
CS783: Theoretical Foundations of Cryptography
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Instructor: Chethan Kamath
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Task 1: secret communication in presence of eavesdroppers
Later considered the stronger chosen-plaintext attackers
In both cases, Task 1 reduced to constructing a PRF
Constructing PRF reduces to constructing PRG

Last lecture:
Defined OWF and OWPDefined hard-core predicates

1 Constructed hard-core predicates for any OWP
2 Hard-core predicate for OWF/OWP → PRG

1+2 ⇒ OWP → PRG
Can be relaxed to OWF → PRG, and thus OWF↔PRG
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So far: adversaries who are passive

Eavesdroppers of various forms, chosen-plaintext attacker

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
PRF → MAC

How to model secrecy against tampering adversary?
Chosen-ciphertext attack (CCA)
CPA-secret SKE + MAC → CCA-secure SKE
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General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
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and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!
Why not use error-detecting codes? Doesn’t stand up to
adversarial errors (only stochastic errors).

2 Try to impersonate Caeser by injecting messages (authenticity)
We cannot prevent this: the hope is to detect when it happens
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What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertextMessage-authentication code (MAC)

Think of it as “cryptographic” version of error detection!
For now, let’s forget about secrecy and focus on detectingtampering

Why? Modularity.
Later: MAC + any CPA-secret SKE → “secret communication”
against ���

3 / 18
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Plan for this Lecture

1 Message-Authentication Code (MAC)

2 Constructing MACs

3 Chosen-Ciphertext Attack
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Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
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Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

Correctness of verification: for every n ∈ N, message m ∈ Mn ,
Pr

k←���(�n),t←���(k,m)[���(k , t) = �] = �
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Caeser & General “share a line” L; MAC of m is its evaluation
Why is this a one-time MAC? Given (m, t) line is still hiddenAbstraction: pairwise-independent (PI) hash function

Intuitively: behaves like a random function as long as it is
evaluated on at most two points

Defintion 3
A function H : K × M → T is a pairwise-independent (PI) hash
function if for all m ̸= m′ ∈ M and all t, t ′ ∈ T ,

Pr
k←K[Hk (m) = t,Hk (m′) = t ′] = �/|T |�
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Key defines a “line” L
Hash value on m is its evaluation on L

Implement this over (Zp, +), the additive group modulo prime p

Has some “nice properties” of real plane
Construction 2 (PI hash function H : Z�

p × Zp → Zp)
K := Z�

p : a key k = (a, b) defines a line y = ax + b mod p
M := Zp : a message m is an element of ZpThe hash t of a message m ∈ Zp using a key k = (a, b) ∈ Z�

p is
t = Ha,b(m) := am + b mod p

Exercise 1
For any prime p, show that Construction 2 is PI hash function.
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Extending to q-Time MAC, and More?
Use q-wise independent hash function instead

Defintion 4
For q ∈ N, a function H : K × M → T is a q-wise independent
hash function if for all m� ̸= . . . ̸= mq ∈ M and all t�, . . . , tq ∈ T ,

Pr
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Defintion 4
For q ∈ N, a function H : K × M → T is a q-wise independent
hash function if for all m� ̸= . . . ̸= mq ∈ M and all t�, . . . , tq ∈ T ,

Pr
k←K[H(k ,m�) = t�, · · · ,H(k ,mq) = tq = �/|T |q

Extend Construction 2: line → degree-qs curve
But key consists of q elements in Zp .

This can be shown to be inherent!
Exercise 2 (Key-size lower bound for information-theoretic MAC)
Show that any M that is (ε, q)-EU-CMA-secure against all ���s
must have K ≥ �/εq+� .
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Plan for this Lecture

1 Message-Authentication Code (MAC)

2 Constructing MACs

3 Chosen-Ciphertext Attack
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Recall: all SKE constructions so far are malleable
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Why are Malleable Ciphertexts Problematic?

Recall: all SKE constructions so far are malleable

There were historical cases where this was exploited
Padding oracle attack
Bleichenbacher’s attack on PKCS#1 v1.5

These attacks roughly follow following high-level template:
Maul ciphertext
Use a ‘decryption oracle’ to learn info. about mauled plaintext
Infer information about the original plaintext
(Repeat if necessary)

13 / 18
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CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

Exercise 3 (CCA model)
Show that Construction 1 from Lecture 5 is not CCA-secure.
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CCA-Secure SKE via Encrypt-then-MAC
Construction 4 (Based on CPA-secret SKE Π := (���, ���,���)
and EU-CMA secure MAC M := (���∗,���,���))

���′(�n): output keys k ← ���(�n) and k∗ ← ���∗(�n)
���((k , k∗),m): output c ← ���(k ,m) and t ← ���(k∗, c)
���((k , k∗), (c , t)): output m := ���(k , c) if ���(k∗, c, t) = �
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Construction 3 is CCA-secure.
Proof intuition.

Since a ciphertext cannot be mauled to another valid one
thanks to MAC security, the decryption oracle is useless.
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To Recap Today’s Lecture

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
Pairwise-independent hash → one-time MAC
PRF → (many-time) MAC

How to model secrecy against tampering adversary?
Chosen-ciphertext attack (CCA)
CPA-secret SKE + MAC → CCA-secure SKE
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To Recap Module I
We learnt: secure communication using SKE + MAC
Cryptographic primitives encountered: PRG, PRF, OWF, OWP,
pairwise-independent hash
Hardness assumptions: factoring, discrete-logarithm
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We learnt: secure communication using SKE + MAC
Cryptographic primitives encountered: PRG, PRF, OWF, OWP,
pairwise-independent hash
Hardness assumptions: factoring, discrete-logarithm

Key conceptual takeaway: pseudo-randomness ↔
hardness ↔ unpredictability

Key tools: security reduction, hybrid argument
17 / 18



Next Module/Lecture
Minicrypt to Cryptomania
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Next Module/Lecture
Minicrypt to Cryptomania

We start with Task 3: how to establishing a shared key
without having met before!

More Questions?
18 / 18
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