
CS783: Theoretical Foundations of Cryptography
Lecture 6 (16/Aug/24)

Instructor: Chethan Kamath
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Sub-task: how to encrypt multiple messages using a short key

Sub-task reduces to constructing PRF
PRG → PRF: GGM tree-based construction

Proof via hybrid argument

Chosen-plaintext attack
PRF → SKE secret against chosen-plaintext attackers

Everything built on top of PRG
Only one construction yet: unpredictable sequences → PRG
All eggs in one basket
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This lecture: hardness vs. pseudo-randomness
Hardness in the form of one-wayness:

One-way function (OWF)
One-way permutation (OWP)

Several candidates for OWF and OWP

One-wayness and hard-core predicates
Hard-core predicate for OWP → PRG
Hard-core predicate for any OWP/length-preserving OWF
Corollary: OWP → PRG
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Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x ) = f (x )
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x )) ∈ f −�
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Defintion 1 (One-way function (OWF))
A function family f := �

fn : {�, �}n → {�, �}m(n)	
n∈N is one-way if

there exists an efficient algorithm � such that ∀x : �(x ) = f (x )
for all PPT inverters ���, the following is negligible:

p(n) := Pr
x←{�,�}n[���(fn(x )) ∈ f −�

n (fn(x ))]

Length-preserving OWF: m(n) = n

One-way permutation: f is length-preserving and bijective
Convenient to consider “collection” of OWF:

{fI : DI → RI}I⊆{�,�}∗
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OWF or Not?
Some generic constructions:

1 f�(x ) := f (x )�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x ) := �(x ), where � is a PRG
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1 f�(x ) := f (x )�|x |, where f is a OWF
2 f�(x�x�) := x�f (x�), where f is a OWF
3 f�(x�x�) := x�f (x�x�), where f is a OWF
4 f�(x ) := �(x ), where � is a PRG

A concrete construction:
4 f�(x�x�) := x� · x�, where x� and x� are parsed as integers

“Weakly” one-way since primes are dense enough

Exercise 1
1 Show using security reduction that f� , f� and f� are OWFs
2 Come up f s such that f� i) remains one-way and ii) becomes

invertible
4 / 16
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1 Multiplication modulo prime p: fp,a(x ) := ax mod p

2 Squaring modulo prime p: fp(x ) := x� mod p

3 Exponentiation modulo prime p: fp,g (x ) := g x mod p

Inversion is the discrete logarithm problem: believed hard
4 Squaring modulo composite N = pq: fN (x ) := x� mod N

Inversion as hard as factoring N!
5 Matrix multiplication modulo prime p: fĀ(x ) := xT Ā mod p

Inversion easy by Gaussian elimination
But, inversion seems hard if we add small noise to the output

Exercise 2
Show that taking square root modulo N is equivalent to factoring
N . (Hint: use the identity x� − y� = (x + y )(x − y ) mod N)
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Let’s Try to “Extract” a Hard-Core Bit
Our goal: length-preserving OWF/OWP f → PRG �

Our template: �(x ) := f (x )b for some bit b ⇒ b must be
unpredictable given f (x )

Which b?
What about least significant bit (LSB) b := xn?

LSB is unpredictable (e.g.) for squaring function modulo N
Problem: xn maybe be leaked in some other f s

Maybe there is some bit xi that is not leaked?
MSB is unpredictable (e.g) for exponentiation function modulo p
Problem: There exist OWFs such that each bit is predictable
with a non-negligible probability

Exercise 3
Come up with such a OWF. What about such a OWP?
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Defintion 2
A predicate hc : {�, �}n → {�, �} is hard-core for a function family
fn : {�, �}n → {�, �}m , if for every PPT predictor �, the following is
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δ(n) := Pr
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Therefore, Hard-core Predicates...
Defintion 2
A predicate hc : {�, �}n → {�, �} is hard-core for a function family
fn : {�, �}n → {�, �}m , if for every PPT predictor �, the following is
negligible

δ(n) := Pr
x←{�,�}n[�(f (x )) = hc(x )] − �/�

For “lossy” functions (e.g., fn(x ) = �n), unpredictability stems
from information loss
For “non-lossy” functions (e.g., OWP), unpredictability is
computational and stems from one-wayness
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Theorem 1
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Hard-Core Predicate → Pseudo-Random Generator...
Theorem 1
Let f be a OWP and hc be a hard-core predicate for f . Then the
PRG �(x ) := f (x )hc(x ) is a PRG.
Exercise 4
What happens if we use a length-preserving OWF instead of OWP?
Corollary 2

We get PRG from hardness of following problems:
Exponentiation modulo prime p: fp,g (x ) := g x mod p

Inversion hard by discrete logarithm assumption
Squaring modulo composite N = pq: fN (x ) := x� mod N

Inversion hard by factoring assumption

9 / 16
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1 OWP → “leaky” OWP

For a OWP f , the “leaky” OWP is f ′(x , r ) := (f (x ), r ).
2 One hard-core predicate that works for every “leaky” OWP

Theorem 3 (Goldreich-Levin Theorem)
For a OWP f , let f ′(x , r ) := (f (x ), r ). Then hc(x , r ) := ⟨x , r⟩

�
is a

hard-core predicate for f ′.
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To Recap

We saw pseudo-randomness via one-wayness
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1 Exponentiation modulo prime p (discrete-log assumption)
2 Squaring modulo composite N = pq (factoring assumption)

Discrete-log problem/factoring → PRG
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Worst-case hardness → complexity-theoretic PRG

Hardness ↔ Unpredictability ↔ Pseudorandomness
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