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1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���
3 Alice decrypts using her secret key sk (related to pk)

Advantage: scalability! It suffices to have one “key” per user
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The Setting: Shared (Private) Keys vs Public Keys...

PKE IRL: PGP, hybrid encryption
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following syntax:

Correctness of decryption: for every n ∈ N, message m ∈ Mn ,
Pr(pk,sk)←���(�n),c←���(pk ,m)[���(sk , c) = m] = �

How can an unbounded eavesdropper ��� break PKE?
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Alternative, equivalent notion: semantic security
Ciphertext doesn’t leak (non-trivial) information about plaintext
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δ(n) := Pr(G,ℓ ,g )←�(�n)
a←Zℓ

[���((G, ℓ , g ), ga) = a]

Assumption 2 (DDH assumption in in G w.r.to �)
The DDH assumption holds in cyclic group G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g )←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g )←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r ) = �]
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Key generation ���(�n):
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3 Output (pk := g a, sk := a)
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Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

Exercise 1 (Converse to Claim 1: two-message KE ← CPA-PKE)
If PKE exists then so does two-message key exchange. 11 / 19



Plan for this Lecture

1 Public-Key Encryption (PKE)

2 ElGamal PKE

3 Goldwasser-Micali PKE
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⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

Is it possible to test if y ∈ Z×
p (+)? Yes:

Compute discrete log x of y w.r.to some generator g
y ∈ Z×

p (+) if x is even
Is it possible to efficiently test if y ∈ Z×

p (+)? Yes:
Compute Legendre symbol y (p−�)/� ∈ {±�}
y ∈ Z×

p (+) iff its value is +�

Exercise 2 (Hint: Legendre symbol is multiplicative)
Show that DDH assumption doesn’t hold in (Z×

p , ·)
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N (+, +)? Yes:

Test if y ∈ Z×
p (+) and y ∈ Z×

q (+)
Is it possible to efficiently test if y ∈ Z×

N (+, +)? Unclear
Can efficiently distinguish Z×

N (+, +) ∪ Z×
N (−, −) from

Z×
N (−, +) ∪ Z×

N (+, −): compute Jacobi symbol
Assumption 3 (Quadratic residuosity (QR) assumption in (Z×

N , ·))
The QR assumption w.r.to � holds if for all distinguishers �, the
following is negligible:

δ(n) := Pr
N←�(�n)

y←Z×
N (+,+)

[�(N, y ) = �] − Pr
N←�(�n)

y←Z×
N (−,−)

[�(N, y ) = �]
14 / 19
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N

2 Output c�, . . . , cℓ , where ci := (−�)mi · r�i mod N

Can be shown to be CPA-secret using hybrid argument
Loss in distinguishing advantage: �/ℓ

Can we do better? QR is random self-reducible
1 Given instance of QR 7→ random instance of QR
2 Solve given instance of QR ⇐ solve random instance of QR

Exercise 3
1 Show that QR is random self-reducible
2 Can we exploit this to get a tight reduction for multiple bits?
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Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE, based on DDH assumption
Goldwasser-Micali PKE, based on QR assumption

Today’s takeaway: two-message key-exchange ↔ PKE

Some open questions:
1 CPA-PKE ?→ CCA-PKE

Recall that CPA-SKE → CCA-SKE!
2 DLog ?→ CPA-PKE

We know CDH → CPA-PKE in the random-oracle model
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Next Lecture(s)

This Friday (30/Aug): Quiz 1 crib session
Nivesh will discuss solutions before.
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Next Lecture(s)

This Friday (30/Aug): Quiz 1 crib session
Nivesh will discuss solutions before.

Next Tuesday (03/Sep): public-key encryption from lattices
Lattices and learning with errors (LWE) problem
Believed to be secure against quantum eavesdroppers!
Regev’s PKE

19 / 19



References

1 [KL14, Chapter 12] for details on this lecture.
2 Goldwasser-Micali PKE was presented in [GM84]. ElGamal

PKE was presented in [ElG84].
3 Barak’s exposition [Bar17] is an excellent source to understand

the interplay of structure and hardness in PKE (and OWF)



Boaz Barak.
The complexity of public-key cryptography.
In Tutorials on the Foundations of Cryptography, pages 45–77. Springer
International Publishing, 2017.
Taher ElGamal.
A public key cryptosystem and a signature scheme based on discrete
logarithms.
In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, Heidelberg, August 1984.
Shafi Goldwasser and Silvio Micali.
Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

19 / 19


	Public-Key Encryption (PKE)
	ElGamal PKE
	Goldwasser-Micali PKE

