CS783: Theoretical Foundations of Cryptography

Lecture 10 (03/Sep/24)

Instructor: Chethan Kamath
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m Task 4: Public-key encryption
m Modelled setting and security (CPA secrecy)

m Saw two CPA-secret constructions, with proofs:

m ElGamal PKE « DDH assumption ;/\(qq/g%ab) =~ (qa/gb/g()
m Coldwasser-Micali PKE « QR assumption % N
RoYeZy (r) = Y2y ()
m Conceptual takeaways: b

Q

1 Two-message key-exchange «<» PKE 17N
2 Structure vs. hardness

Q
N It a \
Cwo Woys B genarake ¥e ome op" (o)’ (9)

m Some open questions:

1 CPA-PKE -5 CCA-PKE
m Recall that CPA-SKE — CCA-SKE!
2 Dlog > CPA-PKE
m We know CDH — CPA-PKE in the “random-oracle model"
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Plan for This Lecture

m Minicrypt to Cryptomania
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Plan for This Lecture...

Corrp sAshonal Secrety
) o Public-key enrypbon ¢ Bropoets

2 Come up with precise threat model M (ak.a security model)

General template:

1 ldentify the tas

m Adversary/Attack: What are the adversary's capabilities? ™
m Security Goal: What does it mean to be secure? —

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2/15



Plan for This Lecture...
o‘u%\%um LJYT})u)rO'hOﬂC\) Seurety
e Pubm'm\ﬁ CWHPBDO Eavesaroppers

2 Come up with precise threat model M (ak.a security model)

General template:

1 ldentify the tas

m Adversary/Attack: What are the adversary's capabilities?”
m Security Goal: What does it mean to be secure? —

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2/15



Plan for This Lecture...

quantym Lmu)mhoﬂa) Secrety
General template: 5
= publi(-fey encrypuon
1 ldentify the task/ ) 9P Eans@rop\veﬁ

2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilities?”
m Security Goal: What does it mean to be secure? —

3 Construct a scheme &~ R@@N’S Pse
4 Formally prove that I in secure in model M
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Cryptography from LWE

LWE and Lattices




1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 |LWE and Lattices
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Quantum Computation

m Based on principles of quantum mechanics

1

Certain physical properties (e.qg., electron spin) are “discrete”

2 lts value is a "superposition” of these discrete values
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Modelling the Setting for Quantum Adversaries

m Cryptography in a quantum world (quantum cryptography)
m All parties have access to quantum computers and channel
m E.g.: key-exchange possible assuming only authenticated
classical channel: see BB84 and Ekert's protocol e

m Possible attack scenario: Harvest now, decrypt later”

m Potential adversaries: Five Eyes, state actors...
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Modelling the Setting for Quantum Adversaries...

— &
NIST Releases First 3 Finalized Post- Quantum Resistance and the Signal Protocol
Quantum Encryption Standards e on 1 ep 2023

L PN

> fag vd et R
DEPARTMENT OF
SCIENCE & TECHNOLOGY

August 13,2024

[ Security Research

February 21, 2024

T
National Quantum Mission (NQM)

iMessage with PQ3: The new

state of the art in quantum-
Secure messaging at Scale The Union Cabinet, approved the National Quantum Mission

(NQM) on 19" April 2023 at a total cost of Rs.6003.65 crore from
2023-24 to 2030-31, aiming to seed, nurture and scale up
scientific and industrial R&D and create a vibrant & innovative
ecosystem in Quantum Technology (QT). This will accelerate QT

Posted by Apple Security Engineering and Architecture (SEAR)

m Recent effort to research/deploy post-quantum cryptography
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m Unstructured search problem:
m Input: n-variable Boolean formula ¢
m Solution: a satisfying assignment a € {0,1}" : ¢(a) = 1
m Classical setting:

m NP complete (SAT)
m Sub-exponential-time algorithms believed to not exist
(exponential-time hypothesis)

%@/ Quantum setting:
Theorem 1 (Grover's algorithm)

There is a quantum algorithm that given ¢ (represented as a

classical circuit) finds a satisfying assignment in time 2°("2)
m Impact on cryptography: SKEs broken in quantum time 2°("2)

m Solution: double key-size (use 256-bit AES instead of 128-bit)
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What is Easier for Quantum Computers?..
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What is Easier for Quantum Computers?..

m Structured period-finding problem for functions over (Zg, +

m Input: f:(Zy, +) — G that is "periodic’ “ A
m Thatis, dA € Z,Yx € Zy : f(X + A) _ f(X) &?\/\//\/
; : 4
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What is Easier for Quantum Computers?..

m Structured period-finding problem for functions over (Zg, +)
>

m Input: f:(Ze, +) — G that is "periodic” & :
-mmaﬂemezpm+m=mM?“\/A\/ﬁ\/
m Solution: smallest "period” A : : 4

m Classical setting: PPT algorithms believed not to exist for
certain fs. E.g.
1 fan(x) :=a* mod N, where G = (Zy, -) and a < Zy
@ What is the period of f, n? A(N) := (p — 1)(q — 1)/2 (w.h.p)
m Finding A(N) equivalent to factoring N
2 fgn(x,y) = g*h™” mod p, where G = (Z, )andg h <17,
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What is Easier for Quantum Computers?..

m Structured period-finding problem for functions over (Zg, +)

m Input: f:(Ze, +) — G that is "periodic” 2
-mmaﬂemezpm+M=mw?“\/“\/ﬁ\/
m Solution: smallest "period” A : : 4

m Classical setting: PPT algorithms believed not to exist for
certain fs. E.g.

1 fan(x) :=a* mod N, where G = (Zy, -) and a < Zy
@ What is the period of f, n? A(N) == (p — 1)(g — 1)/2 (wh.p)
m Finding A(N) equivalent to factoring N

2 fgnlx,y):=g*h” mod p, where G = (Z,,-) and g, h « Z,

@ What is the period of fg.n? Alg, h) (Logg(h) ) the dLscrete logl ,2
i Lo et 10 91/ A
@, Quantum setting: gn 099 /944) ) 9.} . 9 h
Theorem 2 (Shor's algorithm)

There is a quantum algorithm that finds the period A of a periodic
function f as above (represented as a classical circuit) in time
polynomial in |Ze| = log(¥).
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m Corollary: factoring and discrete log are quantum easy!
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What is Easier for Quantum Computers?..

m Corollary: factoring and discrete log are quantum easy!
/N Impact on cryptography: PKEs from previous lecture insecurel

m We need: hardness assumption that holds against QPT...
m ..that has sufficient structure to allow PKE/key exchange
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2 Learning with Errors (LWE)

3 Cryptography from LWE

4 |LWE and Lattices
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Solving Linear Equations Over (Zp, +, -)

m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates:
. . Jaln)
1 Solve system of random linear equations over (Z,, +, )79 ﬁ,

(A F A nxm 2 m o4 . e ...
2" IR_Inp;Jt. (A t), where A < Z7 SHZP 'qn'd,..-: m
% & c |6 a, o Ay
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Solving Linear Equations Over (Zp, +, -)

m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates: —
1 Solve system of random linear equations over (Z,, +, ~)?’\5m>h

(A F A nxm gz m P RN
%" lﬁ_lnput. (A t), where A «— Z;*™, 5 HZP and m
27 ' ‘
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m Candidates: —
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=
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m Solution: 57
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m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates: —
1 Solve system of random linear equations over (Zp, +, ~)?’\5m\(

t:= As mod p{v T

gl
v

Solution: §7?

Problem: Information-theoretically hard!
Solution: some preimage 5’ of #?
Problem: Solvable in polynomial time: Gaussian elimination
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Solving Linear Equations Over (Z,, +, )

m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates:
1 Solve system of random linear equations over (Z,, +, ~)?’\5W\V

fom .K Input: (A, ), where A « Z,’}X'"SHZ;’," and ------ : m

n

— 2 L ;
t:=Asmodp: |7|_ A

m Solution: §?

m Problem: Information-theoretically hard!

m Solution: some preimage 3’ of 7

m Problem: Solvable in polynomial time: Gaussian elimination
2 Solve system of random linear equations over (Zp, +, -)?

m Input: (A, t), where A — Z;X’", 5« Z,’; and

tT:=35"Amodp

m Solution: 57
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m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates:
1 Solve system of random linear equations over (Zp, +, ~)?’\5W\V

f:%ASmodp; il = A

Solution: §7?
Problem: Information-theoretically hard!
Solution: some preimage 5’ of #?

m Problem: Solvable in polynomial time: Gaussian elimination
2 Solve system of random linear equations over (Zp, +, -)?
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Solving Linear Equations Over (Z,, +, )

m Let's consider (Zp, +, ), Le., (Zp, +) with multiplication over Z;

m Candidates:
1 Solve system of random linear equations over (Zp, +, ~)?’\5W\V

f:%ASmodp; il = A

Solution: §7?
Problem: Information-theoretically hard!
Solution: some preimage 5’ of #?

m Problem: Solvable in polynomial time: Gaussian elimination
2 Solve system of random linear equations over (Zp, +, -)?

m Input: (A, t), where A — ngm, 5« Z,’; and

n
&

m Solution: §7
m Problem: Still solvable by Gaussian elimination
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Solving Linear Equations Over (Zp, +, -)

m The map 5 (3" A)T is a “random linear code”
m Two “codewords” t] =5/ A and t; := 5, A are “far” (w.h.p.)
m However, efficient “decoding” algorithm to 25 A
recover 5 from “noisy” t" ~ s" A not known
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Solving Linear Equations Over (Zp, +, -)

m The map 5 (3" A)T is a “random linear code”
m Two “codewords” t] =35/ A and t; := 5, A are “far’ (vvhp)

m However, efficient decodmg algorithm to zg -
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3 Output (pk == (T) ,sk =
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Regev's Encryption is Quantum Secret

Theorem 3 (LWE — Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.
Skep |- teal world H, o ph= (i )’“‘W(@ Eae SR+
Rondom world " \ﬁiﬁi@) rere T« %
s

epr

Qaimz: PKE In 0y is sabsiully sewre .

Proo}: N "

T e (B)2r(E) 5 (B e o

bovk 6
Thgpiam 2 b

12115



Regev's Encryption is Quantum Secret

Theorem 3 (LWE — Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.
Skep |- teal world H, o ph= (i }m\here Eae SR+
Rondom world " pl%@) rere T« %
s

epr
Qaimz: PKE In 0y is sabsiully sewre .
Proof: K -
(007 3 . ‘Qj
() 3 et

k¢
& g aboo

Mateix WGhhver hash lemma’ For( )«—Z’én H)tm(@),@) )”s(('r\r)/?"’ %

12115



Regev's Encryption is Quantum Secret...

Exercise 2

Show that the following variants of Regev's scheme are also
quantum secret assuming DLWE:

1 Gaussian secret-keys: same as in Construction 1 except
sample the secret key as 54 < EJ

2 Gaussian random coins: same as in Construction 1 except
sample the random coin as sg < ET
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3 Cryptography from LWE

4 LWE and Lattices




A n-dimensional lattice L is a discrete, additive subgroup of R".
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What has LWE to Do with Lattices?

Defintion 1 (Lattice) ﬁ”,;o/ojrs Suﬁfczm@ far qpmi' !

A n-dimensional lattice IL is a discrete, additive subgroup of R".

L> Ubseh bk is Qlss gy
Example 4 (2D scaled integer and 2D checkerboard lattice)
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A n-dimensional lattice IL is a discrete, additive subgroup of R".

Ubseh bk is Qlss gy
Example 4 (2D scaled integer and 2D checkerboard lattice)

6 6 o o o 6 o6 o o o e 6 o o e e © © o o
o e ©° ° ° Q e ] ° o L e L] L ] o ° ° L L
6 ©6 o o o e o o o o e © 6 o o 6 e o© o
[2) o N
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m Represented using a basis B = (by, -+, by) € R™" as its
integer linear combination:
IL(B) : V—E ajb; for (ay, ..., ay) €Z"

i€[n]
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What has LWE to Do with Lattices?...

m Some worst-case hard problems on lattices:
1 Shortest vector problem (SVP)

m Input: lattice LL via basis B
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m Some worst-case hard problems on lattices:
1 Shortest vector problem (SVP)

m Input: lattice LL via basis B
m Solution: shortest (in 2-norm) non-zero vector in L

2 GapSVP,: decision version of SVP

m Input: lattice L via basis B,andd €R
m Decide whether the shortest vector has length > yd or < d
m NP-hard for constant y, but not for y = poly(n)

Theorem 5 (Worst-case to average case reduction)

Solving (n, m, p, Eo)-LWE, for ap > /n, in the average case is at
least as hard as deciding CapS\/Pé(nz) for any n-dimensional
lattice 1L

m Compare with factoring

m Only weakly one-way and most instances are easy
m Worst-case to average case reduction not known
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To Recap Today's Lecture

Discussed motivation for post-quantum cryptography

Introduced a new hardness assumption: LWE

m Saw equivalence between its decision and search variants
m Constructed key-exchange protocol from DLWE

LWE has enough “structure” to support more advanced
cryptographic primitives:
1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 ldentity-based encryption: PKE where the public keys are
arbitrary strings
3 Incrementally-verifiable computation ...

Related computational problem: learning parity with noise

m ‘Modulus 2 version” of LWE
m Open: PKE from LPN
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m So far in Module II: secrecy in the public-key setting
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Next Lecture

m So far in Module II: secrecy in the public-key setting

m Next lecture: integrity + authentication in public-key setting
m New cryptographic primitive: digital signatures
m wo construction, both quantum secure

m Lamport's one-time signature < OWF
m Theoretic construction of stateless signature

m New proof technique: plug and pray!
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