
CS783: Theoretical Foundations of Cryptography
Lecture 5 (13/Aug/24)

Instructor: Chethan Kamath
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Pseudorandomness vs unpredictability

Equivalence between the two notions
Unpredictable sequences from
integer factoring
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Recall from Last Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M
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Plan for This Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction



Let’s Encrypt Many Messages Using PRG �...
Setting: Caeser and his general share a key k ∈ {�, �}n and
want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗
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want to secretly communicate n messages from {�, �}n in
presence of eavesdropper ���∗

SKE construction: use output of � as n pseudorandom OTPs
Problem: construction stateful; synchrony must be maintained

We lose correctness if (e.g.) ciphertexts delivered out of order
Come up with a scenario that leads to loss of secrecy
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What if the stretch is n�? Use OTP at random index i ∈ [�, n� ]
Problem? Collision

Underlying problem: only poly. pseudorandom OTPs available
What if we stretch the PRG exponentially?

Not all pseudorandom OTPs are efficiently “accessible”
Need “PRG” with

1 Exponential stretch
2 Output bits “efficiently” accessible (also called locality)
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Everyone (including ���
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Let’s Encrypt Many Messages Using an Oracle in the Sky
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���

∗) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a stateless encryption scheme given R?
Hint: R helps generate exponentially-many random OTPs

Exercise 1
What if Caeser and his general did not have the shared key k? Can
they still do something given the oracle in the sky?
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Plan for This Lecture

1 Pseudo-Random Function (PRF)

2 Goldreich-Goldwasser-Micali (GGM) Construction
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A function F that “seems like” a random function oracle to PPT
distinguishers
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A function F that “seems like” a random function oracle to PPT
distinguishers
More formally:

Fk sampled at random from a (smallish) family of functions
{Fk : {�, �}n → {�, �}n}k∈{�,�}nA random function, sampled from the set of all functions Fn

Number of functions in {Fk} vs. number of functions Fn?
Why is it still useful?

Helps generate exponentially-many pseudorandom OTPs
5 / 17



How Exactly to Define Pseudorandomess for Functions?...
A function F that “seems like” random function oracle to PPT
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A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 3)

Can we give the distinguisher full description of the function(e.g., as a table)?
No, then it becomes easy to distinguish
How? (Recall: run-time measured w.r.to size of input)

Way around:
Distinguisher given oracle access to the functions
One query=one unit of running time → efficient PPT
distinguisher can only make polynomially-many queries
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How Exactly to Define Pseudorandomess for Functions?...
Defintion 1 (PRF, via Imitation Game)
A family of functions {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF if
for every PPT oracle distinguisher D

δ(n) :=
���� Pr
k←{�,�}n[�

Fk (·)(�n) = �] − Pr
f ←Fn

[�f (·)(�n) = �]
����

is negligible.
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Let’s Check if You Understood Defintion 1
PRF or not? Below F (�) and F (�) are PRFs

1 Fk (x ) := k ⊕ x

2 Fk�k� (x ) := F
(�)
k�

(x )F (�)
k�

(x )
3 Fk (x�x�) := F

(�)
k (x�)F (�)

k (x�)
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1 Fk (x ) := k ⊕ x

2 Fk�k� (x ) := F
(�)
k�

(x )F (�)
k�

(x )
3 Fk (x�x�) := F

(�)
k (x�)F (�)

k (x�)

PRG or not? Below, F is a PRF
1 �(s) := Fs (�)Fs (�) · · ·Fs (n − �)Fs (n)
2 �(s) := Fs (��)Fs (��) · · ·Fs (�n−�)Fs (�n)
3 �(s) := F�(s)F�(s) · · ·Fn−�(s)Fn(s)

Exercise 2
In all the “yes” cases above, formally prove; in all the “no” cases,
describe a counter-example.
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Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)
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Stateless Symmetric-Key Encryption from PRF
Construction 1 (Replace random oracle with PRF)

Note: encryption is randomised and thus length of ciphertext is
longer than plaintext (first such scheme in this course)

Exercise 3 (Hint: reduction similar to pseudorandom OTP)
Prove that Construction 1 is secure against eavesdroppers.
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In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages
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Defintion 2 (Secrecy against chosen-plaintext attack (CPA))
An SKE Π = (���, ���,���) is CPA-secret if for every PPT CPA
adversary A

is negligible.
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In Fact you Get More: CPA-Secret SKE!
Stronger adversaries who can influence Caeser’s messages

Defintion 2 (Secrecy against chosen-plaintext attack (CPA))
An SKE Π = (���, ���,���) is CPA-secret if for every PPT CPA
adversary A

is negligible.

Exercise 4 (CPA model)
1 Show that computational OTP (Lecture 3) is not CPA-secret
2 Prove that Construction 1 is CPA-secret

9 / 17



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

10 / 17



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

For encrypting larger messages (e.g., for disk encryption)“modes of operation” used
E.g: Cipher block-chaining (CBC) mode

10 / 17*Credit: Wikipedia/Epachamo

*



PRFs IRL
Coming up: theoretical construction, but inefficient for practice
Practical PRFs: block ciphers like AES, which however onlysupport certain key-sizes (128, 192, 256)

Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)

For encrypting larger messages (e.g., for disk encryption)“modes of operation” used
E.g: Cipher block-chaining (CBC) mode

My laptop uses LUKS for disk encryption, which uses AES-XTS

10 / 17*Credit: Wikipedia/Epachamo
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Recall construction of length-extending PRG from last lecture
Recall the problem with expanding exponentially:

Takes exponential time to access most pseudorandom OTPs
Need “PRG” with

1 Exponential stretch
2 Output bits “efficiently” accessible (also called locality)

How to reconcile the two requirements?
Hint: Use length-doubling PRG
Use binary tree instead of chain!

11 / 17



Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )
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Tree-Based Construction from Length-Doubling PRG �

Construction 2 (GGM PRF {Fk : {�, �}n → {�, �}n}k∈{�,�}n )

Define Fk (x ) = sx with sε := k

Exercise 5
1 Write down the construction formally.
2 What if we use d-ary tree instead of binary tree?

12 / 17



How do We Prove that Construction 2 is a PRF?...
Theorem 1
If � is a length-doubling PRG, then Construction 2 is a PRF.
Proof. First attempt: off-the-shelf hybrid argument.
Strategy: replace, breadth-first, pseudorandom by random
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Proof. Idea: hybrid argument with on-the-fly/lazy sampling!

Switching every single value to random is overkill
Only switch values required to answer distinguisher’s queries

Distinguisher makes at most Q queries ⇒ number of switches
per level of the tree is at most Q

The hybrid worlds:
Each level i ∈ [�, n] has at most Q hybrid worldsHybrid worlds at level i ∈ [�, n] (think of �i ≫ Q):

Hi ,�, · · · ,Hi ,Q , where in Hi ,q the values used to answer first q
queries are switched from pseudorandom to random
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To Recap

Defined and constructed PRFs
GGM tree-based construction from length-doubling PRGs
Another application of hybrid argument

Constructed a stateless SKE from PRF
It is actually secret in the stronger CPA model

Other applications of PRFs
Authentication (coming up: Lecture 7)
Natural proofs: barrier to resolving the �

?= �� question
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Next Lecture

Hardness vs. pseudorandomness
One-way function and one-way permutation
Hardcore predicates
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More Questions?
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