = (���, ���,���) is CPA-secret if for every PPT CPA
adversary A

is negligible.

Exercise 4 (CPA model)
1 Show that computational OTP (Lecture 3) is not CPA-secret
2 Prove that Construction 1 is CPA-secret

9 / 17



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

10 / 17



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

For encrypting larger messages (e.g., for disk encryption)“modes of operation” used
E.g: Cipher block-chaining (CBC) mode

10 / 17*Credit: Wikipedia/Epachamo

*



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

For encrypting larger messages (e.g., for disk encryption)“modes of operation” used
E.g: Cipher block-chaining (CBC) mode

My laptop uses LUKS for disk encryption, which uses AES-XTS

10 / 17*Credit: Wikipedia/Epachamo

*



Plan for this Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction



Let’s Try to Construct a PRF

Recall construction of length-extending PRG from last lecture
Recall the problem with expanding exponentially:

Takes exponential time to access most pseudorandom OTPs

11 / 17



Let’s Try to Construct a PRF

Recall construction of length-extending PRG from last lecture
Recall the problem with expanding exponentially:

Takes exponential time to access most pseudorandom OTPs
Need “PRG” with

1 Exponential stretch
2 Output bits “efficiently” accessible (also called locality)

How to reconcile the two requirements?
Hint: Use length-doubling PRG

11 / 17



Let’s Try to Construct a PRF

Recall construction of length-extending PRG from last lecture
Recall the problem with expanding exponentially:

Takes exponential time to access most pseudorandom OTPs
Need “PRG” with

1 Exponential stretch
2 Output bits “efficiently” accessible (also called locality)

How to reconcile the two requirements?
Hint: Use length-doubling PRG
Use binary tree instead of chain!

11 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

Define Fk (x ) =

12 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

Define Fk (x ) = sx with sε := k

Exercise 5
1 Write down the construction formally.
2 What if we use d-ary tree instead of binary tree?

12 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random

Problem: exponential number of hybrids
13 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

Switching every single value to random is overkill
Only switch values required to answer distinguisher’s queries

14 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

Switching every single value to random is overkill
Only switch values required to answer distinguisher’s queries

Distinguisher makes at most Q queries ⇒ number of switches
per level of the tree is at most Q

14 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

Switching every single value to random is overkill
Only switch values required to answer distinguisher’s queries

Distinguisher makes at most Q queries ⇒ number of switches
per level of the tree is at most Q

The hybrid worlds:
Each level i ∈ [�, n] has at most Q hybrid worldsHybrid worlds at level i ∈ [�, n] (think of �i ≫ Q):

Hi ,�, · · · ,Hi ,Q , where in Hi ,q the values used to answer first q
queries are switched from pseudorandom to random

14 / 17



To Recap

Defined and constructed PRFs
GGM tree-based construction from length-doubling PRGs
Another application of hybrid argument

15 / 17



To Recap

Defined and constructed PRFs
GGM tree-based construction from length-doubling PRGs
Another application of hybrid argument

Constructed a stateless SKE from PRF
It is actually secret in the stronger CPA model

15 / 17



To Recap

Defined and constructed PRFs
GGM tree-based construction from length-doubling PRGs
Another application of hybrid argument

Constructed a stateless SKE from PRF
It is actually secret in the stronger CPA model

Other applications of PRFs
Authentication (coming up: Lecture 7)
Natural proofs: barrier to resolving the �

?= �� question

15 / 17



Next Lecture

Hardness vs. pseudorandomness
One-way function and one-way permutation
Hardcore predicates

16 / 17



Next Lecture

Hardness vs. pseudorandomness
One-way function and one-way permutation
Hardcore predicates

More Questions?

16 / 17



Scott Aaronson.
Is P versus NP formally independent?
Bull. EATCS, 81:109–136, 2003.
Timothy Y Chow.
What is... a natural proof?
Notices of the AMS, 58(11):1586–1587, 2011.
Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions (extended abstract).
In 25th FOCS, pages 464–479. IEEE Computer Society Press, October 1984.
Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

17 / 17


	Pseudo-Random Function (PRF)
	Goldreich-Goldwasser-Micali (GGM) Construction

