
CS783: Theoretical Foundations of Cryptography
Lecture 8 (23/Aug/24)

Instructor: Chethan Kamath

Recall from Last Module
We learnt: secure communication in the shared-key setting
Primitives encountered: PRG, PRF, OWF, OWP, PI hash, MAC
Computational hardness assumptions: factoring, discrete-log

1 / 18

Recall from Last Module
We learnt: secure communication in the shared-key setting
Primitives encountered: PRG, PRF, OWF, OWP, PI hash, MAC
Computational hardness assumptions: factoring, discrete-log
Key conceptual takeaways:

Computational security
Pseudo-randomness ↔ hardness ↔ unpredictability

1 / 18

Recall from Last Module
We learnt: secure communication in the shared-key setting
Primitives encountered: PRG, PRF, OWF, OWP, PI hash, MAC
Computational hardness assumptions: factoring, discrete-log
Key conceptual takeaways:

Computational security
Pseudo-randomness ↔ hardness ↔ unpredictability

Key tools: security reduction, hybrid argument

1 / 18

Recall from Last Module
We learnt: secure communication in the shared-key setting
Primitives encountered: PRG, PRF, OWF, OWP, PI hash, MAC
Computational hardness assumptions: factoring, discrete-log
Key conceptual takeaways:

Computational security
Pseudo-randomness ↔ hardness ↔ unpredictability

Key tools: security reduction, hybrid argument

1 / 18

This Module...

2 / 18Credit for images: Wikipedia (*User:DARPA)

This Module...

2 / 18Credit for images: Wikipedia (*User:DARPA)

*

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

2 / 18

This Module...
Minicrypt to Cryptomania

Today we focus on Task 3: how does one establish a shared
key in the first place?

2 / 18

This Module...
Minicrypt to Cryptomania

Today we focus on Task 3: how does one establish a shared
key in the first place?

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18
icour.frCredit for image:

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 18
icour.frCredit for image:

Plan for This Lecture...

1 Key Exchange Protocol

2 Diffie-Hellman Key-Exchange Protocol

3 Exchanging Multiple Keys

Plan for This Lecture...

1 Key Exchange Protocol

2 Diffie-Hellman Key-Exchange Protocol

3 Exchanging Multiple Keys

How To Establish a Shared Key in the First Place?

3 / 18

How To Establish a Shared Key in the First Place?

3 / 18

How To Establish a Shared Key in the First Place?

3 / 18

How To Establish a Shared Key in the First Place?

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

3 / 18

How To Establish a Shared Key in the First Place?

The setting: Alice and Bob want to establish a shared key
k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

Key Exchange IRL: HTTPs, TLS, SSH

3 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

Correctness of key exchange: for every n ∈ N

Pr(kA,kB ,τ)←Π(�n)[kA = kB] = �

4 / 18

Syntax of Key Exchange Protocol
Defintion 1 (Key Exchange Protocol)
A (two-party) key-exchange protocol Π is a probabilistic protocol
between two parties A and B at the end of which party A locally
outputs kA ∈ {�, �}n and party B locally outputs kB ∈ {�, �}n .

Correctness of key exchange: for every n ∈ N

Pr(kA,kB ,τ)←Π(�n)[kA = kB] = �

4 / 18

How to Define Security?...
Intuitively, what is the security requirement?

5 / 18

How to Define Security?...
Intuitively, what is the security requirement?

Key k should be “hidden” given the transcript τ of the protocol

5 / 18

How to Define Security?...
Intuitively, what is the security requirement?

Key k should be “hidden” given the transcript τ of the protocol
Defintion 2 (Secrecy Against Eavesdroppers)
A key-exchange protocol Π is secret against eavesdroppers if for
every PPT eavesdropper ��� the following is negligible.

δ(n) := Pr(k,τ)←Π(�n)[���(τ, k) = �] − Pr(k,τ)←Π(�n)
r←{�,�}n

[���(τ, r) = �]

5 / 18

How to Define Security?...
Intuitively, what is the security requirement?

Key k should be “hidden” given the transcript τ of the protocol
Defintion 2 (Secrecy Against Eavesdroppers)
A key-exchange protocol Π is secret against eavesdroppers if for
every PPT eavesdropper ��� the following is negligible.

δ(n) := Pr(k,τ)←Π(�n)[���(τ, k) = �] − Pr(k,τ)←Π(�n)
r←{�,�}n

[���(τ, r) = �]

5 / 18

How to Define Security?...
Intuitively, what is the security requirement?

Key k should be “hidden” given the transcript τ of the protocol
Defintion 2 (Secrecy Against Eavesdroppers)
A key-exchange protocol Π is secret against eavesdroppers if for
every PPT eavesdropper ��� the following is negligible.

δ(n) := Pr(k,τ)←Π(�n)[���(τ, k) = �] − Pr(k,τ)←Π(�n)
r←{�,�}n

[���(τ, r) = �]

Exercise 1
How can an unbounded eavesdropper ��� break secrecy?

5 / 18

Plan for this Lecture

1 Key Exchange Protocol

2 Diffie-Hellman Key-Exchange Protocol

3 Exchanging Multiple Keys

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �Cyclic group: there exists a “generator” g ∈ G with order ℓ = |G|

That is �
g� = g , g�, . . . , g ℓ−�, g ℓ = �

	 = G

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �Cyclic group: there exists a “generator” g ∈ G with order ℓ = |G|

That is �
g� = g , g�, . . . , g ℓ−�, g ℓ = �

	 = G

6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �Cyclic group: there exists a “generator” g ∈ G with order ℓ = |G|

That is �
g� = g , g�, . . . , g ℓ−�, g ℓ = �

	 = G

“Isomorphism” between (Zℓ , +) and G
6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �Cyclic group: there exists a “generator” g ∈ G with order ℓ = |G|

That is �
g� = g , g�, . . . , g ℓ−�, g ℓ = �

	 = G

“Isomorphism” between (Zℓ , +) and G
6 / 18

But First Some Group Theory...
What are some properties of ({�, �}n, ⊕) we have exploited?

Closure of ⊕, self-inverse (k ⊕ k = �n), associativity?
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group, |G|. We’re interested in groups of finite order
Order of an element g : smallest ℓ such that g ℓ := g · . . . · g = �Cyclic group: there exists a “generator” g ∈ G with order ℓ = |G|

That is �
g� = g , g�, . . . , g ℓ−�, g ℓ = �

	 = G

“Isomorphism” between (Zℓ , +) and G
6 / 18

But First Some Group Theory...

Exercise 2 (Lagrange’s theorem)
Prove that the order of an element divides order of the (finite) group.
Exercise 3
For a group G of order ℓ with generator g , show using group
axioms that for all a, b ∈ Zℓ , (ga)b = gab = (gb)a

Exercise 4
Prove that a prime-order group is cyclic. Are all cyclic groups of
prime order?

6 / 18

Some Examples of Groups
Addition modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq

7 / 18

Some Examples of Groups
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

7 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

Defintion 5 (Discrete logarithm (DLog) problem in G w.r.to �)
Input:

1 (G, ℓ , g) sampled by a group sampler �(�n)
2 h := g a for a ← Zℓ

Solution: a

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

Defintion 5 (Discrete logarithm (DLog) problem in G w.r.to �)
Input:

1 (G, ℓ , g) sampled by a group sampler �(�n)
2 h := g a for a ← Zℓ

Solution: a

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

Defintion 5 (Discrete logarithm (DLog) problem in G w.r.to �)
Input:

1 (G, ℓ , g) sampled by a group sampler �(�n)
2 h := g a for a ← Zℓ

Solution: a
Assumption 1 (DLog assumption in G w.r.to �)
The DLog assumption in G w.r.to � holds if solving the DLog
problem in G w.r.to � is hard for all PPT inverters ���. That is, for
all ���, the following is negligible:

δ(n) := Pr(G,ℓ ,g)←�(�n)
a←Zℓ

[���((G, ℓ , g), ga) = a]
8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Recall our exp. map

Defintion 5 (Discrete logarithm (DLog) problem in G w.r.to �)
Input:

1 (G, ℓ , g) sampled by a group sampler �(�n)
2 h := g a for a ← Zℓ

Solution: a
Assumption 1 (DLog assumption in G w.r.to �)
The DLog assumption in G w.r.to � holds if solving the DLog
problem in G w.r.to � is hard for all PPT inverters ���. That is, for
all ���, the following is negligible:

δ(n) := Pr(G,ℓ ,g)←�(�n)
a←Zℓ

[���((G, ℓ , g), ga) = a]
8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

A Hard(?) Computational Problem Over Cyclic Groups...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

8 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

2 Alice←Bob: Send hB := gb for b ← Zp

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

2 Alice←Bob: Send hB := gb for b ← Zp

9 / 18

Diffie-Hellman Key-Exchange Protocol

The protocol:
1 Alice→Bob: Send ((G, p, g), hA := g a), where (G, p, g) ← �(�n)

and a ← Zp

2 Alice←Bob: Send hB := gb for b ← Zp

3 Alice outputs kA := (hB)a; Bob outputs kB := (hA)b
Correctness of key generation:

9 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haB

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haBIs DLog problem being hard sufficient?

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haBIs DLog problem being hard sufficient?
No, what if ��� can compute g ab given g a and gb?
This is the “computational Diffie-Hellman” (CDH) problem

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haBIs DLog problem being hard sufficient?
No, what if ��� can compute g ab given g a and gb?
This is the “computational Diffie-Hellman” (CDH) problem

Is CDH problem being hard sufficient?

10 / 18

When is it Secret Against Eavesdroppers?...

What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haBIs DLog problem being hard sufficient?
No, what if ��� can compute g ab given g a and gb?
This is the “computational Diffie-Hellman” (CDH) problem

Is CDH problem being hard sufficient?
What if ��� can distinguish g ab from random group elements?
There exist such groups!

10 / 18

When is it Secret Against Eavesdroppers?...
Assumption 2 (Decisional DH (DDH) assumption in in G w.r.to �)
The DDH assumption holds in G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g)←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g)←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r) = �]

10 / 18

When is it Secret Against Eavesdroppers?...
Assumption 2 (Decisional DH (DDH) assumption in in G w.r.to �)
The DDH assumption holds in G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g)←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g)←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r) = �]

10 / 18

When is it Secret Against Eavesdroppers?...
Assumption 2 (Decisional DH (DDH) assumption in in G w.r.to �)
The DDH assumption holds in G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g)←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g)←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r) = �]

Theorem 1
Diffie-Hellman key-exchange is secret against eavesdroppers under
the DDH assumption in G w.r.to �.
Proof.
Secrecy requirement is same as the assumption!

10 / 18

When is it Secret Against Eavesdroppers?...
Assumption 2 (Decisional DH (DDH) assumption in in G w.r.to �)
The DDH assumption holds in G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g)←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g)←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r) = �]

Theorem 1
Diffie-Hellman key-exchange is secret against eavesdroppers under
the DDH assumption in G w.r.to �.
Proof.
Secrecy requirement is same as the assumption!
Exercise 5
But I did slightly cheat! Figure out where.

10 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

Where is DDH Assumption Known to Hold?
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

11 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

12 / 18

What About Secrecy Against Active ���?

What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

Insecure against active adversary

12 / 18

Plan for this Lecture

1 Key Exchange Protocol

2 Diffie-Hellman Key-Exchange Protocol

3 Exchanging Multiple Keys

Let’s Try Exchanging Multiple Keys

The setting:
Alice and Bob want to establish a shared key kAB ∈ {�, �}n in
presence of an eavesdropper ���∗

13 / 18

Let’s Try Exchanging Multiple Keys

The setting:
Alice and Bob want to establish a shared key kAB ∈ {�, �}n in
presence of an eavesdropper ���∗
Charlie and David want to do the same

13 / 18

Let’s Try Exchanging Multiple Keys

The setting:
Alice and Bob want to establish a shared key kAB ∈ {�, �}n in
presence of an eavesdropper ���∗
Charlie and David want to do the same

In general: t pairs of parties, t pairwise shared keys
Secrecy: the t shared keys should be indistinguishable to ���∗
from t random keys (given all transcripts)

13 / 18

Let’s Try Exchanging Multiple Keys

The setting:
Alice and Bob want to establish a shared key kAB ∈ {�, �}n in
presence of an eavesdropper ���∗
Charlie and David want to do the same

In general: t pairs of parties, t pairwise shared keys
Secrecy: the t shared keys should be indistinguishable to ���∗
from t random keys (given all transcripts)
Solution: run t instances of DH key-exchange protocol

Can use same (G, p, g) across instances
13 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

Hybrid argument with t + � hybrids H�, . . . ,Ht :
All keys real in H�; all keys random in HtIn hybrid world Hi , the first i keys are random and the rest real
Hybrids Hi and Hi+� indistinguishable by DDH assumption 14 / 18

Why is it Secret?
Theorem 2
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof sketch.

Hybrid argument with t + � hybrids H�, . . . ,Ht :
All keys real in H�; all keys random in HtIn hybrid world Hi , the first i keys are random and the rest real
Hybrids Hi and Hi+� indistinguishable by DDH assumption 14 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

15 / 18

But We Can Do Better! Random Self-Reducibility...
Random self-reducibility for DDH over (G, p, g):

1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

Exercise 6
Is the DLog problem random self-reducible? What about CDH? 15 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

But We Can Do Better! Random Self-Reducibility...
Theorem 3
Multiple instances of Diffie-Hellman key-exchange is secret against
eavesdroppers under the DDH assumption in G w.r.to �.
Proof, using random self-reducibility.

16 / 18

To Recap Today’s Lecture

Task 3: sharing key in presence of eavesdropper
Modelled key exchange setting and security

17 / 18

To Recap Today’s Lecture

Task 3: sharing key in presence of eavesdropper
Modelled key exchange setting and security
Diffie-Hellman key exchange protocol

Based security on the DDH assumption
Studied multi-instance Diffie-Hellman key exchange

First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

17 / 18

To Recap Today’s Lecture

Task 3: sharing key in presence of eavesdropper
Modelled key exchange setting and security
Diffie-Hellman key exchange protocol

Based security on the DDH assumption
Studied multi-instance Diffie-Hellman key exchange

First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

Today’s takeaway: structure vs hardness
1 Structure is useful for protocol design and proofs
2 Also makes it susceptible to algorithms

17 / 18

Next Lecture

Task 4: public-key encryption (PKE)
Syntax and security
Relationship with key-exchange
Basic number theory
Goldwasser-Micali PKE

18 / 18

References

1 [KL14, Chapter 11] for details on this lecture.
2 Read the seminal paper by Diffie and Hellman [DH76] for a

description of the namesake key-exchange.
3 Boneh’s survey [Bon98] is an excellent source on the DDH

problem.
4 Random self-reducibility was first studied in [BM84]. Refer to

[FF93] to read more. RSR of the DDH problem were studied in
[Sta96, NR04].

Manuel Blum and Silvio Micali.
How to generate cryptographically strong sequences of pseudo-random bits.
SIAM J. Comput., 13(4):850–864, 1984.
Dan Boneh.
The decision diffie-hellman problem.
In ANTS, volume 1423 of Lecture Notes in Computer Science, pages 48–63.
Springer, 1998.
Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.
Joan Feigenbaum and Lance Fortnow.
Random-self-reducibility of complete sets.
SIAM J. Comput., 22(5):994–1005, 1993.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Moni Naor and Omer Reingold.
Number-theoretic constructions of efficient pseudo-random functions.
J. ACM, 51(2):231–262, 2004.

18 / 18

	Key Exchange Protocol
	Diffie-Hellman Key-Exchange Protocol
	Exchanging Multiple Keys

