

CS783: Theoretical Foundations of Cryptography

Lecture 9 (27/Aug/24)

Instructor: Chethan Kamath

Task 3: sharing key in presence of eavesdroppers
 Modelled key exchange setting and security

■ Task 3: sharing key in presence of eavesdroppers

- Diffie-Hellman key exchange (DHKE) protocol
 - Basic introduction to groups
 - Based security on the DDH assumption in (prime-order) groups

■ Task 3: sharing key in presence of eavesdroppers

- Diffie-Hellman key exchange (DHKE) protocol
 - Basic introduction to groups
 - Based security on the DDH assumption in (prime-order) groups
- Looked at multi-instance DHKE
 - First proof using hybrid argument
 - Second proof beats hybrid argument via *random self-reducibility*

■ Task 3: sharing key in presence of eavesdroppers

- Diffie-Hellman key exchange (DHKE) protocol
 - Basic introduction to groups
 - Based security on the DDH assumption in (prime-order) groups
- Looked at multi-instance DHKE
 - First proof using hybrid argument
 - Second proof beats hybrid argument via *random self-reducibility*
- Takeaway: structure vs. hardness
 - Some groups have *sufficient structure* while *remaining hard*

■ Task 3: sharing key in presence of eavesdroppers

- Diffie-Hellman key exchange (DHKE) protocol
 - Basic introduction to groups
 - Based security on the DDH assumption in (prime-order) groups
- Looked at multi-instance DHKE
 - First proof using hybrid argument
 - Second proof beats hybrid argument via *random self-reducibility*
- Takeaway: structure vs. hardness
 - Some groups have sufficient structure while remaining hard

■ Today we focus on Task 5: encryption using *public keys*

■ Today we focus on Task 5: encryption using *public keys*

■ Today we focus on Task 5: encryption using *public keys*

General *template*:

- 1 Identify the task Public-key encryption
- 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

General template: Identify the task Public-Key encryption Eavesdroppers Come up with precise threat model M (a.k.a security model) Adversary/Attack: What are the adversary's capabilities? Security Goal: What does it mean to be secure?

- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

General template:
Identify the task Public-Key encryption Eavesdroppers
Come up with precise threat model M (a.k.a security model)
Adversary/Attack: What are the adversary's capabilities?
Security Goal: What does it mean to be secure?
Construct a scheme Π I) ElCornal PKE 2) Coldwasser-Micali PKE
Formally prove that Π in secure in model M

ieneral *template*: I Identify the task Public-key encryption Eavesdroppers General *template*: 2 Come up with precise threat model M (a.k.a security model) Adversary/Attack: What are the adversary's capabilities? Security Goal: What does it mean to be secure? ______ 3 Construct a scheme (1) El Comal PKE 2) Coldwasser-Micali PKE 4 Formally prove that Π in secure in model M(1) Assuming DDH 2) Assuming hardness of "quaratic residuosity" (QR) problem

1 Public-Key Encryption (PKE)

2 ElGamal PKE ← DDH

3 Goldwasser-Micali PKE 🔶 🖓

1 Public-Key Encryption (PKE)

2 ElGamal PKE ← ₽₽₩

3 Goldwasser-Micali PKE 🧼 🕅

■ Recall the SKE setting: Alice and Bob *share* $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve

Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **p***k*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **p***k*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **p***k*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **pk**; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob *share* $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key pk*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob *share* $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key pk*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key pk*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve
 - 3 Alice decrypts using her secret key sk (related to pk)

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **p***k*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve
 - 3 Alice decrypts using her secret key sk (related to pk)

- Recall the SKE setting: Alice and Bob share $k \in \{0, 1\}^n$ and want to securely communicate in presence of *eavesdropper* Eve
- The *public-key* setting:
 - 1 Alice announces a *public key* **p***k*; known to *everyone*!
 - 2 Bob wants to use *pk* to secretly send a message *to* Alice in presence of Eve
 - 3 Alice decrypts using her secret key sk (related to pk)
- Advantage: scalability! It suffices to have one "key" per user

■ PKE IRL: PGP, hybrid encryption

Definiton 1 (Public-Key Encryption (PKE))

Definiton 1 (Public-Key Encryption (PKE))

(pk,sk)← Gen(In)

Definiton 1 (Public-Key Encryption (PKE))

(pk,sk) ← Gen(1) PK Alice

Definiton 1 (Public-Key Encryption (PKE))

Syntax of Public-Key Encryption

Definiton 1 (Public-Key Encryption (PKE))

A PKE Π is a triple of efficient algorithms (Gen, Enc, Dec) with the following syntax:

 $(pk_1,sk) \leftarrow Gen(1^n)$ m_B:= Dec(sk,C) (LEEnc(PK,m) С Alice

Syntax of Public-Key Encryption

Definiton 1 (Public-Key Encryption (PKE))

A PKE Π is a triple of efficient algorithms (Gen, Enc, Dec) with the following syntax:

Syntax of Public-Key Encryption

Definiton 1 (Public-Key Encryption (PKE))

A PKE Π is a triple of efficient algorithms (Gen, Enc, Dec) with the following syntax:

Output: Provide the second second

■ Recall CPA-secrecy requirement in the SKE setting

Recall CPA-secrecy requirement in the SKE setting

■ Recall CPA-secrecy requirement in the SKE setting

Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

Recall CPA-secrecy requirement in the SKE setting
 What is different in the PKE setting?

■ The public key known to Eve ⇒ encryption oracle "redundant"

Recall CPA-secrecy requirement in the SKE setting
 What is different in the PKE setting?

- The public key known to Eve ⇒ encryption oracle "redundant"
- Eavesdropper=chosen-plaintext attacker!

Definiton 2 (CPA Secrecy for PKE)

A PKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT eavesdropper *Eve*, the following is negligible:

$$\delta(n) := \begin{vmatrix} \Pr_{\substack{(pk,sk) \leftarrow \operatorname{Gen}(1^n) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_0) \end{vmatrix}} \begin{bmatrix} \operatorname{Eve}(c) = 0 \end{bmatrix} - \Pr_{\substack{(pk,sk) \leftarrow \operatorname{Gen}(1^n) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_1) \end{vmatrix}} \begin{bmatrix} \operatorname{Eve}(c) = 0 \end{bmatrix}$$

Recall CPA-secrecy requirement in the SKE setting
 What is different in the PKE setting?

- The public key known to Eve ⇒ encryption oracle "redundant"
- Eavesdropper=chosen-plaintext attacker!

Definiton 2 (CPA Secrecy for PKE)

A PKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT eavesdropper *Eve*, the following is negligible:

$$\delta(n) := \begin{vmatrix} \Pr[\operatorname{Eve}(c) = 0] - \Pr[\operatorname{Eve}(c) = 0] \\ (pk,sk) \leftarrow \operatorname{Gen}(1^n) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_0) \end{vmatrix} \qquad (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_1) \end{cases} \qquad (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_1) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ c \leftarrow \operatorname{Enc}(pk,m_1) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk) \\ (m_0,m_1) \leftarrow \operatorname{Eve}(pk$$

Recall CPA-secrecy requirement in the SKE setting
 What is different in the PKE setting?

- The public key known to Eve ⇒ encryption oracle "redundant"
- Eavesdropper=chosen-plaintext attacker!

Definiton 2 (CPA Secrecy for PKE)

A PKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT eavesdropper *Eve*, the following is negligible:

$$\delta(n) := \left| \begin{array}{c} \Pr[\mathsf{Eve}(c) = 0] - \Pr[\mathsf{Eve}(c) = 0] \\ (pk,sk) \leftarrow \mathsf{Gen}(1^n) \\ (m_0,m_1) \leftarrow \mathsf{Eve}(pk) \\ c \leftarrow \mathsf{Enc}(pk,m_0) \end{array} \right|^{''} \\ \downarrow \mathsf{Left} \ \mathsf{world}^{''} \\ \mathsf{verter}(pk,m_1) \leftarrow \mathsf{Eve}(pk) \\ \mathsf{verter}(pk,m_1) \\ \mathsf{verter}$$

■ Alternative, equivalent notion: semantic security

■ Ciphertext doesn't leak (non-trivial) information about plaintext

Recall CPA-secrecy requirement in the SKE setting
 What is different in the PKE setting?

- The public key known to Eve ⇒ encryption oracle "redundant"
- Eavesdropper=chosen-plaintext attacker!

Definiton 2 (CPA Secrecy for PKE)

A PKE Π = (Gen, Enc, Dec) is CPA-secret if for every PPT eavesdropper *Eve*, the following is negligible:

 \equiv Alternative, equivalent notion: semantic security

- Ciphertext doesn't leak (non-trivial) information about plaintext
- +1 Stronger notion: secrecy against chosen-ciphertext attacker

Plan for this Lecture

1 Public-Key Encryption (PKE)

2 ElGamal PKE ← ₽₽₩

3 Goldwasser-Micali PKE 🧼 🕅

Definiton 3 (Group axioms)

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse. \mathbb{G} Abelian if it additionally satisfies 5) commutativity.

Defintion 3 (Group axioms)

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse. \mathbb{G} Abelian if it additionally satisfies 5) commutativity.

Definiton 4 (Group terminology)

- Order of the group: $|\mathcal{G}|$
- Order of an element g: smallest ℓ such that $g^{\ell} = 1$
- Cyclic group: there exists an element $g \in \mathcal{G}$ (a "generator") with order $\ell = |\mathcal{G}|$

Definition 3 (Group axioms)

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse. G Abelian if it additionally satisfies 5) commutativity.

Definition 4 (Group terminology)

- Order of the group: $|\mathcal{G}|$
- Order of an element g: smallest ℓ such that $g^{\ell} = 1$
- Cyclic group: there exists an element $\mathbf{g} \in \mathcal{G}$ (a "generator") with order $\ell = |\mathcal{G}|$

"exponentiation"

Assumption 1 (DLog assumption in \mathbb{G} w.r.to S)

The DLog assumption in cyclic group \mathbb{G} w.r.to S holds if for all PPT inverters Inv, the following is negligible:

$$\delta(\mathbf{n}) := \Pr_{\substack{(\mathbb{G}, \ell, g) \leftarrow \mathsf{S}(1^n) \\ \mathbf{a} \leftarrow \mathbb{Z}_{\ell}}}[\mathsf{Inv}((\mathbb{G}, \ell, g), g^{\mathbf{a}}) = \mathbf{a}]$$

Assumption 1 (DLog assumption in \mathbb{G} w.r.to S)

The DLog assumption in cyclic group \mathbb{G} w.r.to S holds if for all PPT inverters Inv, the following is negligible:

$$\delta(\mathbf{n}) := \Pr_{\substack{(\mathbb{G}, \ell, g) \leftarrow \mathsf{S}(1^n) \\ \mathbf{a} \leftarrow \mathbb{Z}_{\ell}}}[\mathsf{Inv}((\mathbb{G}, \ell, g), g^{\mathbf{a}}) = \mathbf{a}]$$

Assumption 2 (DDH assumption in in \mathbb{G} w.r.to S)

The DDH assumption holds in cyclic group \mathbb{G} w.r.to **S** if for all PPT distinguishers **D**, the following is negligible:

$$\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow S(1^n)\\a,b\leftarrow\mathbb{Z}_{\ell}}}\left[\mathsf{D}(g^a,g^b,g^{ab})=0\right]-\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow S(1^n)\\a,b,r\leftarrow\mathbb{Z}_{\ell}}}\left[\mathsf{D}(g^a,g^b,g^{r})=0\right]$$

Pseudocode 1 (OTP over $({0,1}^n, \oplus)$ with message space ${0,1}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 1 (OTP over $({0,1}^n, \oplus)$ with message space ${0,1}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 1 (OTP over $({0,1}^n, \oplus)$ with message space ${0,1}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 1 (OTP over $({0,1}^n, \oplus)$ with message space ${0,1}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 2 (OTP over group $\mathbb{G} := (\mathcal{G}, \cdot)$ with message space \mathcal{G})

• Key generation Gen: output $k \leftarrow \mathcal{G}$

Pseudocode 1 (OTP over $(\{0,1\}^n, \oplus)$ with message space $\{0,1\}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 2 (OTP over group $\mathbb{G} := (\mathcal{G}, \cdot)$ with message space \mathcal{G})

- Key generation Gen: output $k \leftarrow \mathcal{G}$
- Encryption Enc(k, m): output $c := k \cdot m$

Pseudocode 1 (OTP over $(\{0,1\}^n, \oplus)$ with message space $\{0,1\}^n$)

- Key generation Gen: output $k \leftarrow \{0, 1\}^n$
- Encryption Enc(k, m): output $c := k \oplus m$
- Decryption Dec(k, c): output $m := k \oplus c$

Pseudocode 2 (OTP over group $\mathbb{G} := (\mathcal{G}, \cdot)$ with message space \mathcal{G})

- Key generation Gen: output $k \leftarrow \mathcal{G}$
- Encryption Enc(k, m): output $c := k \cdot m$
- Decryption Dec(k, c): output $m := k^{-1} \cdot c$

• Our ciphertexts will be of form $c := k \cdot m$

- Our ciphertexts will be of form $c := k \cdot m$
- We need:
 - 1 Structure: two ways to generate the OTP k
 - 2 Eve mustn't be able to generate this k from pk and ciphertext c

- Our ciphertexts will be of form $c := k \cdot m$
- We need:
 - 1 Structure: two ways to generate the OTP k
 - **2** Eve mustn't be able to generate this k from pk and ciphertext c
- Any ideas on
 - 1 What can the public key *pk* be?
 - 2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?

- Our ciphertexts will be of form $c := k \cdot m$
- We need:

1 Structure: two ways to generate the OTP k

2 Eve mustn't be able to generate this k from pk and ciphertext c

🥐 Any ideas on

1 What can the public key *pk* be?

2 How to generate k?
Pseudocode 3 (ElGamal PKE over group $\mathbb{G} = (\mathcal{G}, \cdot)$)

• Key generation $Gen(1^n)$:

- 1 Sample group $(\mathbb{G}, p, g) \leftarrow S(1^n)$
- 2 Sample random index $\mathbf{a} \leftarrow \mathbb{Z}_p$
- 3 *Output* $(pk := g^a, sk := a)$

Correctness of decryption:

Correctness of decryption:

Theorem 1 (DDH \rightarrow CPA-PKE)

ElGamal PKE is CPA-secret under DDH assumption in \mathbb{G} w.r.to S.

Proof sketch. Hybrid argument. Four hybrids H_0, H_0', H_1'

```
Theorem 1 (DDH \rightarrow CPA-PKE)
```



```
Theorem 1 (DDH \rightarrow CPA-PKE)
```


Theorem 1 (DDH \rightarrow CPA-PKE)

Claim 1 (Two-message KE \rightarrow CPA-PKE)

```
Claim 1 (Two-message KE \rightarrow CPA-PKE)
```


Claim 1 (Two-message KE \rightarrow CPA-PKE)

Claim 1 (Two-message $KE \rightarrow CPA-PKE$)

Claim 1 (Two-message $KE \rightarrow CPA-PKE$)

If two-message key exchange protocol Π exists then so does PKE.

Exercise 1 (Converse to Claim 1: two-message KE \leftarrow CPA-PKE) If PKE exists then so does two-message key exchange.

Plan for this Lecture

1 Public-Key Encryption (PKE)

2 ElGamal PKE - DDH

3 Goldwasser-Micali PKE 🔶 🖓

■ 2-1 map since 2 is not invertible modulo 2p'

 \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots

■ 2-1 map since 2 is not invertible modulo 2p'

 \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots

■ 2-1 map since 2 is not invertible modulo 2p'

 \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots

• 2-1 map since 2 is not invertible modulo 2p'

 \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots

■ Is it possible to *test* if $y \in \mathbb{Z}_p^{\times}(+)$?

- 2-1 map since 2 is not invertible modulo 2p'
 - \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots
- Is it possible to *test* if $y \in \mathbb{Z}_p^{\times}(+)$? Yes:
 - Compute discrete log x of y w.r.to some generator g

•
$$y \in \mathbb{Z}_p^{\times}(+)$$
 if x is even

- 2-1 map since 2 is not invertible modulo 2p'
 - \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots
- Is it possible to *test* if $y \in \mathbb{Z}_p^{\times}(+)$? Yes:
 - Compute discrete log x of y w.r.to *some* generator g

•
$$y \in \mathbb{Z}_p^{\times}(+)$$
 if x is even

■ Is it possible to *efficiently* test if $y \in \mathbb{Z}_p^{\times}(+)$? Yes:

• Compute Legendre symbol $y^{(p-1)/2} \in \{\pm 1\}$

•
$$y \in \mathbb{Z}_p^{\times}(+)$$
 iff its value is $+1$

■ 2–1 map since 2 is not invertible modulo 2p'

 \Rightarrow Only 1/2 the elements $\mathbb{Z}_p^{\times}(+) \subset \mathbb{Z}_p^{\times}$ have square roots

■ Is it possible to *test* if $y \in \mathbb{Z}_p^{\times}(+)$? Yes:

• Compute discrete log x of y w.r.to some generator g

• $y \in \mathbb{Z}_p^{\times}(+)$ if x is even

■ Is it possible to *efficiently* test if $y \in \mathbb{Z}_p^{\times}(+)$? Yes:

- Compute Legendre symbol $y^{(p-1)/2} \in \{\pm 1\}$
- $y \in \mathbb{Z}_p^{\times}(+)$ iff its value is +1

Exercise 2 (Hint: Legendre symbol is multiplicative)

Show that DDH assumption doesn't hold in $(\mathbb{Z}_{p}^{\times}, \cdot)$

Assumption 3 (Quadratic residuosity (QR) assumption in $(\mathbb{Z}_N^{\times}, \cdot)$)

The QR assumption w.r.to S holds if for all distinguishers D, the following is negligible:

$$\delta(n) := \Pr_{\substack{\mathsf{N} \leftarrow \mathsf{S}(1^n) \\ y \leftarrow \mathbb{Z}_N^{\times}(+,+)}} \left[\mathsf{D}(\mathsf{N}, y) = \mathbf{0} \right] - \Pr_{\substack{\mathsf{N} \leftarrow \mathsf{S}(1^n) \\ y \leftarrow \mathbb{Z}_N^{\times}(-,-)}} \left[\mathsf{D}(\mathsf{N}, y) = \mathbf{0} \right]$$

■ Key idea: encode message in the "sign" ■ $0 \mapsto \mathbb{Z}_N^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_N^{\times}(-,-)$

■ Key idea: encode message in the "sign"

- $0 \mapsto \mathbb{Z}_{N}^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_{N}^{\times}(-,-)$
- Exploit the fact that $-1 \in \mathbb{Z}_N^{\times}(-, -)$

Pseudocode 4 (Goldwasser-Micali PKE over $(\mathbb{Z}_{N}^{\times}, \cdot)$)

• Key generation $Gen(1^n)$:

- 1 Sample modulus with factors $(N, (p, q)) \leftarrow S(1^n)$
- 2 *Output* (pk := N, sk := (p, q))

■ Key idea: encode message in the "sign"

- $0 \mapsto \mathbb{Z}_N^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_N^{\times}(-,-)$
- Exploit the fact that $-1 \in \mathbb{Z}_N^{\times}(-, -)$

Pseudocode 4 (Goldwasser-Micali PKE over $(\mathbb{Z}_{N}^{\times}, \cdot)$)

• Key generation $Gen(1^n)$:

- 1 Sample modulus with factors $(N, (p, q)) \leftarrow S(1^n)$
- 2 Output (pk := N, sk := (p, q))

■ Encryption Enc(pk, m):

1 Sample random
$$r \leftarrow \mathbb{Z}_N^{\times}$$

2 Output $c := (-1)^m \cdot r^2 \mod N$

■ Key idea: encode message in the "sign"

- $0 \mapsto \mathbb{Z}_{N}^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_{N}^{\times}(-,-)$
- Exploit the fact that $-1 \in \mathbb{Z}_N^{\times}(-, -)$

Pseudocode 4 (Goldwasser-Micali PKE over $(\mathbb{Z}_{N}^{\times}, \cdot)$)

■ Key generation Gen(1ⁿ):

- 1 Sample modulus with factors $(N, (p, q)) \leftarrow S(1^n)$
- 2 Output (pk := N, sk := (p, q))

■ Encryption Enc(pk, m):

- 1 Sample random $r \leftarrow \mathbb{Z}_N^{\times}$
- 2 Output $c := (-1)^m \cdot r^2 \mod N$

■ Decryption Dec(*sk*, *c*): output

$$\begin{cases} 0 & if \ c \in \mathbb{Z}_N^{\times}(+,+) = \mathbb{Z}_p^{\times}(+) \cong \mathbb{Z}_q^{\times}(+) \\ 1 & otherwise \end{cases}$$

■ Key idea: encode message in the "sign"

- $0 \mapsto \mathbb{Z}_N^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_N^{\times}(-,-)$
- Exploit the fact that $-1 \in \mathbb{Z}_N^{\times}(-, -)$

Pseudocode 4 (Goldwasser-Micali PKE over $(\mathbb{Z}_{N}^{\times}, \cdot)$)

■ Key generation Gen(1ⁿ):

- 1 Sample modulus with factors $(N, (p, q)) \leftarrow S(1^n)$
- 2 Output (pk := N, sk := (p, q))

■ Encryption Enc(pk, m):

- 1 Sample random $r \leftarrow \mathbb{Z}_N^{\times}$
- 2 Output $c := (-1)^m \cdot r^2 \mod N$

■ Decryption Dec(*sk*, *c*): output

$$\begin{cases} 0 & if \ c \in \mathbb{Z}_N^{\times}(+,+) = \mathbb{Z}_p^{\times}(+) \cong \mathbb{Z}_q^{\times}(+) \\ 1 & otherwise \end{cases}$$

■ Correctness of decryption:

■ Key idea: encode message in the "sign"

- $0 \mapsto \mathbb{Z}_N^{\times}(+,+)$ and $1 \mapsto \mathbb{Z}_N^{\times}(-,-)$
- Exploit the fact that $-1 \in \mathbb{Z}_N^{\times}(-, -)$

Pseudocode 4 (Goldwasser-Micali PKE over $(\mathbb{Z}_{N}^{\times}, \cdot)$)

■ Key generation Gen(1ⁿ):

- 1 Sample modulus with factors $(N, (p, q)) \leftarrow S(1^n)$
- 2 Output (pk := N, sk := (p, q))

■ Encryption Enc(pk, m):

- 1 Sample random $r \leftarrow \mathbb{Z}_N^{\times}$
- 2 Output $c := (-1)^m \cdot r^2 \mod N$

■ Decryption Dec(*sk*, *c*): output

$$\begin{cases} 0 & if \ c \in \mathbb{Z}_N^{\times}(+,+) = \mathbb{Z}_p^{\times}(+) \stackrel{\sim}{=} \mathbb{Z}_q^{\times}(+) \\ 1 & otherwise \end{cases}$$

• Correctness of decryption: since $r^2 \in \mathbb{Z}_N^{\times}(+,+)$, $c \in \mathbb{Z}_N^{\times}(+,+)$ iff m=0

Theorem 2 (QR \rightarrow CPA-PKE)

Pseudocode 5 (Modified encryption algorithm)

Encryption
$$Enc(pk, m =: (m_1, \ldots, m_\ell))$$
:

- 1 Sample random $r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_N^{\times}$
- 2 Output c_1, \ldots, c_ℓ , where $c_i := (-1)^{m_i} \cdot r_i^2 \mod N$

Pseudocode 5 (Modified encryption algorithm)

- Encryption $Enc(pk, m =: (m_1, \ldots, m_\ell))$:
 - 1 Sample random $r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_N^{\times}$
 - 2 Output c_1, \ldots, c_ℓ , where $c_i := (-1)^{m_i} \cdot r_i^2 \mod N$

■ Can be shown to be CPA-secret using *hybrid argument* ■ Loss in distinguishing advantage: 1/ℓ

Pseudocode 5 (Modified encryption algorithm)

- Encryption $Enc(pk, m =: (m_1, \ldots, m_\ell))$:
 - 1 Sample random $r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_N^{\times}$
 - 2 Output c_1, \ldots, c_ℓ , where $c_i := (-1)^{m_i} \cdot r_i^2 \mod N$
- Can be shown to be CPA-secret using *hybrid argument* Loss in distinguishing advantage: 1/ℓ
- Can we do better? QR is random self-reducible
 - **1** Given instance of $QR \mapsto$ random instance of QR
 - 2 Solve given instance of $QR \leftarrow$ solve random instance of QR

Pseudocode 5 (Modified encryption algorithm)

- Encryption $Enc(pk, m =: (m_1, \ldots, m_\ell))$:
 - 1 Sample random $r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_N^{\times}$
 - 2 Output c_1, \ldots, c_ℓ , where $c_i := (-1)^{m_i} \cdot r_i^2 \mod N$
- Can be shown to be CPA-secret using *hybrid argument* Loss in distinguishing advantage: 1/ℓ
- Can we do better? QR is random self-reducible
 - **1** Given instance of $QR \mapsto$ random instance of QR
 - 2 Solve given instance of $QR \leftarrow$ solve random instance of QR

Exercise 3

- 1 Show that QR is random self-reducible
- 2 Can we exploit this to get a tight reduction for multiple bits?

■ Task 4: Public-key encryption

■ Modelled setting and security (CPA secrecy)

■ Task 4: Public-key encryption

- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE, based on DDH assumption
 - Goldwasser-Micali PKE, based on QR assumption

■ Task 4: Public-key encryption

- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE, based on DDH assumption
 - Goldwasser-Micali PKE, based on QR assumption
- Today's takeaway: two-message key-exchange \leftrightarrow PKE

■ Task 4: Public-key encryption

- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE, based on DDH assumption
 - Goldwasser-Micali PKE, based on QR assumption

■ Today's takeaway: two-message key-exchange ↔ PKE

Some open questions:

1 CPA-PKE $\xrightarrow{?}$ CCA-PKE

• Recall that CPA-SKE \rightarrow CCA-SKE!

2 DLog $\xrightarrow{?}$ CPA-PKE

 \blacksquare We know CDH \rightarrow CPA-PKE in the random-oracle model

Next Lecture(s)

■ This Friday (30/Aug): Quiz 1 crib session

■ Nivesh will discuss solutions before.
Next Lecture(s)

■ This Friday (30/Aug): Quiz 1 crib session

• Nivesh will discuss solutions before.

■ Next Tuesday (03/Sep): public-key encryption from lattices

- Lattices and learning with errors (LWE) problem
- Believed to be secure against quantum eavesdroppers!
- Regev's PKE

References

- **1** [KL14, Chapter 12] for details on this lecture.
- Goldwasser-Micali PKE was presented in [GM84]. ElGamal PKE was presented in [ElG84].
- Barak's exposition [Bar17] is an excellent source to understand the interplay of structure and hardness in PKE (and OWF)

Boaz Barak.

The complexity of public-key cryptography.

In *Tutorials on the Foundations of Cryptography*, pages 45–77. Springer International Publishing, 2017.

Taher ElGamal.

A public key cryptosystem and a signature scheme based on discrete logarithms.

In G. R. Blakley and David Chaum, editors, *CRYPTO'84*, volume 196 of *LNCS*, pages 10–18. Springer, Heidelberg, August 1984.

Shafi Goldwasser and Silvio Micali.

Probabilistic encryption.

J. Comput. Syst. Sci., 28(2):270–299, 1984.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.