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Recall from Last Module

m We learnt: secure communication in the shared-key setting
m Primitives encountered: PRG, PRF, OWF, OWP, Pl hash, MAC

m Computational hardness assumptions: factoring, discrete-log COASKE
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Plan for This Lecture

General template: / hey meaﬂﬁje
1 ldentify the task

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that Il in secure in model M
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Syntax of Key Exchange Protocol

Defintion 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol 'l is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs ka € {0,1}" and party B locally outputs kg € {0,1}".
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2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

Defintion 4 (Group terminology)

m Order of the group, |G|. We're interested in groups of ﬁwk
m Order of an element g: smallest ¢ such thatg’ =g - .. - g=1
m Cyclic group: there exists a ‘generator” g € G with order ¢ = |G|

m That is {glzg,g2 ,,,,, g"*l,g(’:l}:g

_gtr9— gt
‘:):L/“—H‘\, 3(9(1)1cq" =9 g\
? ) @LJ{) —_ > (jM G _
X : | Sy .. :
S 1 £gr =t
m ‘/[somorphism” between (Z¢, +) and G
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But First Some Group Theory...

Exercise 2 (Lagrange’s theorem)

Prove that the order of an element divides order of the (finite) group.

Exercise 3

For a group G of order ¢ with generator g, show using group
axioms that for all a, b € Zy, (g%)° = g = (g?)?

Exercise 4

Prove that a prime-order group is cyclic. Are all cyclic groups of
prime order?
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A Hard(?) Computational Problem Over Cyclic Groups

1
m Recall our exp. map O(J/? - 7‘3 $a6) =g =gt 9 glx
1-( @L ) : ,9/—~\> (ﬂ( G :
< : - = gt | /
(%9(91) <« 3

Defintion 5 (Discrete logarithm (DLog) problem in G w.rto S)

m /nput:
1 (G, ¢, g) sampled by a group sampler S(1")
2 h:=g?fora< Zy

m Solution: a
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m Solution: a

Assumption 1 (DLog assumption in G w.r.to S)

The DLog assumption in G w.rto S holds if solving the DLog
problem in G wr.to S is hard for all PPT inverters Inv. That is, for
all Inv, the following is negligible:
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Diffie-Hellman Key-Exchange Protocol

(G, p.8)<50
Oezp/ha =g
bp= g,

Bob
m The protocol:

1 Alice—Bob: Send (G, p, g), ha == g?), where (G, p, g) < S(1")
and a « Z,

2 Alice«—Bob: Send hg := gP for b« Z,

3 Alice outputs ka := (hg)?; Bob outputs kg := (ha)®

m Correctness of key generation:

== () o @) 0n ke
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AThen Eve can invert ha to get a and compute k = hg
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No, what if Eve can compute g2 given g2 and g??
m This is the "computational Diffie-Hellman” (CDH) problem
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When is it Secret Against Eavesdroppers?

Bob

m What does Eve see? The transcript is (ha = g2, hg := gP?)
@What if DLog problem is easy over G?

AThen Eve can invert ha to get a and compute k = hg
@Is DLog problem being hard sufficient?

No, what if Eve can compute g2 given g2 and g??
m This is the "computational Diffie-Hellman” (CDH) problem

@Is CDH problem being hard sufficient?

AV\/hat if Eve can distinquish g2 from random group elements?
m There exist such groups!
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When is it Secret Against Eavesdroppers?...

Assumption 2 (Decisional DH (DDH) assumption in in G w.r.to S)

The DDH assumption holds in G w.r.to S if for all PPT
distinguishers D, the following is negligible:

Pr_ [D(g?gbg®) =0/— Pr_ [D(g?gb g =0
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Theorem 1

Diffie-Hellman key-exchange is secret against eavesdroppers under
the DDH assumption in G w.rto S.

Proof.

Secrecy requirement is same as the assumption! O
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The DDH assumption holds in G w.r.to S if for all PPT
distinguishers D, the following is negligible:
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Theorem 1

Diffie-Hellman key-exchange is secret against eavesdroppers under
the DDH assumption in G w.rto S.

Proof.

Secrecy requirement is same as the assumption! O

Exercise b

But I did slightly cheat! Figure out where.
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1 Key Exchange Protocol
2 Diffie-Hellman Key-Exchange Protocol

'3 Exchanging Multiple Keys
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m Charlie and David want to do the same

m In general: t pairs of parties, t pairwise shared keys
m Secrecy: the t shared keys should be indistinguishable to Eve*
from t random keys (given all transcripts)
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Exercise 6
Is the DLog problem random self-reducible? What about CDH?
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To Recap Today's Lecture

m Task 3: sharing key in presence of eavesdropper
m Modelled key exchange setting and security
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To Recap Today's Lecture

m Task 3: sharing key in presence of eavesdropper
m Modelled key exchange setting and security

m Diffie-Hellman key exchange protocol
m Based security on the DDH assumption
m Studied multi-instance Diffie-Hellman key exchange

m First proof using hybrid argument
m Second proof beats hybrid argument via random self-reducibility

hatdel  w Today's takeaway: structure vs hardness

PRG 1 Structure is useful for protocol design and proofs
f 2 Also makes it susceptible to algorithms
#\frowF o o

g
fey-exchang
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Next Lecture

m Task 4: public-key encryption (PKE)

m Syntax and security
Relationship with key-exchange
Basic number theory
Goldwasser-Micali PKE

18/18



References

[KL14, Chapter 11] for details on this lecture.

Read the seminal paper by Diffie and Hellman [DH76] for a
description of the namesake key-exchange.

Boneh's survey [Bon98] is an excellent source on the DDH
problem.

Random self-reducibility was first studied in [BM84]. Refer to
[FF93] to read more. RSR of the DDH problem were studied in
[Sta96, NRO4|.



@ Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo-random bits.
SIAM . Comput., 13(4):850-864, 1984.

@ Dan Boneh.
The decision diffie-hellman problem.

In ANTS, volume 1423 of Lecture Notes in Computer Science, pages 48-63.
Springer, 1998.

[d Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

@ Joan Feigenbaum and Lance Fortnow.
Random-self-reducibility of complete sets.
SIAM J. Comput., 22(5):994-1005, 1993.

@ Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

@ Moni Naor and Omer Reingold.
Number-theoretic constructions of efficient pseudo-random functions.

J. ACM, 51(2):231-262, 2004.
18/18



	Key Exchange Protocol
	Diffie-Hellman Key-Exchange Protocol
	Exchanging Multiple Keys

