
CS783: Theoretical Foundations of Cryptography
Lecture 6 (16/Aug/24)

Instructor: Chethan Kamath

Recall from Last Lecture...

Sub-task: how to encrypt multiple messages using a short key

1 / 16

Recall from Last Lecture...

Sub-task: how to encrypt multiple messages using a short key

Sub-task reduces to constructing PRF
PRG → PRF: GGM tree-based construction

Proof via hybrid argument

1 / 16

Recall from Last Lecture...

Sub-task: how to encrypt multiple messages using a short key

Sub-task reduces to constructing PRF
PRG → PRF: GGM tree-based construction

Proof via hybrid argument

Chosen-plaintext attack
PRF → SKE secret against chosen-plaintext attackers

1 / 16

Recall from Last Lecture...

Sub-task: how to encrypt multiple messages using a short key

Sub-task reduces to constructing PRF
PRG → PRF: GGM tree-based construction

Proof via hybrid argument

Chosen-plaintext attack
PRF → SKE secret against chosen-plaintext attackers

Everything built on top of PRG
Only one construction yet: unpredictable sequences → PRG
All eggs in one basket

1 / 16

Plan for This Lecture

This lecture: hardness vs. pseudo-randomness
Hardness in the form of one-wayness:

One-way function (OWF)
One-way permutation (OWP)

2 / 16

Plan for This Lecture

This lecture: hardness vs. pseudo-randomness
Hardness in the form of one-wayness:

One-way function (OWF)
One-way permutation (OWP)

Several candidates for OWF and OWP

2 / 16

Plan for This Lecture

This lecture: hardness vs. pseudo-randomness
Hardness in the form of one-wayness:

One-way function (OWF)
One-way permutation (OWP)

Several candidates for OWF and OWP

One-wayness and hard-core predicates
Hard-core predicate for OWP → PRG
Hard-core predicate for any OWP/length-preserving OWF

2 / 16

Plan for This Lecture

This lecture: hardness vs. pseudo-randomness
Hardness in the form of one-wayness:

One-way function (OWF)
One-way permutation (OWP)

Several candidates for OWF and OWP

One-wayness and hard-core predicates
Hard-core predicate for OWP → PRG
Hard-core predicate for any OWP/length-preserving OWF
Corollary: OWP → PRG

2 / 16

Plan for This Lecture

1 One-Way Functions and Permutations

2 Hard-Core Predicate

3 Goldreich-Levin Hard-Core Predicate

Plan for this Lecture

1 One-Way Functions and Permutations

2 Hard-Core Predicate

3 Goldreich-Levin Hard-Core Predicate

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

3 / 16Credit for images: Wikipedia (Cburnett and Tim Stellmach)

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function f that is “hard to invert”

What does “hard to invert” entail? Attempt :

Problem:
3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function that is “hard to invert”

Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x) = f (x)
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x)) ∈ f −�

n (fn(x))]

3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function that is “hard to invert”

Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x) = f (x)
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x)) ∈ f −�

n (fn(x))]

3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function that is “hard to invert”

Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x) = f (x)
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x)) ∈ f −�

n (fn(x))]

Length-preserving OWF: m(n) = n

One-way permutation: f is length-preserving and bijective

3 / 16

Let’s Define One-Way Functions...
Intuitively: “easy to compute” function that is “hard to invert”

Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x) = f (x)
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x)) ∈ f −�

n (fn(x))]

Length-preserving OWF: m(n) = n

One-way permutation: f is length-preserving and bijective
Convenient to consider “collection” of OWF:

{fI : DI → RI}I⊆{�,�}∗

3 / 16

OWF or Not?
Some generic constructions:

1 f�(x) := f (x)�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x) := �(x), where � is a PRG

4 / 16

OWF or Not?
Some generic constructions:

1 f�(x) := f (x)�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x) := �(x), where � is a PRG

A concrete construction:
4 f�(x�x�) := x� · x�, where x� and x� are parsed as integers

4 / 16

OWF or Not?
Some generic constructions:

1 f�(x) := f (x)�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x) := �(x), where � is a PRG

A concrete construction:
4 f�(x�x�) := x� · x�, where x� and x� are parsed as integers

“Weakly” one-way since primes are dense enough

4 / 16

OWF or Not?
Some generic constructions:

1 f�(x) := f (x)�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x) := �(x), where � is a PRG

A concrete construction:
4 f�(x�x�) := x� · x�, where x� and x� are parsed as integers

“Weakly” one-way since primes are dense enough

Exercise 1
1 Show using security reduction that f� , f� and f� are OWFs
2 Come up f s such that f� i) remains one-way and ii) becomes

invertible
4 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

5 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

2 Squaring modulo prime p: fp(x) := x� mod p

5 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

2 Squaring modulo prime p: fp(x) := x� mod p

3 Exponentiation modulo prime p: fp,g (x) := g x mod p

5 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

2 Squaring modulo prime p: fp(x) := x� mod p

3 Exponentiation modulo prime p: fp,g (x) := g x mod p

Inversion is the discrete logarithm problem: believed hard
4 Squaring modulo composite N = pq: fN (x) := x� mod N

5 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

2 Squaring modulo prime p: fp(x) := x� mod p

3 Exponentiation modulo prime p: fp,g (x) := g x mod p

Inversion is the discrete logarithm problem: believed hard
4 Squaring modulo composite N = pq: fN (x) := x� mod N

Inversion as hard as factoring N!
5 Matrix multiplication modulo prime p: fĀ(x) := xT Ā mod p

5 / 16

OWF Collection or Not?
1 Multiplication modulo prime p: fp,a(x) := ax mod p

2 Squaring modulo prime p: fp(x) := x� mod p

3 Exponentiation modulo prime p: fp,g (x) := g x mod p

Inversion is the discrete logarithm problem: believed hard
4 Squaring modulo composite N = pq: fN (x) := x� mod N

Inversion as hard as factoring N!
5 Matrix multiplication modulo prime p: fĀ(x) := xT Ā mod p

Inversion easy by Gaussian elimination
But, inversion seems hard if we add small noise to the output

Exercise 2
Show that taking square root modulo N is equivalent to factoring
N . (Hint: use the identity x� − y� = (x + y)(x − y) mod N)

5 / 16

Plan for this Lecture

1 One-Way Functions and Permutations

2 Hard-Core Predicate

3 Goldreich-Levin Hard-Core Predicate

Plan for this Lecture

1 One-Way Functions and Permutations

2 Hard-Core Predicate

3 Goldreich-Levin Hard-Core Predicate

Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x) := f (x)b for some bit b ⇒ b must be
unpredictable given f (x)

6 / 16

Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x) := f (x)b for some bit b ⇒ b must be
unpredictable given f (x)

Which b?
What about least significant bit (LSB) b := xn?

LSB is unpredictable (e.g.) for squaring function modulo N

6 / 16

Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x) := f (x)b for some bit b ⇒ b must be
unpredictable given f (x)

Which b?
What about least significant bit (LSB) b := xn?

LSB is unpredictable (e.g.) for squaring function modulo N
Problem: xn maybe be leaked in some other f s

6 / 16

Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x) := f (x)b for some bit b ⇒ b must be
unpredictable given f (x)

Which b?
What about least significant bit (LSB) b := xn?

LSB is unpredictable (e.g.) for squaring function modulo N
Problem: xn maybe be leaked in some other f s

Maybe there is some bit xi that is not leaked?
MSB is unpredictable (e.g) for exponentiation function modulo p

6 / 16

Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x) := f (x)b for some bit b ⇒ b must be
unpredictable given f (x)

Which b?
What about least significant bit (LSB) b := xn?

LSB is unpredictable (e.g.) for squaring function modulo N
Problem: xn maybe be leaked in some other f s

Maybe there is some bit xi that is not leaked?
MSB is unpredictable (e.g) for exponentiation function modulo p
Problem: There exist OWFs such that each bit is predictable
with a non-negligible probability

Exercise 3
Come up with such a OWF. What about such a OWP?

6 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?
Intuitively, we need a predicate that is:

Easy to compute given x
Hard to predict given f (x)

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?
Intuitively, we need a predicate that is:

Easy to compute given x
Hard to predict given f (x)

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?
Intuitively, we need a predicate that is:

Easy to compute given x
Hard to predict given f (x)

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?
Intuitively, we need a predicate that is:

Easy to compute given x
Hard to predict given f (x)

7 / 16

Therefore, Hard-core Predicates...
Takeaway: cannot just output some bit of the input
What about a predicate of the input?
Intuitively, we need a predicate that is:

Easy to compute given x
Hard to predict given f (x)

Defintion 2
A predicate hc : {�, �}n → {�, �} is hard-core for a function family
fn : {�, �}n → {�, �}m , if for every PPT predictor �, the following is
negligible

δ(n) := Pr
x←{�,�}n[�(f (x)) = hc(x)] − �/�

7 / 16

Therefore, Hard-core Predicates...
Defintion 2
A predicate hc : {�, �}n → {�, �} is hard-core for a function family
fn : {�, �}n → {�, �}m , if for every PPT predictor �, the following is
negligible

δ(n) := Pr
x←{�,�}n[�(f (x)) = hc(x)] − �/�

For “lossy” functions (e.g., fn(x) = �n), unpredictability stems
from information loss
For “non-lossy” functions (e.g., OWP), unpredictability is
computational and stems from one-wayness

8 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Proof sketch. Idea: use next-bit unpredictability.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Exercise 4
What happens if we use a length-preserving OWF instead of OWP?

9 / 16

Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x) := f (x)hc(x) is a PRG.
Exercise 4
What happens if we use a length-preserving OWF instead of OWP?
Corollary 2

We get PRG from hardness of following problems:
Exponentiation modulo prime p: fp,g (x) := g x mod p

Inversion hard by discrete logarithm assumption
Squaring modulo composite N = pq: fN (x) := x� mod N

Inversion hard by factoring assumption

9 / 16

Plan for this Lecture

1 One-Way Functions and Permutations

2 Hard-Core Predicate

3 Goldreich-Levin Hard-Core Predicate

Hard-core Predicate for “Any” OWP
We want: one hard-core predicate that works for every OWP

10 / 16

Hard-core Predicate for “Any” OWP
We want: one hard-core predicate that works for every OWP

This is not quite possible
Exercise 5
Show that one function hc : {�, �}n → {�, �} cannot be hard-core
predicate for all one-way functions.

10 / 16

Hard-core Predicate for “Any” OWP
We want: one hard-core predicate that works for every OWP

This is not quite possible
Exercise 5
Show that one function hc : {�, �}n → {�, �} cannot be hard-core
predicate for all one-way functions.

Compromise:
1 OWP → “leaky” OWP

For a OWP f , the “leaky” OWP is f ′(x , r) := (f (x), r).
2 One hard-core predicate that works for every “leaky” OWP

10 / 16

Hard-core Predicate for “Any” OWP
We want: one hard-core predicate that works for every OWP

This is not quite possible
Exercise 5
Show that one function hc : {�, �}n → {�, �} cannot be hard-core
predicate for all one-way functions.

Compromise:
1 OWP → “leaky” OWP

For a OWP f , the “leaky” OWP is f ′(x , r) := (f (x), r).
2 One hard-core predicate that works for every “leaky” OWP

Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.

10 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Let’s First Prove the Simplest Case: Perfect Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Perfect Predictor �.

11 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Next Let’s Consider “Good” Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Good Predictor �.

12 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

Finally, We Consider All Predictors
Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r) := (f (x), r). Then hc(x , r) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
Proof. ∃ Inverter ��� ⇐ ∃ Predictor �.

13 / 16

To Recap

We saw pseudo-randomness via one-wayness
OWP → hard-core bit → PRGSeveral examples of OWP:

1 Exponentiation modulo prime p (discrete-log assumption)
2 Squaring modulo composite N = pq (factoring assumption)

Discrete-log problem/factoring → PRG

14 / 16

To Recap

We saw pseudo-randomness via one-wayness
OWP → hard-core bit → PRGSeveral examples of OWP:

1 Exponentiation modulo prime p (discrete-log assumption)
2 Squaring modulo composite N = pq (factoring assumption)

Discrete-log problem/factoring → PRG
Requirement can be further relaxed: any OWF → PRG

14 / 16

To Recap

We saw pseudo-randomness via one-wayness
OWP → hard-core bit → PRGSeveral examples of OWP:

1 Exponentiation modulo prime p (discrete-log assumption)
2 Squaring modulo composite N = pq (factoring assumption)

Discrete-log problem/factoring → PRG
Requirement can be further relaxed: any OWF → PRG

Worst-case hardness → complexity-theoretic PRG

14 / 16

To Recap

We saw pseudo-randomness via one-wayness
OWP → hard-core bit → PRGSeveral examples of OWP:

1 Exponentiation modulo prime p (discrete-log assumption)
2 Squaring modulo composite N = pq (factoring assumption)

Discrete-log problem/factoring → PRG
Requirement can be further relaxed: any OWF → PRG

Worst-case hardness → complexity-theoretic PRG

Hardness ↔ Unpredictability ↔ Pseudorandomness

14 / 16

Next Lecture
So far: adversaries who don’t tamper with ciphertext

Eavesdropper of various forms, chosen-plaintext attacker

15 / 16

Next Lecture
So far: adversaries who don’t tamper with ciphertext

Eavesdropper of various forms, chosen-plaintext attacker

Coming up: secret communication againsttampering adversary (a.k.a. secure channels)
Authentication and integrity
Message authentication codes (MAC)
PRF → MAC

15 / 16

Next Lecture
So far: adversaries who don’t tamper with ciphertext

Eavesdropper of various forms, chosen-plaintext attacker

Coming up: secret communication againsttampering adversary (a.k.a. secure channels)
Authentication and integrity
Message authentication codes (MAC)
PRF → MAC

More Questions?
15 / 16

References

1 For a historical take on OWFs, see [DH76].
2 The construction of PRG from OWP via hard-core predicate is

from [BM84]. There they rely on the discrete-log based OWP.
3 The squaring based OWP was first studied by Rabin [Rab79].
4 The Goldreich-Levin theorem is from [GL89]. The proof

described here closely follows Vinod Vaikuntanathan’s proof in
Lecture 6 of MIT6875. See [Gol01, §2.5.2] for a formal
description of the proof.

5 The construction of PRG from OWF is due to [HILL99]

16 / 16

Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo-random bits.
SIAM J. Comput., 13(4):850–864, 1984.
Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.
Oded Goldreich and Leonid A. Levin.
A hard-core predicate for all one-way functions.
In 21st ACM STOC, pages 25–32. ACM Press, May 1989.
Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.
Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364–1396, 1999.
M. O. Rabin.
Digitalized signatures and public-key functions as intractable as
factorization.
Technical report, USA, 1979.

16 / 16

	One-Way Functions and Permutations
	Hard-Core Predicate
	Goldreich-Levin Hard-Core Predicate

