
CS783: Theoretical Foundations of Cryptography
Lecture 9 (27/Aug/24)

Instructor: Chethan Kamath

Recall from Last Lecture
Task 3: sharing key in presence of eavesdroppers

Modelled key exchange setting and security

1 / 19

Recall from Last Lecture
Task 3: sharing key in presence of eavesdroppers

Modelled key exchange setting and security

Diffie-Hellman key exchange (DHKE) protocol
Basic introduction to groups
Based security on the DDH assumption in (prime-order) groups

1 / 19

Recall from Last Lecture
Task 3: sharing key in presence of eavesdroppers

Modelled key exchange setting and security

Diffie-Hellman key exchange (DHKE) protocol
Basic introduction to groups
Based security on the DDH assumption in (prime-order) groups

Looked at multi-instance DHKE
First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

1 / 19

Recall from Last Lecture
Task 3: sharing key in presence of eavesdroppers

Modelled key exchange setting and security

Diffie-Hellman key exchange (DHKE) protocol
Basic introduction to groups
Based security on the DDH assumption in (prime-order) groups

Looked at multi-instance DHKE
First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

Takeaway: structure vs. hardness
Some groups have sufficient structure while remaining hard

1 / 19

Recall from Last Lecture
Task 3: sharing key in presence of eavesdroppers

Modelled key exchange setting and security

Diffie-Hellman key exchange (DHKE) protocol
Basic introduction to groups
Based security on the DDH assumption in (prime-order) groups

Looked at multi-instance DHKE
First proof using hybrid argument
Second proof beats hybrid argument via random self-reducibility

Takeaway: structure vs. hardness
Some groups have sufficient structure while remaining hard

1 / 19

Plan for This Lecture...
Minicrypt to Cryptomania

2 / 19

Plan for This Lecture...
Minicrypt to Cryptomania

Today we focus on Task 5: encryption using public keys

2 / 19

Plan for This Lecture...
Minicrypt to Cryptomania

Today we focus on Task 5: encryption using public keys

2 / 19

Plan for This Lecture...
Minicrypt to Cryptomania

Today we focus on Task 5: encryption using public keys

2 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 19

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model M (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model M

2 / 19

Plan for This Lecture...

1 Public-Key Encryption (PKE)

2 ElGamal PKE

3 Goldwasser-Micali PKE

Plan for This Lecture...

1 Public-Key Encryption (PKE)

2 ElGamal PKE

3 Goldwasser-Micali PKE

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���
3 Alice decrypts using her secret key sk (related to pk)

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���
3 Alice decrypts using her secret key sk (related to pk)

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

Recall the SKE setting: Alice and Bob share k ∈ {�, �}n and
want to securely communicate in presence of eavesdropper ���
The public-key setting:

1 Alice announces a public key pk ; known to everyone!
2 Bob wants to use pk to secretly send a message to Alice in

presence of ���
3 Alice decrypts using her secret key sk (related to pk)

Advantage: scalability! It suffices to have one “key” per user

3 / 19

The Setting: Shared (Private) Keys vs Public Keys...

3 / 19Credit for images: (**icour.fr) (***cs.miami.edu (Rosenberg)) (****Oded Goldreich)

The Setting: Shared (Private) Keys vs Public Keys...

3 / 19Credit for images: (**icour.fr) (***cs.miami.edu (Rosenberg)) (****Oded Goldreich)

**

The Setting: Shared (Private) Keys vs Public Keys...

3 / 19Credit for images: (**icour.fr) (***cs.miami.edu (Rosenberg)) (****Oded Goldreich)

**

The Setting: Shared (Private) Keys vs Public Keys...

3 / 19Credit for images: (**icour.fr) (***cs.miami.edu (Rosenberg)) (****Oded Goldreich)

**

The Setting: Shared (Private) Keys vs Public Keys...

PKE IRL: PGP, hybrid encryption

3 / 19Credit for images: (**icour.fr) (***cs.miami.edu (Rosenberg)) (****Oded Goldreich)

**

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

Correctness of decryption: for every n ∈ N, message m ∈ Mn ,
Pr(pk,sk)←���(�n),c←���(pk ,m)[���(sk , c) = m] = �

4 / 19

Syntax of Public-Key Encryption
Defintion 1 (Public-Key Encryption (PKE))
A PKE Π is a triple of efficient algorithms (���, ���,���) with the
following syntax:

Correctness of decryption: for every n ∈ N, message m ∈ Mn ,
Pr(pk,sk)←���(�n),c←���(pk ,m)[���(sk , c) = m] = �

How can an unbounded eavesdropper ��� break PKE?
4 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

The public key known to ��� ⇒ encryption oracle “redundant”

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

The public key known to ��� ⇒ encryption oracle “redundant”
Eavesdropper=chosen-plaintext attacker!

Defintion 2 (CPA Secrecy for PKE)
A PKE Π = (���, ���,���) is CPA-secret if for every PPT
eavesdropper Eve , the following is negligible:

δ(n) := Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �] − Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �]

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

The public key known to ��� ⇒ encryption oracle “redundant”
Eavesdropper=chosen-plaintext attacker!

Defintion 2 (CPA Secrecy for PKE)
A PKE Π = (���, ���,���) is CPA-secret if for every PPT
eavesdropper Eve , the following is negligible:

δ(n) := Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �] − Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �]

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

The public key known to ��� ⇒ encryption oracle “redundant”
Eavesdropper=chosen-plaintext attacker!

Defintion 2 (CPA Secrecy for PKE)
A PKE Π = (���, ���,���) is CPA-secret if for every PPT
eavesdropper Eve , the following is negligible:

δ(n) := Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �] − Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �]

Alternative, equivalent notion: semantic security
Ciphertext doesn’t leak (non-trivial) information about plaintext

5 / 19

How to Define Security?...
Recall CPA-secrecy requirement in the SKE setting
What is different in the PKE setting?

The public key known to ��� ⇒ encryption oracle “redundant”
Eavesdropper=chosen-plaintext attacker!

Defintion 2 (CPA Secrecy for PKE)
A PKE Π = (���, ���,���) is CPA-secret if for every PPT
eavesdropper Eve , the following is negligible:

δ(n) := Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �] − Pr(pk,sk)←���(�n)(m�,m�)←���(pk)
c←���(pk ,m�)

[���(c) = �]

Alternative, equivalent notion: semantic security
Ciphertext doesn’t leak (non-trivial) information about plaintext

Stronger notion: secrecy against chosen-ciphertext attacker
5 / 19

Plan for this Lecture

1 Public-Key Encryption (PKE)

2 ElGamal PKE

3 Goldwasser-Micali PKE

Recall Group Theory from Last Lecture...
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

6 / 19

Recall Group Theory from Last Lecture...
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group: |G|
Order of an element g : smallest ℓ such that g ℓ = �

Cyclic group: there exists an element g ∈ G (a “generator”)
with order ℓ = |G|

6 / 19

Recall Group Theory from Last Lecture...
Defintion 3 (Group axioms)
A group G is a set G with a binary operation · satisfying: 1) closure
2) associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.
Defintion 4 (Group terminology)

Order of the group: |G|
Order of an element g : smallest ℓ such that g ℓ = �

Cyclic group: there exists an element g ∈ G (a “generator”)
with order ℓ = |G|

6 / 19

Recall Group Theory from Last Lecture...
Assumption 1 (DLog assumption in G w.r.to �)
The DLog assumption in cyclic group G w.r.to � holds if for all PPT
inverters ���, the following is negligible:

δ(n) := Pr(G,ℓ ,g)←�(�n)
a←Zℓ

[���((G, ℓ , g), ga) = a]

6 / 19

Recall Group Theory from Last Lecture...
Assumption 1 (DLog assumption in G w.r.to �)
The DLog assumption in cyclic group G w.r.to � holds if for all PPT
inverters ���, the following is negligible:

δ(n) := Pr(G,ℓ ,g)←�(�n)
a←Zℓ

[���((G, ℓ , g), ga) = a]

Assumption 2 (DDH assumption in in G w.r.to �)
The DDH assumption holds in cyclic group G w.r.to � if for all PPT
distinguishers �, the following is negligible:

Pr(G,ℓ ,g)←�(�n)
a,b←Zℓ

[�(ga, gb, gab) = �] − Pr(G,ℓ ,g)←�(�n)
a,b,r←Zℓ

[�(ga, gb, g r) = �]

6 / 19

Recall Group Theory from Last Lecture...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

6 / 19

Recall Group Theory from Last Lecture...
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

6 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

7 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

7 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

7 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

Pseudocode 2 (OTP over group G := (G, ·) with message space G)
Key generation ���: output k ← G

7 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

Pseudocode 2 (OTP over group G := (G, ·) with message space G)
Key generation ���: output k ← G
Encryption ���(k ,m): output c := k · m

7 / 19

One-Time Pad Can be Generalised Over Groups

Pseudocode 1 (OTP over ({�, �}n, ⊕) with message space {�, �}n)
Key generation ���: output k ← {�, �}n
Encryption ���(k ,m): output c := k ⊕ m

Decryption ���(k , c): output m := k ⊕ c

Pseudocode 2 (OTP over group G := (G, ·) with message space G)
Key generation ���: output k ← G
Encryption ���(k ,m): output c := k · m
Decryption ���(k , c): output m := k−� · c

7 / 19

Let’s Build on Group-Based OTP to Construct a PKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

Let’s Build on Group-Based OTP to Construct a PKE

Our ciphertexts will be of form c := k · m
We need:

1 Structure: two ways to generate the OTP k
2 ��� mustn’t be able to generate this k from pk and ciphertext c

Any ideas on
1 What can the public key pk be?
2 How to generate k?

Hint: we have already exploited this “structure” in DHKE

8 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)
Decryption ���(sk , c =: (c�, c�)): output m := (csk

�
)−� · c�

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)
Decryption ���(sk , c =: (c�, c�)): output m := (csk

�
)−� · c�

Correctness of decryption:

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)
Decryption ���(sk , c =: (c�, c�)): output m := (csk

�
)−� · c�

Correctness of decryption:

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)
Decryption ���(sk , c =: (c�, c�)): output m := (csk

�
)−� · c�

Correctness of decryption:

9 / 19

ElGamal PKE over Group G...
Pseudocode 3 (ElGamal PKE over group G = (G, ·))

Key generation ���(�n):
1 Sample group (G, p, g) ← �(�n)
2 Sample random index a ← Zp

3 Output (pk := g a, sk := a)
Encryption ���(pk ,m):

1 Sample random index b ← Zp , and set k := pkb

2 Output c := (c�, c�) := (k · m, gb)
Decryption ���(sk , c =: (c�, c�)): output m := (csk

�
)−� · c�

Correctness of decryption:

9 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

ElGamal PKE is CPA-secret
Theorem 1 (DDH → CPA-PKE)
ElGamal PKE is CPA-secret under DDH assumption in G w.r.to �.
Proof sketch. Hybrid argument.

10 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

11 / 19

Is it a Coincidence that ElGamal is Similar to DHKE? No!
Claim 1 (Two-message KE → CPA-PKE)
If two-message key exchange protocol Π exists then so does PKE.
Construction 1

Exercise 1 (Converse to Claim 1: two-message KE ← CPA-PKE)
If PKE exists then so does two-message key exchange. 11 / 19

Plan for this Lecture

1 Public-Key Encryption (PKE)

2 ElGamal PKE

3 Goldwasser-Micali PKE

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

But First, Some Number Theory
Addition modulo prime p Multiplication modulo prime p

Multiplication modulo N = pq Elliptic curves modulo prime p

12 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

Is it possible to test if y ∈ Z×
p (+)?

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

Is it possible to test if y ∈ Z×
p (+)? Yes:

Compute discrete log x of y w.r.to some generator g
y ∈ Z×

p (+) if x is even

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

Is it possible to test if y ∈ Z×
p (+)? Yes:

Compute discrete log x of y w.r.to some generator g
y ∈ Z×

p (+) if x is even
Is it possible to efficiently test if y ∈ Z×

p (+)? Yes:
Compute Legendre symbol y (p−�)/� ∈ {±�}
y ∈ Z×

p (+) iff its value is +�

13 / 19

Squaring Map in (Z×
p , ·)

�-� map since � is not invertible modulo �p′
⇒ Only �/� the elements Z×

p (+) ⊂ Z×
p have square roots

Is it possible to test if y ∈ Z×
p (+)? Yes:

Compute discrete log x of y w.r.to some generator g
y ∈ Z×

p (+) if x is even
Is it possible to efficiently test if y ∈ Z×

p (+)? Yes:
Compute Legendre symbol y (p−�)/� ∈ {±�}
y ∈ Z×

p (+) iff its value is +�

Exercise 2 (Hint: Legendre symbol is multiplicative)
Show that DDH assumption doesn’t hold in (Z×

p , ·)
13 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square roots

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square roots

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square rootsIs it possible to test if y ∈ Z×
N (+, +)?

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square rootsIs it possible to test if y ∈ Z×
N (+, +)? Yes:

Test if y ∈ Z×
p (+) and y ∈ Z×

q (+)

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square rootsIs it possible to test if y ∈ Z×
N (+, +)? Yes:

Test if y ∈ Z×
p (+) and y ∈ Z×

q (+)
Is it possible to efficiently test if y ∈ Z×

N (+, +)?

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square rootsIs it possible to test if y ∈ Z×
N (+, +)? Yes:

Test if y ∈ Z×
p (+) and y ∈ Z×

q (+)
Is it possible to efficiently test if y ∈ Z×

N (+, +)? Unclear
Can efficiently distinguish Z×

N (+, +) ∪ Z×
N (−, −) from

Z×
N (−, +) ∪ Z×

N (+, −): compute Jacobi symbol

14 / 19

Squaring Map in (Z×
N , ·)

�-� map by Chinese remaindering theorem: Z×
N

∼= Z×
p × Z×

q⇒ Only �/� the elements Z×
N (+, +) ⊂ Z×

N have square rootsIs it possible to test if y ∈ Z×
N (+, +)? Yes:

Test if y ∈ Z×
p (+) and y ∈ Z×

q (+)
Is it possible to efficiently test if y ∈ Z×

N (+, +)? Unclear
Can efficiently distinguish Z×

N (+, +) ∪ Z×
N (−, −) from

Z×
N (−, +) ∪ Z×

N (+, −): compute Jacobi symbol
Assumption 3 (Quadratic residuosity (QR) assumption in (Z×

N , ·))
The QR assumption w.r.to � holds if for all distinguishers �, the
following is negligible:

δ(n) := Pr
N←�(�n)

y←Z×
N (+,+)

[�(N, y) = �] − Pr
N←�(�n)

y←Z×
N (−,−)

[�(N, y) = �]
14 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)

15 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)
Exploit the fact that −� ∈ Z×

N (−, −)
Pseudocode 4 (Goldwasser-Micali PKE over (Z×

N , ·))
Key generation ���(�n):

1 Sample modulus with factors (N, (p, q)) ← �(�n)
2 Output (pk := N, sk := (p, q))

15 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)
Exploit the fact that −� ∈ Z×

N (−, −)
Pseudocode 4 (Goldwasser-Micali PKE over (Z×

N , ·))
Key generation ���(�n):

1 Sample modulus with factors (N, (p, q)) ← �(�n)
2 Output (pk := N, sk := (p, q))

Encryption ���(pk ,m):
1 Sample random r ← Z×

N

2 Output c := (−�)m · r� mod N

15 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)
Exploit the fact that −� ∈ Z×

N (−, −)
Pseudocode 4 (Goldwasser-Micali PKE over (Z×

N , ·))
Key generation ���(�n):

1 Sample modulus with factors (N, (p, q)) ← �(�n)
2 Output (pk := N, sk := (p, q))

Encryption ���(pk ,m):
1 Sample random r ← Z×

N

2 Output c := (−�)m · r� mod N

Decryption ���(sk , c): output
(
� if c ∈ Z×

N (+, +) = Z×
p (+) ∼= Z×

q (+)
� otherwise

15 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)
Exploit the fact that −� ∈ Z×

N (−, −)
Pseudocode 4 (Goldwasser-Micali PKE over (Z×

N , ·))
Key generation ���(�n):

1 Sample modulus with factors (N, (p, q)) ← �(�n)
2 Output (pk := N, sk := (p, q))

Encryption ���(pk ,m):
1 Sample random r ← Z×

N

2 Output c := (−�)m · r� mod N

Decryption ���(sk , c): output
(
� if c ∈ Z×

N (+, +) = Z×
p (+) ∼= Z×

q (+)
� otherwise

Correctness of decryption:
15 / 19

Goldwasser-Micali Public-Key Bit Encryption
Key idea: encode message in the “sign”

� 7→ Z×
N (+, +) and � 7→ Z×

N (−, −)
Exploit the fact that −� ∈ Z×

N (−, −)
Pseudocode 4 (Goldwasser-Micali PKE over (Z×

N , ·))
Key generation ���(�n):

1 Sample modulus with factors (N, (p, q)) ← �(�n)
2 Output (pk := N, sk := (p, q))

Encryption ���(pk ,m):
1 Sample random r ← Z×

N

2 Output c := (−�)m · r� mod N

Decryption ���(sk , c): output
(
� if c ∈ Z×

N (+, +) = Z×
p (+) ∼= Z×

q (+)
� otherwise

Correctness of decryption:
15 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

Goldwasser-Micali PKE is CPA-secret
Theorem 2 (QR → CPA-PKE)
Goldwasser-Micali PKE is CPA-secret under QR assumption.
Proof. ∃� against QR ⇐ ∃��� against PKE.

16 / 19

What About Multiple Bits? Encrypt Bit by Bit
Pseudocode 5 (Modified encryption algorithm)

Encryption ���(pk ,m =: (m�, . . . ,mℓ):
1 Sample random r�, . . . , rℓ ← Z×

N

2 Output c�, . . . , cℓ , where ci := (−�)mi · r�i mod N

17 / 19

What About Multiple Bits? Encrypt Bit by Bit
Pseudocode 5 (Modified encryption algorithm)

Encryption ���(pk ,m =: (m�, . . . ,mℓ):
1 Sample random r�, . . . , rℓ ← Z×

N

2 Output c�, . . . , cℓ , where ci := (−�)mi · r�i mod N

Can be shown to be CPA-secret using hybrid argument
Loss in distinguishing advantage: �/ℓ

17 / 19

What About Multiple Bits? Encrypt Bit by Bit
Pseudocode 5 (Modified encryption algorithm)

Encryption ���(pk ,m =: (m�, . . . ,mℓ):
1 Sample random r�, . . . , rℓ ← Z×

N

2 Output c�, . . . , cℓ , where ci := (−�)mi · r�i mod N

Can be shown to be CPA-secret using hybrid argument
Loss in distinguishing advantage: �/ℓ

Can we do better? QR is random self-reducible
1 Given instance of QR 7→ random instance of QR
2 Solve given instance of QR ⇐ solve random instance of QR

17 / 19

What About Multiple Bits? Encrypt Bit by Bit
Pseudocode 5 (Modified encryption algorithm)

Encryption ���(pk ,m =: (m�, . . . ,mℓ):
1 Sample random r�, . . . , rℓ ← Z×

N

2 Output c�, . . . , cℓ , where ci := (−�)mi · r�i mod N

Can be shown to be CPA-secret using hybrid argument
Loss in distinguishing advantage: �/ℓ

Can we do better? QR is random self-reducible
1 Given instance of QR 7→ random instance of QR
2 Solve given instance of QR ⇐ solve random instance of QR

Exercise 3
1 Show that QR is random self-reducible
2 Can we exploit this to get a tight reduction for multiple bits?

17 / 19

To Recap Today’s Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)

18 / 19

To Recap Today’s Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE, based on DDH assumption
Goldwasser-Micali PKE, based on QR assumption

18 / 19

To Recap Today’s Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE, based on DDH assumption
Goldwasser-Micali PKE, based on QR assumption

Today’s takeaway: two-message key-exchange ↔ PKE

18 / 19

To Recap Today’s Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE, based on DDH assumption
Goldwasser-Micali PKE, based on QR assumption

Today’s takeaway: two-message key-exchange ↔ PKE

Some open questions:
1 CPA-PKE ?→ CCA-PKE

Recall that CPA-SKE → CCA-SKE!
2 DLog ?→ CPA-PKE

We know CDH → CPA-PKE in the random-oracle model

18 / 19

Next Lecture(s)

This Friday (30/Aug): Quiz 1 crib session
Nivesh will discuss solutions before.

19 / 19

Next Lecture(s)

This Friday (30/Aug): Quiz 1 crib session
Nivesh will discuss solutions before.

Next Tuesday (03/Sep): public-key encryption from lattices
Lattices and learning with errors (LWE) problem
Believed to be secure against quantum eavesdroppers!
Regev’s PKE

19 / 19

References

1 [KL14, Chapter 12] for details on this lecture.
2 Goldwasser-Micali PKE was presented in [GM84]. ElGamal

PKE was presented in [ElG84].
3 Barak’s exposition [Bar17] is an excellent source to understand

the interplay of structure and hardness in PKE (and OWF)

Boaz Barak.
The complexity of public-key cryptography.
In Tutorials on the Foundations of Cryptography, pages 45–77. Springer
International Publishing, 2017.
Taher ElGamal.
A public key cryptosystem and a signature scheme based on discrete
logarithms.
In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, Heidelberg, August 1984.
Shafi Goldwasser and Silvio Micali.
Probabilistic encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

19 / 19

	Public-Key Encryption (PKE)
	ElGamal PKE
	Goldwasser-Micali PKE

