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CS783: Theoretical Foundations of Cryptography
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m Recall the SKE setting: Alice and Bob share k € {0,1}" and
want to securely communicate in presence of eavesdropper Eve
m The public-key setting:
1 Alice announces a public key pk; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in
presence of Eve
3 Alice decrypts using her secret key sk (related to pk)

m Advantage: scalability! It suffices to have one “key” per user
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@How can an unbounded eavesdropper Eve break PKE?
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= Alternative, equivalent notion: semantic security
m Ciphertext doesn't leak (non-trivial) information about plaintext

+1 Stronger notion: secrecy against chosen-ciphertext attacker
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Recall Group Theory from Last Lecture...

Assumption 1 (DLog assumption in G w.r.to S)
The DLog assumption in cyclic group G w.rto S holds if for all PPT
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Assumption 2 (DDH assumption in in G w.r.to S)
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One-Time Pad Can be Generalised Over Groups

2y o

Pseudocode 1 (OTP over ({0,1}", @) with message space {0,1}")

m Key generation Gen: output k < {0,1}"
m Encryption Enc(k, m): output c .=k & m
m Decryption Dec(k, c): output m = k & ¢
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m Key generation Gen: output k < {0,1}"
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ElGamal PKE is CPA-secret

Theorem 1 (DDH — CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G wir.to S.
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If two-message key exchange protocol I exists then so does PKE.
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Is it @ Coincidence that ElGamal is Similar to DHKE? No!

Claim 1 (Two-message KE — CPA-PKE)

If two-message key exchange protocol I exists then so does PKE.

Construction 1
TLo-messade ke e A fe
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B"b Alice

... . = ... . A  boo
@Hm does Alice generah (P, s\<)2 Gem(q\c %\rsk massaqe A 03\“9 (ons

kusing (ons e
Has does Bob enury pb? Gergrabe ™ mesade 8y 204 Srpred | «{g g
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Exercise 1 (Converse to Claim 1: two-message KE « CPA-PKE)

If PKE exists then so does two-message key exchange. "
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m 2-1 map since 2 is not invertible modulo 2p’
= Only 1/2 the elements Z;(+) C Z, have square roots

m Is it possible to test if y € Z;(+)? Yes:
m Compute discrete log x of y w.rto some generator g
myEZ,(+) U xiseven

m Is it possible to efficiently test if y € Z;(+)? Yes:

m Compute Legendre symbol yP~12 € {+1}
my € Z,(+) Uf its value is +1

Exercise 2 (Hint: Legendre symbol is multiplicative)

Show that DDH assumption doesn’t hold in (Z )
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Z 7‘%
2 1p(+) 14,4
7p(-) 7, ()
m 4-1 map by Chinese remaindering theorem: Zy = Zj x Zg

= Only 1/4 the elements Zy(+, +) C Zp have square roots
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Squaring Map in (Zy, -
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.......... ZPZaV
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2z =) 5

= Only 1/4 the elements Zy(+, +) C Zy have square roots
m Is it possible to testif y € Zy(+, +)? Yes:

mTestify € Z;(+) andy € Z,(+)

m s it possible to efficiently test if y € Zy(+, +)? Unclear
m Can efficiently distinguish Zy(+, +) U Zy/(—, —) from

Ziy(~

+) U Zy(+
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.......... Lo oA
2 25 G 2p(#) 7/01(@
2 1p(-) 7, () :
m 4-1 map bg Chtri‘éé‘e"r'éh'w'éih‘dé‘r’t‘ri'g"tH‘e'dfé‘rh‘:"va“i'Z;f X Zz.;

= Only 1/4 the elements Zy(+, +) C Zp have square roots
m Is it possible to testif y € Zy(+, +)? Yes:
mTestify € Z;(+) andy € Z,(+)
m s it possible to efficiently test if y € Zy(+, +)? Unclear
m Can efficiently distinguish Zy(+, +) U Zy/(—, —) from
Zy(—, +) U Zy(+, —): compute Jacobt symbol

Assumption 3 (Quadratic residuosity (QR) assumption in (Zy, )

The QR assumption w.r.to S holds if for all distinguishers D, the
following is negligible:

= D —0]— D -
on) = | Pr, DIN.y) =0l | Pr [D(N,y)=0]
yZLy(+.+) y<Zy(=-)
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Coldwasser-Micali PKE is CPA-secret

Theorem 2 (QR — CPA-PKE)
Goldwasser-Mlicali PKE is CPA-secret under QR assumption.

Proof. 9D against QR < JEve against PKE.
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What About Multiple Bits? Encrypt Bit by Bit

Pseudocode 5 (Modified encryption algorithm)

m Encryption Enc(pk, m =: (mq, .. ., my):
1 Sample random ry, . . ., ro — Zy
2 Output cq, ..., co, where ¢; := (—1)™ - r? mod N
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What About Multiple Bits? Encrypt Bit by Bit

Pseudocode 5 (Modified encryption algorithm)

m Encryption Enc(pk, m =: (mq, .. ., my):
1 Sample random ry, . . ., ro — Zy
2 Output cq, ..., co, where ¢; := (—1)™ - r? mod N

m Can be shown to be CPA-secret using hybrid argument
m Loss in distinguishing advantage: 1/¢

m Can we do better? QR is random self-reducible
1 Given instance of QR — random instance of QR
2 Solve given instance of QR « solve random instance of QR

Exercise 3

1 Show that OR is random self-reducible
2 Can we exploit this to get a tight reduction for multiple bits?
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m Task 4: Public-key encryption
m Modelled setting and security (CPA secrecy)
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To Recap Today's Lecture

m Task 4: Public-key encryption
m Modelled setting and security (CPA secrecy)

m Saw two CPA-secret constructions, with proofs:

m ElGamal PKE, based on DDH assumption
m Goldwasser-Micali PKE, based on QR assumption

m Today's takeaway: two-message key-exchange < PKE

m Some open questions:
1 CPA-PKE -5 CCA-PKE
m Recall that CPA-SKE — CCA-SKE!

2 Dlog > CPA-PKE
m We know CDH — CPA-PKE in the random-oracle model
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m This Friday (30/Aug): Quiz 1 crib session

m Nivesh will discuss solutions before.
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Next Lecture(s)

m This Friday (30/Aug): Quiz 1 crib session

m Nivesh will discuss solutions before.

m Next Tuesday (03/Sep): public-key encryption from lattices

m Lattices and learning with errors (LWE) problem
m Believed to be secure against quantum eavesdroppers!
m Regev's PKE
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