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k ∈ {�, �}n in presence of an eavesdropper ���

Why not rely on a key-distribution centre?
E.g.: Needham-Schroeder protocol (used in Kerberos)
Problems: single point of failure; doesn’t scale

Ideally: Alice and Bob execute a protocol, at the end of which
they will have established a key

Key Exchange IRL: HTTPs, TLS, SSH
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A key-exchange protocol Π is secret against eavesdroppers if for
every PPT eavesdropper ��� the following is negligible.

δ(n) := Pr(k,τ)←Π(�n)[���(τ, k) = �] − Pr(k,τ)←Π(�n)
r←{�,�}n

[���(τ, r ) = �]

Exercise 1
How can an unbounded eavesdropper ��� break secrecy?
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But First Some Group Theory...

Exercise 2 (Lagrange’s theorem)
Prove that the order of an element divides order of the (finite) group.
Exercise 3
For a group G of order ℓ with generator g , show using group
axioms that for all a, b ∈ Zℓ , (ga)b = gab = (gb)a

Exercise 4
Prove that a prime-order group is cyclic. Are all cyclic groups of
prime order?
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2 h := g a for a ← Zℓ

Solution: a
Assumption 1 (DLog assumption in G w.r.to �)
The DLog assumption in G w.r.to � holds if solving the DLog
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1 Alice→Bob: Send ((G, p, g ), hA := g a), where (G, p, g ) ← �(�n)

and a ← Zp

2 Alice←Bob: Send hB := gb for b ← Zp

3 Alice outputs kA := (hB )a; Bob outputs kB := (hA)b
Correctness of key generation:
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What does ��� see? The transcript is (hA := ga, hB := gb)
What if DLog problem is easy over G?

Then ��� can invert hA to get a and compute k = haBIs DLog problem being hard sufficient?
No, what if ��� can compute g ab given g a and gb?
This is the “computational Diffie-Hellman” (CDH) problem

Is CDH problem being hard sufficient?
What if ��� can distinguish g ab from random group elements?
There exist such groups!

10 / 18
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The DDH assumption holds in G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g )←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g )←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r ) = �]

Theorem 1
Diffie-Hellman key-exchange is secret against eavesdroppers under
the DDH assumption in G w.r.to �.
Proof.
Secrecy requirement is same as the assumption!
Exercise 5
But I did slightly cheat! Figure out where.
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What if ��� is an active adversary?
Recall that active ��� can intercept/tamper messages

There is a person-in-the-middle attack!
Pretends to be Alice to Bob and Bob to Alice
��� sets up two separate key exchanges with Alice and Bob

Insecure against active adversary
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Plan for this Lecture

1 Key Exchange Protocol

2 Diffie-Hellman Key-Exchange Protocol

3 Exchanging Multiple Keys
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Alice and Bob want to establish a shared key kAB ∈ {�, �}n in
presence of an eavesdropper ���∗
Charlie and David want to do the same

In general: t pairs of parties, t pairwise shared keys
Secrecy: the t shared keys should be indistinguishable to ���∗
from t random keys (given all transcripts)
Solution: run t instances of DH key-exchange protocol

Can use same (G, p, g ) across instances
13 / 18
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1 Given instance of DDH 7→ random instance of DDH
2 Solve given instance of DDH ⇐ solve random instance of DDH

Claim 1
The DDH problem over G is random self-reducible
Proof. ∃�′ against given instance ⇐ ∃� against random instance.

Exercise 6
Is the DLog problem random self-reducible? What about CDH? 15 / 18
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To Recap Today’s Lecture

Task 3: sharing key in presence of eavesdropper
Modelled key exchange setting and security
Diffie-Hellman key exchange protocol

Based security on the DDH assumption
Studied multi-instance Diffie-Hellman key exchange

First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

Today’s takeaway: structure vs hardness
1 Structure is useful for protocol design and proofs
2 Also makes it susceptible to algorithms
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Next Lecture

Task 4: public-key encryption (PKE)
Syntax and security
Relationship with key-exchange
Basic number theory
Goldwasser-Micali PKE

18 / 18
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