
CS783: Theoretical Foundations of Cryptography
Lecture 7 (20/Aug/24)

Instructor: Chethan Kamath

Recall from Last Few Lectures...

Task 1: secret communication in presence of eavesdroppers
Later considered the stronger chosen-plaintext attackers
In both cases, Task 1 reduced to constructing a PRF
Constructing PRF reduces to constructing PRG

1 / 18

Recall from Last Few Lectures...

Task 1: secret communication in presence of eavesdroppers
Later considered the stronger chosen-plaintext attackers
In both cases, Task 1 reduced to constructing a PRF
Constructing PRF reduces to constructing PRG

Last lecture:
Defined OWF and OWPDefined hard-core predicates

1 Constructed hard-core predicates for any OWP
2 Hard-core predicate for OWF/OWP → PRG

1+2 ⇒ OWP → PRG
Can be relaxed to OWF → PRG, and thus OWF↔PRG

1 / 18

Plan for This Lecture...
So far: adversaries who are passive

Eavesdroppers of various forms, chosen-plaintext attacker

2 / 18

Plan for This Lecture...
So far: adversaries who are passive

Eavesdroppers of various forms, chosen-plaintext attacker

Task 2: secret communication against active adversary

2 / 18

Plan for This Lecture...
So far: adversaries who are passive

Eavesdroppers of various forms, chosen-plaintext attacker

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
PRF → MAC

2 / 18

Plan for This Lecture...
So far: adversaries who are passive

Eavesdroppers of various forms, chosen-plaintext attacker

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
PRF → MAC

How to model secrecy against tampering adversary?
Chosen-ciphertext attack (CCA)
CPA-secret SKE + MAC → CCA-secure SKE

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

3 / 18

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

3 / 18

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!
Why not use error-detecting codes?

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!
Why not use error-detecting codes? Doesn’t stand up to
adversarial errors (only stochastic errors).

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!
Why not use error-detecting codes? Doesn’t stand up to
adversarial errors (only stochastic errors).

2 Try to impersonate Caeser by injecting messages (authenticity)

3 / 18

$

What Exactly Is the Security Goal?...
The setting: Caeser and his general share a key k ∈ {�, �}n
and want to secretly communicate in presence of an active
adversary ���

What can ��� do?
1 Modify what Caeser’s sends to the General (integrity)

All schemes we’ve seen so far (OTP, computational OTP,
CPA-secret construction) are malleable!
Why not use error-detecting codes? Doesn’t stand up to
adversarial errors (only stochastic errors).

2 Try to impersonate Caeser by injecting messages (authenticity)
We cannot prevent this: the hope is to detect when it happens

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertext

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertextMessage-authentication code (MAC)

Think of it as “cryptographic” version of error detection!

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertextMessage-authentication code (MAC)

Think of it as “cryptographic” version of error detection!
For now, let’s forget about secrecy and focus on detectingtampering

3 / 18

$

What Exactly Is the Security Goal?...

How do we ensure integrity and authenticity?
Append “additional information” t with the ciphertextMessage-authentication code (MAC)

Think of it as “cryptographic” version of error detection!
For now, let’s forget about secrecy and focus on detectingtampering

Why? Modularity.
Later: MAC + any CPA-secret SKE → “secret communication”
against ���

3 / 18

$

Plan for this Lecture

1 Message-Authentication Code (MAC)

2 Constructing MACs

3 Chosen-Ciphertext Attack

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

4 / 18

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

4 / 18

$

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

4 / 18

$

$

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

4 / 18

$

$

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

4 / 18

$

$

Syntax of Message-Authentication Code (MAC)
Defintion 1 (Message-Authentication Code (MAC))
An MAC M is a triple of efficient algorithms (���,���,���) with
the following syntax:

Correctness of verification: for every n ∈ N, message m ∈ Mn ,
Pr

k←���(�n),t←���(k,m)[���(k , t) = �] = �

4 / 18

$

$

How to Define Security?...
Intuitively, what are the security requirements?

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new tag frompreviously-seen tags...
... on messages of its choice

The forged new tag can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

5 / 18

How to Define Security?...
Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

6 / 18

How to Define Security?...
Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

6 / 18

How to Define Security?...
Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

MAC or not?
1 Encrypt to MAC: Given SKE Π = (���,���,���), define:

���(k ,m) := ���(k,m)
���(k, t,m): Compute m′ := ���(k, t) and accept if m = m′

6 / 18

How to Define Security?...
Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

MAC or not?
1 Encrypt to MAC: Given SKE Π = (���,���,���), define:

���(k ,m) := ���(k,m)
���(k, t,m): Compute m′ := ���(k, t) and accept if m = m′

2 Append-� MAC: Given MAC M = (���,���,���), define M ′ as
���′(k,m) := t�, where t ← ���(k ,m)
���′(k, tb,m) := ���(k , t,m)

6 / 18

How to Define Security?...
Defintion 2 (EU-CMA)
A MAC M = (���,���,���) is (ε, q)-EU-CMA secure if no PPT
tampering adversary ��� that makes at most q queries can break
M as below with probability ε .

MAC or not?
1 Encrypt to MAC: Given SKE Π = (���,���,���), define:

���(k ,m) := ���(k,m)
���(k, t,m): Compute m′ := ���(k, t) and accept if m = m′

2 Append-� MAC: Given MAC M = (���,���,���), define M ′ as
���′(k,m) := t�, where t ← ���(k ,m)
���′(k, tb,m) := ���(k , t,m)

6 / 18

Plan for this Lecture

1 Message-Authentication Code (MAC)

2 Constructing MACs

3 Chosen-Ciphertext Attack

Let’s Start with a One-Time MAC (q = �)

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation
Why is this a one-time MAC? Given (m, t) line is still hidden

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation
Why is this a one-time MAC? Given (m, t) line is still hidden

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation
Why is this a one-time MAC? Given (m, t) line is still hiddenAbstraction: pairwise-independent (PI) hash function

Intuitively: behaves like a random function as long as it is
evaluated on at most two points

7 / 18

Let’s Start with a One-Time MAC (q = �)

Caeser & General “share a line” L; MAC of m is its evaluation
Why is this a one-time MAC? Given (m, t) line is still hiddenAbstraction: pairwise-independent (PI) hash function

Intuitively: behaves like a random function as long as it is
evaluated on at most two points

Defintion 3
A function H : K × M → T is a pairwise-independent (PI) hash
function if for all m ̸= m′ ∈ M and all t, t ′ ∈ T ,

Pr
k←K[Hk (m) = t,Hk (m′) = t ′] = �/|T |�

7 / 18

Let’s Start with a One-Time MAC (q = �)
Construction 1 (One-Time MAC from PI hash function)

���(�n): sample key k ← K
���(k ,m): output t := H(k ,m)
���(k , t,m): accept iff H(k ,m) = t

8 / 18

Let’s Start with a One-Time MAC (q = �)
Construction 1 (One-Time MAC from PI hash function)

���(�n): sample key k ← K
���(k ,m): output t := H(k ,m)
���(k , t,m): accept iff H(k ,m) = t

Theorem 1 (Construction 1 is information-theoretically secure)
If H is a PI hash function then Construction 1 is
(�, �/|T |)-EU-CMA-secure against any ���.
Proof.

8 / 18

Let’s Start with a One-Time MAC (q = �)
Construction 1 (One-Time MAC from PI hash function)

���(�n): sample key k ← K
���(k ,m): output t := H(k ,m)
���(k , t,m): accept iff H(k ,m) = t

Theorem 1 (Construction 1 is information-theoretically secure)
If H is a PI hash function then Construction 1 is
(�, �/|T |)-EU-CMA-secure against any ���.
Proof.

8 / 18

Let’s Start with a One-Time MAC (q = �)
Construction 1 (One-Time MAC from PI hash function)

���(�n): sample key k ← K
���(k ,m): output t := H(k ,m)
���(k , t,m): accept iff H(k ,m) = t

Theorem 1 (Construction 1 is information-theoretically secure)
If H is a PI hash function then Construction 1 is
(�, �/|T |)-EU-CMA-secure against any ���.
Proof.

8 / 18

How to Construct Pairwise-Independent Hash?
Recall the informal construction:

Key defines a “line” L
Hash value on m is its evaluation on L

9 / 18

How to Construct Pairwise-Independent Hash?
Recall the informal construction:

Key defines a “line” L
Hash value on m is its evaluation on L

Implement this over (Zp, +), the additive group modulo prime p

Has some “nice properties” of real plane
Construction 2 (PI hash function H : Z�

p × Zp → Zp)
K := Z�

p : a key k = (a, b) defines a line y = ax + b mod p
M := Zp : a message m is an element of ZpThe hash t of a message m ∈ Zp using a key k = (a, b) ∈ Z�

p is
t = Ha,b(m) := am + b mod p

9 / 18

How to Construct Pairwise-Independent Hash?
Recall the informal construction:

Key defines a “line” L
Hash value on m is its evaluation on L

Implement this over (Zp, +), the additive group modulo prime p

Has some “nice properties” of real plane
Construction 2 (PI hash function H : Z�

p × Zp → Zp)
K := Z�

p : a key k = (a, b) defines a line y = ax + b mod p
M := Zp : a message m is an element of ZpThe hash t of a message m ∈ Zp using a key k = (a, b) ∈ Z�

p is
t = Ha,b(m) := am + b mod p

Exercise 1
For any prime p, show that Construction 2 is PI hash function.

9 / 18

Extending to q-Time MAC, and More?
Use q-wise independent hash function instead

Defintion 4
For q ∈ N, a function H : K × M → T is a q-wise independent
hash function if for all m� ̸= . . . ̸= mq ∈ M and all t�, . . . , tq ∈ T ,

Pr
k←K[H(k ,m�) = t�, · · · ,H(k ,mq) = tq = �/|T |q

9 / 18

Extending to q-Time MAC, and More?
Use q-wise independent hash function instead

Defintion 4
For q ∈ N, a function H : K × M → T is a q-wise independent
hash function if for all m� ̸= . . . ̸= mq ∈ M and all t�, . . . , tq ∈ T ,

Pr
k←K[H(k ,m�) = t�, · · · ,H(k ,mq) = tq = �/|T |q

Extend Construction 2: line → degree-qs curve
But key consists of q elements in Zp .

This can be shown to be inherent!

9 / 18

Extending to q-Time MAC, and More?
Use q-wise independent hash function instead

Defintion 4
For q ∈ N, a function H : K × M → T is a q-wise independent
hash function if for all m� ̸= . . . ̸= mq ∈ M and all t�, . . . , tq ∈ T ,

Pr
k←K[H(k ,m�) = t�, · · · ,H(k ,mq) = tq = �/|T |q

Extend Construction 2: line → degree-qs curve
But key consists of q elements in Zp .

This can be shown to be inherent!
Exercise 2 (Key-size lower bound for information-theoretic MAC)
Show that any M that is (ε, q)-EU-CMA-secure against all ���s
must have K ≥ �/εq+� .

9 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

But What if You’re Given an Oracle in the Sky?
Setting:

Caeser and his general have shared a key k ∈ {�, �}n
Everyone (including ���) has access to a random function
oracle R : {�, �}�n → {�, �}n

How will you construct a MAC for Mn = {�, �}n using R?
Hint: R is ��n-wise independent!
Define tag for m as R(k ,m)

10 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Recall that PRF is a computational analogue of random oracles
Should “appear” �n-wise independent to PPT ���s

Construction 3 (for Mn = {�, �}n using {Fk : {�, �}n → {�, �}n})

Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.

11 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Let’s Replace the Oracle in the Sky with a PRF!...
Theorem 2
If {Fk : {�, �}n → {�, �}n}k∈{�,�}n is a PRF then Construction 3 is
EU-CMA-secure against any PPT ���.
Proof. ∃Distinguisher � for {Fk} ⇐ ∃ ��� against Construction 3.

12 / 18

Plan for this Lecture

1 Message-Authentication Code (MAC)

2 Constructing MACs

3 Chosen-Ciphertext Attack

Why are Malleable Ciphertexts Problematic?

Recall: all SKE constructions so far are malleable

13 / 18

Why are Malleable Ciphertexts Problematic?

Recall: all SKE constructions so far are malleable

There were historical cases where this was exploited
Padding oracle attack
Bleichenbacher’s attack on PKCS#1 v1.5

13 / 18

Why are Malleable Ciphertexts Problematic?

Recall: all SKE constructions so far are malleable

There were historical cases where this was exploited
Padding oracle attack
Bleichenbacher’s attack on PKCS#1 v1.5

These attacks roughly follow following high-level template:
Maul ciphertext
Use a ‘decryption oracle’ to learn info. about mauled plaintext
Infer information about the original plaintext
(Repeat if necessary)

13 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

14 / 18

Chosen-Ciphertext Attack (CCA)
Recall CPA: adversaries who can influence Caeser’s messages
CCA = CPA + access to decryption oracle

Defintion 5 (Secrecy against chosen-ciphertext attack (CCA))
An SKE Π = (���, ���,���) is CCA-secure if for every PPT CCA
adversary A, Pr[b′ = b] − �/� in following game is negligible.

Exercise 3 (CCA model)
Show that Construction 1 from Lecture 5 is not CCA-secure.

14 / 18

CCA-Secure SKE via Encrypt-then-MAC
Construction 4 (Based on CPA-secret SKE Π := (���, ���,���)
and EU-CMA secure MAC M := (���∗,���,���))

���′(�n): output keys k ← ���(�n) and k∗ ← ���∗(�n)
���((k , k∗),m): output c ← ���(k ,m) and t ← ���(k∗, c)
���((k , k∗), (c , t)): output m := ���(k , c) if ���(k∗, c, t) = �

15 / 18

CCA-Secure SKE via Encrypt-then-MAC
Construction 4 (Based on CPA-secret SKE Π := (���, ���,���)
and EU-CMA secure MAC M := (���∗,���,���))

���′(�n): output keys k ← ���(�n) and k∗ ← ���∗(�n)
���((k , k∗),m): output c ← ���(k ,m) and t ← ���(k∗, c)
���((k , k∗), (c , t)): output m := ���(k , c) if ���(k∗, c, t) = �

Theorem 3
If Π is a CPA-secret SKE and M is a EU-CMA-secure MAC then
Construction 3 is CCA-secure.
Proof intuition.

Since a ciphertext cannot be mauled to another valid one
thanks to MAC security, the decryption oracle is useless.
Now exploit CPA-secrecy

15 / 18

CCA-Secure SKE via Encrypt-then-MAC
Construction 4 (Based on CPA-secret SKE Π := (���, ���,���)
and EU-CMA secure MAC M := (���∗,���,���))

���′(�n): output keys k ← ���(�n) and k∗ ← ���∗(�n)
���((k , k∗),m): output c ← ���(k ,m) and t ← ���(k∗, c)
���((k , k∗), (c , t)): output m := ���(k , c) if ���(k∗, c, t) = �

Theorem 3
If Π is a CPA-secret SKE and M is a EU-CMA-secure MAC then
Construction 3 is CCA-secure.
Proof intuition.

Since a ciphertext cannot be mauled to another valid one
thanks to MAC security, the decryption oracle is useless.
Now exploit CPA-secrecy

15 / 18

To Recap Today’s Lecture

Task 2: secret communication against active adversary

16 / 18

To Recap Today’s Lecture

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
Pairwise-independent hash → one-time MAC
PRF → (many-time) MAC

16 / 18

To Recap Today’s Lecture

Task 2: secret communication against active adversary
Sub-task: How to detect tampering?

Message authentication codes (MAC)
Pairwise-independent hash → one-time MAC
PRF → (many-time) MAC

How to model secrecy against tampering adversary?
Chosen-ciphertext attack (CCA)
CPA-secret SKE + MAC → CCA-secure SKE

16 / 18

To Recap Module I
We learnt: secure communication using SKE + MAC
Cryptographic primitives encountered: PRG, PRF, OWF, OWP,
pairwise-independent hash
Hardness assumptions: factoring, discrete-logarithm

17 / 18

To Recap Module I
We learnt: secure communication using SKE + MAC
Cryptographic primitives encountered: PRG, PRF, OWF, OWP,
pairwise-independent hash
Hardness assumptions: factoring, discrete-logarithm

Key conceptual takeaway: pseudo-randomness ↔
hardness ↔ unpredictability

17 / 18

To Recap Module I
We learnt: secure communication using SKE + MAC
Cryptographic primitives encountered: PRG, PRF, OWF, OWP,
pairwise-independent hash
Hardness assumptions: factoring, discrete-logarithm

Key conceptual takeaway: pseudo-randomness ↔
hardness ↔ unpredictability

Key tools: security reduction, hybrid argument
17 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

18 / 18

Next Module/Lecture
Minicrypt to Cryptomania

We start with Task 3: how to establishing a shared key
without having met before!

More Questions?
18 / 18

References

1 [KL14, Chapters 4 and 5] for more details about the lecture.
2 Pairwise- and k-wise independent hash functions were

introduced in [WC81]. The information-theoretic MACs based
on k-wise independent hash functions were also proposed
there.

3 CCA was studied in [RS92, NY90].
4 You can read more about Bleichenbacher’s attack in [Ble97].

18 / 18

Daniel Bleichenbacher.
On the security of the KMOV public key cryptosystem.
In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
235–248. Springer, Heidelberg, August 1997.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Moni Naor and Moti Yung.
Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990.
Charles Rackoff and Daniel R. Simon.
Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack.
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
433–444. Springer, Heidelberg, August 1992.
Mark N. Wegman and J.Lawrence Carter.
New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–279, 1981.

18 / 18

	Message-Authentication Code (MAC)
	Constructing MACs
	Chosen-Ciphertext Attack

