

CS783: Theoretical Foundations of Cryptography

Lecture 10 (03/Sep/24)

Instructor: Chethan Kamath

■ Task 4: Public-key encryption

■ Modelled setting and security (CPA secrecy)

■ Task 4: Public-key encryption

- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE ← DDH assumption $(q^a, q^b, q^{ab}) \approx (q^a, q^b, q^{c})$
 - Goldwasser-Micali PKE \leftarrow QR assumption $\swarrow y \leftarrow \mathbb{Z}_{N}^{*}(+,+) \approx y \leftarrow \mathbb{Z}_{N}^{*}(-,-)$

Task 4: Public-key encryption

- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE ← DDH assumption $(q^{a}, q^{b}, q^{ab}) \approx (q^{a}, q^{b}, q^{c})$
 - Goldwasser-Micali PKE ← QR assumption $\overset{\text{lion}}{\backsim} \mathcal{Y} \leftarrow \mathbb{Z}_{N}^{\times}(+,+) \approx \mathcal{Y} \leftarrow \mathbb{Z}_{N}^{\times}(-,-)$
- Conceptual takeaways:

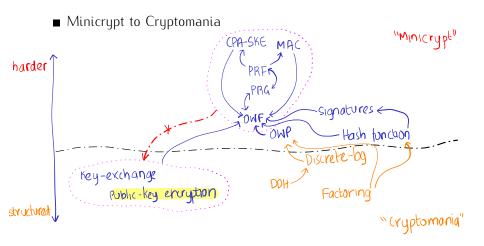
2 Structure vs. hardness Two ways to generate the same "oTP" (g^a)^b (g^b)^q

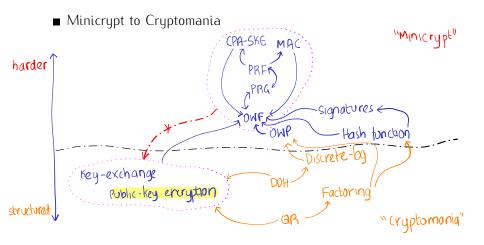
Task 4: Public-key encryption

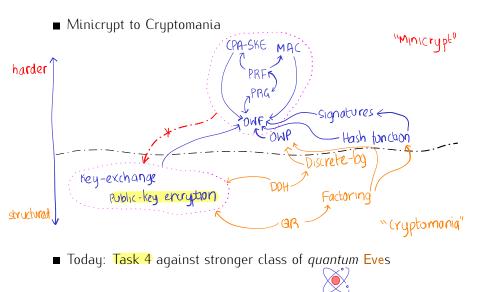
- Modelled setting and security (CPA secrecy)
- Saw two CPA-secret constructions, with proofs:
 - ElGamal PKE ← DDH assumption $\leftarrow (q^a, q^b, q^{ab}) \approx (q^a, q^b, q^{b'})$
 - Goldwasser-Micali PKE ← QR assumption $\overset{\text{lion}}{\swarrow} \mathcal{Y} \leftarrow \mathbb{Z}_{N}^{\times}(+,+) \approx \mathcal{Y} \leftarrow \mathbb{Z}_{N}^{\times}(-,-)$
- Conceptual takeaways:

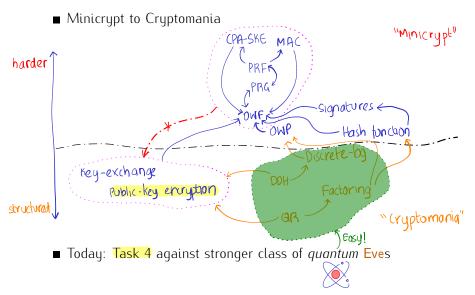
Image key-exchange ↔ PKE
 Structure vs. hardness
 Two ways to generate the same "orp" (g^a)^b (g^b)^q

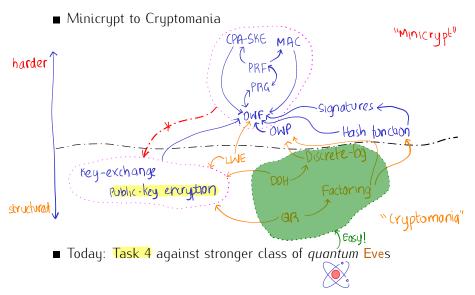
- Some open questions:
 - 1 CPA-PKF $\xrightarrow{?}$ CCA-PKF
 - Recall that CPA-SKE \rightarrow CCA-SKE!
 - 2 DLog $\xrightarrow{?}$ CPA-PKE
 - We know CDH \rightarrow CPA-PKF in the "random-oracle model"











General template: I Identify the task Public-key encryption Eavesdroppers

- **2** Come up with precise threat model *M* (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?⁻
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

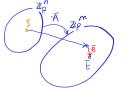
General *template*: 1 Identify the task Public-Key encryption Eavesdroppers 2 Come up with precise threat model M (a.k.a security model)

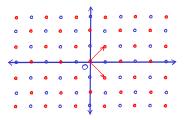
- Adversary/Attack: What are the adversary's capabilities?
- Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

neral *template*: Identify the task Public-Key encryption Eavesdroppers General *template*: 2 Come up with precise threat model M (a.k.a security model) Adversary/Attack: What are the adversary's capabilities? Security Goal: What does it mean to be secure? 3 Construct a scheme ∏ ← Regev's PKE 4 Formally prove that Π in secure in model M ^{(Assuming <u>quantum</u> hardness of "learning with errors" (LWE)}

- 1 Motivation: Quantum Adversaries
- 2 Learning with Errors (LWE)

4 LWE and Lattices





- 1 Motivation: Quantum Adversaries
- 2 Learning with Errors (LWE)

- 3 Cryptography from LWE
- 4 LWE and Lattices

- Based on principles of quantum mechanics
 - 1 Certain physical properties (e.g., electron spin) are "discrete"
 - 2 Its value is a "superposition" of these discrete values

- Based on principles of quantum mechanics
 1 Certain physical properties (e.g., electron spin) are "discrete"
 2 Its value is a "superposition" of these discrete values
- *Classical* computation vs. Quantum computation

- Based on principles of quantum mechanics
 1 Certain physical properties (e.g., electron spin) are "discrete"
 2 Its value is a "superposition" of these discrete values
- Classical computation vs. Quantum computation 1 BitsQubits (Quantum bits) $(2 + 2)^{2}$ $b \in \{0,1\}$ $|b\rangle = (2,0) + (2,1)^{2}$ $|b\rangle = (2,0) + (2,1)^{2}$

- Based on principles of quantum mechanics
 1 Certain physical properties (e.g., electron spin) are "discrete"
 2 Its value is a "superposition" of these discrete values
- Classical computation vs. Quantum computation
 Bits ······ Qubits (Quantum bits) $b \in \{0_1|\}$ $b \in \{0_1|\}$ $b \geq 0_0 |0\rangle + 0_1 |1\rangle$ $c \leq 0_1 |1\rangle$ Classical state ····· Quantum state $\overline{b} = b_1 b_2 ... b_n \in \{0_1|\}^n$ $\psi = \sum_{\overline{b} \in \{0_1\}^n} 0_{\overline{b}} |\overline{b}\rangle$ $\sum_{\overline{b} \in \{0_1\}^n} 0_{\overline{b}} |\overline{b}\rangle$

- Based on principles of quantum mechanics
 1 Certain physical properties (e.g., electron spin) are "discrete"
 2 Its value is a "superposition" of these discrete values
- Classical computation vs. Quantum computation

 1 Bits
 Bits $b \in \{0_1|\}$ $|b\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle : \alpha_0^2 + \alpha_1^2 = 1$ 2 Classical state
 Quantum state $\bar{b} = b_1 b_2 \dots b_n \in \{0_1|\}^n$ $\psi = \sum_{\bar{b} \in \{0_1\}^n} \alpha_{\bar{b}} |\bar{b}\rangle : \sum_{\bar{b} \in \{0_1\}^n} \alpha_{\bar{b}}^2 = 1$ 3 Classical circuit
 Quantum circuits $\bar{b} \to (C: \{0_1|_1^n \to \{0_1|_1^n] \to \bar{b}'$

- Based on principles of quantum mechanics
 1 Certain physical properties (e.g., electron spin) are "discrete"
 2 Its value is a "superposition" of these discrete values
- *Classical* computation Quantum computation VS. Qubits (Quantum bits) $(2^{\circ})^{\circ}$ $|b\rangle = \alpha_{\circ}|o\rangle + \alpha_{1}|i\rangle : \alpha_{\circ}^{\circ} + \alpha_{1}^{\circ} = 1$ Bits 1 besont $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ 2 Classical state $b = b_1 b_2 \dots b_n \in \{0,1\}^n$ Classical circuit Quantum circuits $\overline{b} \rightarrow C: \{0, 1\} \rightarrow \{0, 1\} \rightarrow \overline{b}'$ $\psi \rightarrow \bigcup : \{a_{\overline{b}}\}_{\overline{b}} \rightarrow \{a_{\overline{b}}\}_{\overline{b}} \rightarrow \psi'$ Measurement < randomised $\gamma \rightarrow \overline{1} \rightarrow \overline{b}$

- Based on principles of quantum mechanics 1 Certain physical properties (e.g., electron spin) are "discrete" Its value is a "superposition" of these discrete values 2 *Classical* computation Quantum computation VS.
 - Qubits (Quantum bits) $(2^{\circ})^{\circ}$ $|b\rangle = \alpha_{\circ}|o\rangle + \alpha_{1}|1\rangle : \alpha_{\circ}^{\circ} + \alpha_{1}^{\circ} = 1$ Bits · · besont
 - 2 Classical state
 - $\overline{b} = b_1 b_2 \dots b_n \in \{0, 1\}^n$
 - Classical circuit

PPT adversary

5

- $\overline{b} \rightarrow C: \{0, 1\} \rightarrow \{0, 1\} \rightarrow \overline{b}'$

.....Quantum state $\begin{aligned} & \psi = \sum_{\overline{b} \in Sol_{1}^{n}} \alpha_{\overline{b}} | \overline{b} \rangle : \sum_{\overline{b} \in Sol_{1}^{n}} \alpha_{\overline{b}}^{2} = 1
\end{aligned}$

Ouantum circuits

 $\gamma \rightarrow \overline{1} \rightarrow \overline{b}$

$$\psi \longrightarrow \bigcup : \{\alpha_{\overline{b}}\}_{\overline{b}} \longrightarrow \{\alpha_{\overline{b}}'\}_{\overline{b}} \longrightarrow \psi'$$

Measurement < mondomised

Quantum PT adversary

- Cryptography in a quantum world (quantum cryptography)
 - All parties have access to quantum computers and channel

- Cryptography in a quantum world (quantum cryptography)
 - All parties have access to quantum computers and channel
 - E.g.: key-exchange possible assuming only *authenticated* classical channel: see BB84 and Ekert's protocol

Cryptography in a quantum world (quantum cryptography)

- All parties have access to quantum computers and channel
- E.g.: key-exchange possible assuming only *authenticated* classical channel: see BB84 and Ekert's protocol

VS.

■ *Post-quantum* cryptography

Honest parties are classical; adversary is quantum

Quantum Eve

■ Cryptography in a quantum world (quantum cryptography)

- All parties have access to quantum computers and channel
- E.g.: key-exchange possible assuming only *authenticated* classical channel: see BB84 and Ekert's protocol

VS.

- Post-quantum cryptography
 - Honest parties are classical; adversary is quantum
 - Possible attack scenario: "Harvest now, decrypt later"
 - Potential adversaries: Five Eyes, state actors...

Quantum Eve

NEWS

NIST Releases First 3 Finalized Post-Quantum Encryption Standards

August 13, 2024

Security Research

February 21, 2024

iMessage with PQ3: The new state of the art in quantum-secure messaging at scale

Posted by Apple Security Engineering and Architecture (SEAR)

Quantum Resistance and the Signal Protocol

ehrenkret on 19 Sep 2023

विज्ञान एवं प्रौद्योगिकी विभाग DEPARTMENT OF SCIENCE & TECHNOLOGY

National Quantum Mission (NQM)

The Union Cabinet, approved the National Quantum Mission (NQM) on 19th April 2023 at a total cost of Rs.6003.65 crore from 2023-24 to 2030-31, aiming to seed, nurture and scale up scientific and industrial R&D and create a vibrant & innovative ecosystem in Quantum Technology (QT). This will accelerate QT

Recent effort to research/deploy post-quantum cryptography

■ *Unstructured* search problem:

- Input: *n*-variable Boolean formula φ
- Solution: a *satisfying* assignment $a \in \{0, 1\}^n : \varphi(a) = 1$

- *Unstructured* search problem:
 - Input: *n*-variable Boolean formula φ
 - Solution: a *satisfying* assignment $a \in \{0, 1\}^n$: $\varphi(a) = 1$
- Classical setting:

JP

.SAT

- NP complete (SAT)
- Sub-exponential-time algorithms believed to not exist (exponential-time hypothesis)

- *Unstructured* search problem:
 - Input: *n*-variable Boolean formula φ
 - Solution: a *satisfying* assignment $a \in \{0, 1\}^n$: $\varphi(a) = 1$

Classical setting:

SAT

- NP complete (SAT)
- Sub-exponential-time algorithms believed to not exist (exponential-time hypothesis)

💓 Quantum setting:

Theorem 1 (Grover's algorithm)

There is a quantum algorithm that given φ (represented as a classical circuit) finds a satisfying assignment in time $2^{O(n/2)}$

- *Unstructured* search problem:
 - Input: *n*-variable Boolean formula φ
 - Solution: a *satisfying* assignment $a \in \{0, 1\}^n : \varphi(a) = 1$
- Classical setting:

SAT

- NP complete (SAT)
- Sub-exponential-time algorithms believed to not exist (exponential-time hypothesis)

₩Quantum setting:

Theorem 1 (Grover's algorithm)

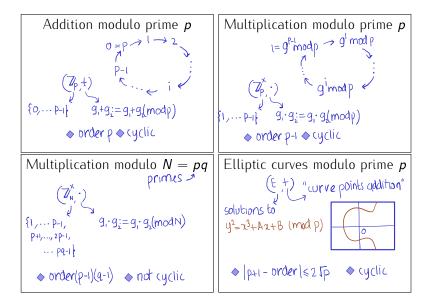
There is a quantum algorithm that given φ (represented as a classical circuit) finds a satisfying assignment in time $2^{O(n/2)}$

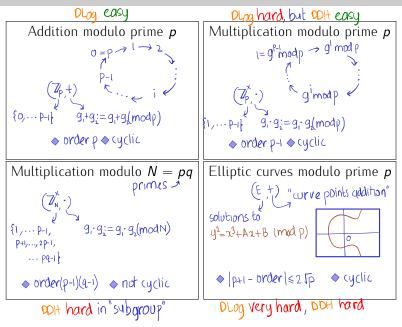
- Impact on cryptography: SKEs broken in quantum time $2^{O(n/2)}$
 - Solution: double key-size (use 256-bit AES instead of 128-bit)

10.1

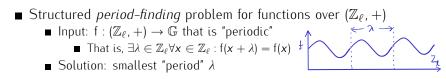
~a: φ(u)=0}

 $s_{\alpha}: \mathcal{O}(\alpha) = 1$





■ Structured *period-finding* problem for functions over $(\mathbb{Z}_{\ell}, +)$ ■ Input: $f : (\mathbb{Z}_{\ell}, +) \to \mathbb{G}$ that is "periodic" ■ That is, $\exists \lambda \in \mathbb{Z}_{\ell} \forall x \in \mathbb{Z}_{\ell} : f(x + \lambda) = f(x)$



Structured *period-finding* problem for functions over (ℤ_ℓ, +)
 Input: f: (ℤ_ℓ, +) → 𝔅 that is "periodic"
 That is, ∃λ ∈ ℤ_ℓ∀x ∈ ℤ_ℓ: f(x + λ) = f(x)
 Solution: smallest "period" λ

 Classical setting: *PPT* algorithms believed not to exist for certain fs.

Structured *period-finding* problem for functions over (ℤ_ℓ, +)
 Input: f: (ℤ_ℓ, +) → 𝔅 that is "periodic"
 That is, ∃λ ∈ ℤ_ℓ∀x ∈ ℤ_ℓ: f(x + λ) = f(x) ↓
 Solution: smallest "period" λ
 Classical setting: *PPT* algorithms believed not to exist for

 Classical setting: *PPT* algorithms believed not to exist for certain fs. E.g.:

1
$$f_{a,N}(x) := a^x \mod N$$
, where $\mathbb{G} = (\mathbb{Z}_N^{\times}, \cdot)$ and $a \leftarrow \mathbb{Z}_N^{\times}$

What is the period of f_{a,N}?

Structured *period-finding* problem for functions over (ℤ_ℓ, +)
 Input: f : (ℤ_ℓ, +) → 𝔅 that is "periodic"
 That is, ∃λ ∈ ℤ_ℓ∀x ∈ ℤ_ℓ : f(x + λ) = f(x)
 Solution: smallest "period" λ

Classical setting: *PPT* algorithms believed not to exist for certain fs. E.g.:

- 1 $f_{a,N}(x) := a^x \mod N$, where $\mathbb{G} = (\mathbb{Z}_N^{\times}, \cdot)$ and $a \leftarrow \mathbb{Z}_N^{\times}$
 - (?) What is the period of $f_{a,N}$? $\lambda(N) := (p-1)(q-1)/2$ (w.h.p.)

• Finding $\lambda(N)$ equivalent to factoring N

Structured *period-finding* problem for functions over (ℤ_ℓ, +)
 Input: f: (ℤ_ℓ, +) → 𝔅 that is "periodic"
 That is, ∃λ ∈ ℤ_ℓ∀x ∈ ℤ_ℓ: f(x + λ) = f(x)
 Solution: smallest "period" λ

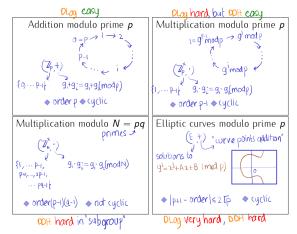
- Classical setting: PPT algorithms believed not to exist for certain fs. E.g.:
 - 1 $f_{a,N}(x) := a^{\times} \mod N$, where $\mathbb{G} = (\mathbb{Z}_N^{\times}, \cdot)$ and $a \leftarrow \mathbb{Z}_N^{\times}$
 - (?) What is the period of $f_{a,N}$? $\lambda(N) := (p-1)(q-1)/2$ (w.h.p.)
 - Finding $\lambda(N)$ equivalent to factoring N
 - $\begin{array}{l} \ensuremath{\mathbb{Z}} & \mathsf{f}_{g,h}(x,y) := g^{\times} h^{-y} \mod p, \text{ where } \mathbb{G} = (\mathbb{Z}_p^{\times}, \cdot) \text{ and } g, h \leftarrow \mathbb{Z}_p^{\times} \\ & \textcircled{} & \textcircled{} \end{array}$ What is the period of $\mathsf{f}_{g,h}$?

Structured *period-finding* problem for functions over $(\mathbb{Z}_{\ell}, +)$ ■ Input: $f : (\mathbb{Z}_{\ell}, +) \to \mathbb{G}$ that is "periodic" • That is, $\exists \lambda \in \mathbb{Z}_{\ell} \forall x \in \mathbb{Z}_{\ell} : f(x + \lambda) = f(x)^{-\frac{1}{2}}$ Solution: smallest "period" λ Classical setting: PPT algorithms believed not to exist for certain fs. E.q.: 1 $f_{a,N}(x) := a^x \mod N$, where $\mathbb{G} = (\mathbb{Z}_N^{\times}, \cdot)$ and $a \leftarrow \mathbb{Z}_N^{\times}$? What is the period of $f_{a,N}$? $\lambda(N) := (p-1)(q-1)/2$ (w.h.p.) Finding $\lambda(N)$ equivalent to factoring N 2 $f_{g,h}(x,y) := g^{\times} h^{-y} \mod p$, where $\mathbb{G} = (\mathbb{Z}_p^{\times}, \cdot)$ and $g, h \leftarrow \mathbb{Z}_p^{\times}$ (2) What is the period of $f_{g,h}$? $\lambda(g,h) := (\log_g(h), 1)$, the discrete log! $f_{g,h}(x+\log_g^h, y+1) = g^{2+\log_g^h} \cdot h^{-y-1} = g^2 \cdot h \cdot h^{-y} \cdot h^{-g} = f_{g,h}(x,y)$

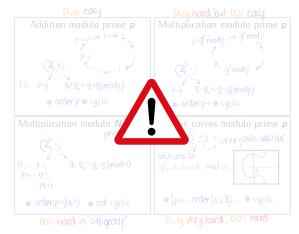
Structured *period-finding* problem for functions over $(\mathbb{Z}_{\ell}, +)$ ■ Input: $f : (\mathbb{Z}_{\ell}, +) \to \mathbb{G}$ that is "periodic" $\leftarrow \gamma \rightarrow$ • That is, $\exists \lambda \in \mathbb{Z}_{\ell} \forall x \in \mathbb{Z}_{\ell} : f(x + \lambda) = f(x)^{-\frac{1}{2}}$ Solution: smallest "period" λ Classical setting: PPT algorithms believed not to exist for certain fs. E.q.: 1 $f_{a,N}(x) := a^x \mod N$, where $\mathbb{G} = (\mathbb{Z}_N^{\times}, \cdot)$ and $a \leftarrow \mathbb{Z}_N^{\times}$ (?) What is the period of $f_{a,N}$? $\lambda(N) := (p-1)(q-1)/2$ (w.h.p.) Finding $\lambda(N)$ equivalent to factoring N 2 $f_{g,h}(x, y) := g^{\times} h^{-y} \mod p$, where $\mathbb{G} = (\mathbb{Z}_p^{\times}, \cdot)$ and $g, h \leftarrow \mathbb{Z}_p^{\times}$? What is the period of $f_{g,h}$? $\lambda(g,h) := (\log_g(h), 1)$, the discrete $\log!$ $\bigotimes \text{Quantum setting: } f_{g,h}(x + \alpha g_{g'}, y + 1) = g^{x + \log g_{h}}, h^{y} - 1 = g^{x}, h^{y}, h^{y} = g^{y}, h^{y}, h^{y} = f_{g,h}^{y}, h^{y}, h^{y} = g^{y}, h^{y}, h^{y}, h^{y}, h^{y} = g^{y}, h^{y}, h^{y}$

Theorem 2 (Shor's algorithm)

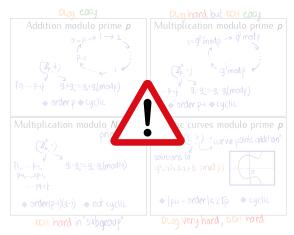
There is a quantum algorithm that finds the period λ of a periodic function f as above (represented as a classical circuit) in time polynomial in $|\mathbb{Z}_{\ell}| = \log(\ell)$.



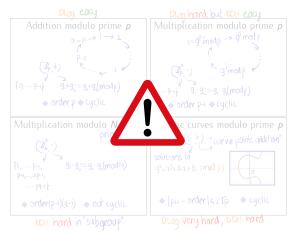
■ Corollary: factoring and discrete log are quantum *easy*!



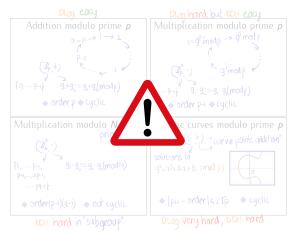
■ Corollary: factoring and discrete log are quantum *easy*!



Corollary: factoring and discrete log are quantum *easy*!
 Impact on cryptography: PKEs from previous lecture insecure!



Corollary: factoring and discrete log are quantum *easy*!
 Impact on cryptography: PKEs from previous lecture insecure!
 We need: hardness assumption that holds against QPT...

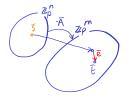


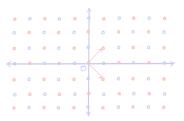
Corollary: factoring and discrete log are quantum *easy*!
 Impact on cryptography: PKEs from previous lecture insecure!
 We need: hardness assumption that holds against QPT...
 ...that has sufficient structure to allow PKE/key exchange

Plan for this Lecture

1 Motivation: Quantum Adversaries

- 2 Learning with Errors (LWE)
- 3 Cryptography from LWE
- 4 LWE and Lattices

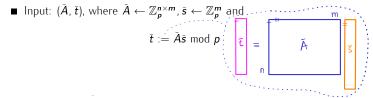




■ Let's consider $(\mathbb{Z}_{p}, +, \cdot)$, i.e., $(\mathbb{Z}_{p}, +)$ with multiplication over \mathbb{Z}_{p}^{\times}

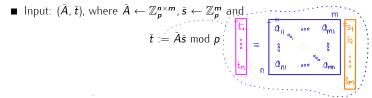
Let's consider (ℤ_p, +, ·), i.e., (ℤ_p, +) with multiplication over ℤ[×]_p
 Candidates:

1 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)$?



Let's consider (ℤ_p, +, ·), i.e., (ℤ_p, +) with multiplication over ℤ[×]_p
 Candidates:

1 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)$?



Let's consider (ℤ_p, +, ·), i.e., (ℤ_p, +) with multiplication over ℤ[×]_p
 Candidates:

1 Solve system of random linear equations over $(\mathbb{Z}_{p}^{\swarrow}, +, \cdot)^{poly(n)}$

■ Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^m$ and \bar{t}_1 $\bar{t} := \bar{A}\bar{s} \mod p$ $\begin{bmatrix} \bar{t}_1 \\ \bar{s} \\ \bar{t}_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{13} \\ a_{11} & a_{12} & a_{13} & a_{13} \\ a_{11} & a_{12} & a_{13} & a_{13} \end{bmatrix} \begin{bmatrix} \bar{s}_1 \\ \bar{s} \\ \bar{s}$

■ Let's consider $(\mathbb{Z}_{p}, +, \cdot)$, i.e., $(\mathbb{Z}_{p}, +)$ with multiplication over \mathbb{Z}_{p}^{\times} ■ Candidates: ■ Solve system of random linear equations over $(\mathbb{Z}_{p}^{\times}, +, \cdot)^{p \circ l_{y}(n)}$ \mathbb{Z}_{p}^{m} \mathbb{Q}_{p}^{\times} \mathbb{Q}_{p}^{\times} , where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_{p}^{m}$ and \mathbb{Q}_{p}^{\times} \mathbb{Q}_{p}^{\times}

■ Let's consider $(\mathbb{Z}_p, +, \cdot)$, i.e., $(\mathbb{Z}_p, +)$ with multiplication over \mathbb{Z}_p^{\times} ■ Candidates: 1 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)^{poly(n)}$ ■ Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_p^m$ and $\bar{t} := \bar{A}\bar{s} \mod p$ ■ Solution: \bar{s} ?

■ Let's consider (\mathbb{Z}_p , +, ·), i.e., (\mathbb{Z}_p , +) with multiplication over \mathbb{Z}_p^{\times} ■ Candidates: ■ Solve system of random linear equations over ($\mathbb{Z}_p^{(i)}$, +, ·)?^{oly(n)} ■ Input: (\bar{A} , \bar{t}), where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^m$ and $\bar{t} := \bar{A}\bar{s} \mod p$ ■ Solution: \bar{s} ? ■ Problem: Information-theoretically hard! ■ Solution: *some* preimage \bar{s}' of \bar{t} ?

Let's consider (ℤ_p, +, ·), i.e., (ℤ_p, +) with multiplication over ℤ_p[×]
 Candidates:

1 Solve system of random linear equations over $(\mathbb{Z}_{p}^{\not{L}}, +, \cdot)^{poly(n)}$

 $\blacksquare_{\bar{x}} \text{ Input: } (\bar{A}, \bar{t}), \text{ where } \bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_p^m \text{ and }.$

■ Solution: §?

Zio-

Problem: Information-theoretically hard!

- Solution: *some* preimage \bar{s}' of \bar{t} ?
- Problem: Solvable in polynomial time: Gaussian elimination

 $\bar{t} := \bar{A}\bar{s} \mod p$ $[\bar{t}] =$

Á

- Let's consider $(\mathbb{Z}_p, +, \cdot)$, i.e., $(\mathbb{Z}_p, +)$ with multiplication over \mathbb{Z}_p^{\times} Candidates: **1** Solve system of random linear equations over $(\mathbb{Z}_{p}^{\not{r}}, +, \cdot)^{poly(n)}$ Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^m$ and 210 - $\bar{t} := \bar{A}\bar{s} \mod p$ $\bar{t} =$ Ā Solution: 5? Problem: Information-theoretically hard! Solution: *some* preimage \bar{s}' of \bar{t} ? Problem: Solvable in polynomial time: Gaussian elimination 2 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)$? Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_{p}^{n}$ and $\bar{t}^{\top} := \bar{s}^{\top} \bar{A} \mod p$
 - Solution: s?

• Let's consider $(\mathbb{Z}_p, +, \cdot)$, i.e., $(\mathbb{Z}_p, +)$ with multiplication over \mathbb{Z}_p^{\times} Candidates: **1** Solve system of random linear equations over $(\mathbb{Z}_{p}^{\not{r}}, +, \cdot)^{poly(n)}$ Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^m$ and Zio- $\bar{t} := \bar{A}\bar{s} \mod p$ $[\bar{t}] =$ Á Solution: 5? Problem: Information-theoretically hard! Solution: *some* preimage \bar{s}' of \bar{t} ? ■ Problem: Solvable in polynomial time: Gaussian elimination 2 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)$? Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^n$ and $ar{t}^ op:=ar{s}^ opar{A} mod p$ Solution: 5?

• Let's consider $(\mathbb{Z}_p, +, \cdot)$, i.e., $(\mathbb{Z}_p, +)$ with multiplication over \mathbb{Z}_p^{\times} Candidates: **1** Solve system of random linear equations over $(\mathbb{Z}_{p}^{\not{r}}, +, \cdot)^{poly(n)}$ $\blacksquare_{\bar{x}} \text{ Input: } (\bar{A}, \bar{t}), \text{ where } \bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_p^m \text{ and }.$ $\bar{t} := \bar{A}\bar{s} \mod p$ $\bar{t} =$ Á Solution: 5? Problem: Information-theoretically hard! Solution: *some* preimage \bar{s}' of \bar{t} ? Problem: Solvable in polynomial time: Gaussian elimination 2 Solve system of random linear equations over $(\mathbb{Z}_p, +, \cdot)$? Input: (\bar{A}, \bar{t}) , where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^n$ and $ar{t}^ op:=ar{s}^ opar{A} mod p$ Solution: 5? Problem: Still solvable by Gaussian elimination

- \blacksquare The map $\bar{s} \mapsto (\bar{s}^{\top}\bar{A})^{\top}$ is a "random linear code"
 - Two "codewords" $\bar{t}_1^\top := \bar{s}_1^\top \bar{A}$ and $\bar{t}_2^\top := \bar{s}_2^\top \bar{A}$ are "far" (w.h.p.)
 - However, efficient "decoding" algorithm to recover \bar{s} from "noisy" $\bar{t}^{\top} \approx \bar{s}^{\top} \bar{A}$ not known

Zip

Ã

- \blacksquare The map $\bar{s} \mapsto (\bar{s}^{\top}\bar{A})^{\top}$ is a "random linear code"
 - Two "codewords" $\bar{t}_1^\top := \bar{s}_1^\top \bar{A}$ and $\bar{t}_2^\top := \bar{s}_2^\top \bar{A}$ are "far" (w.h.p.)
 - However, efficient "decoding" algorithm to recover \bar{s} from "noisy" $\bar{t}^{\top} \approx \bar{s}^{\top} \bar{A}$ not known

Zip

Zpn ·A

- The map \$\bar{s}\$ → \$(\bar{s}^T\bar{A})^T\$ is a "random linear code"
 Two "codewords" \$\bar{t}_1^T\$:= \$\bar{s}_1^T\bar{A}\$ and \$\bar{t}_2^T\$:= \$\bar{s}_2^T\bar{A}\$ are "far" (w.h.p.)
 However, efficient "decoding" algorithm to recover \$\bar{s}\$ from "noisy" \$\bar{t}^T\$ ≈ \$\bar{s}^T\bar{A}\$ not known
- **3** Potentially hard: solve "noisy" linear equations over $(\mathbb{Z}_p, +, \cdot)$?

Input
$$(\bar{A}, \bar{t})$$
, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_p^n, \bar{e} \leftarrow \mathbb{E}^m \text{ and}_p^n$
 $\bar{t}^\top := \bar{s}^\top \bar{A} + \bar{e}^\top \mod p$

■ Solution: *s*

- The map \$\bar{s}\$ → \$(\bar{s}^T\bar{A})^T\$ is a "random linear code"
 Two "codewords" \$\bar{t}_1^T\$:= \$\bar{s}_1^T\bar{A}\$ and \$\bar{t}_2^T\$:= \$\bar{s}_2^T\bar{A}\$ are "far" (w.h.p.)
 However, efficient "decoding" algorithm to recover \$\bar{s}\$ from "noisy" \$\bar{t}^T\$ ≈ \$\bar{s}^T\bar{A}\$ not known
- **3** Potentially hard: solve "noisy" linear equations over $(\mathbb{Z}_p, +, \cdot)$?

■ Input
$$(\bar{A}, \bar{t})$$
, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^n$, $\bar{e} \leftarrow \mathbb{E}^m$ and \bar{t}_p^n , $\bar{t}^\top := \bar{s}^\top \bar{A} + \bar{e}^\top \mod p$

■ Solution: *s*

■ The map $\bar{s} \mapsto (\bar{s}^\top \bar{A})^\top$ is a "random linear code"

- Two "codewords" $\bar{t}_1^\top := \bar{s}_1^\top \bar{A}$ and $\bar{t}_2^\top := \bar{s}_2^\top \bar{A}$ are "far" (w.h.p.) However efficient "decoding" algorithm to
- However, efficient "decoding" algorithm to recover \bar{s} from "noisy" $\bar{t}^{\top} \approx \bar{s}^{\top} \bar{A}$ not known
- 3 Potentially hard: solve "noisy" linear equations over $(\mathbb{Z}_p, +, \cdot)$?

Input
$$(\bar{A}, \bar{t})$$
, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_p^n$, $\bar{e} \leftarrow \mathbb{E}^m$ and \bar{p}
 $\bar{t}^\top := \bar{s}^\top \bar{A} + \bar{e}^\top \mod p$

Solution: s

- Uninteresting case: E = uniform over Z_p
 - \blacksquare \bar{t} loses information about \bar{s}

710

 \blacksquare The map $\bar{s} \mapsto (\bar{s}^\top \bar{A})^\top$ is a "random linear code"

- Two "codewords" $\bar{t}_1^\top := \bar{s}_1^\top \bar{A}$ and $\bar{t}_2^\top := \bar{s}_2^\top \bar{A}$ are "far" (w.h.p.) However efficient "decoding" algorithm to
- However, efficient "decoding" algorithm to recover \bar{s} from "noisy" $\bar{t}^{\top} \approx \bar{s}^{\top} \bar{A}$ not known
- **3** Potentially hard: solve "noisy" linear equations over $(\mathbb{Z}_p, +, \cdot)$?

Input
$$(\bar{A}, \bar{t})$$
, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s} \leftarrow \mathbb{Z}_p^n, \bar{e} \leftarrow \mathbb{E}^m$ and
 $\bar{t}^\top := \bar{s}^\top \bar{A} + \bar{e}^\top \mod p$

Solution: s

Uninteresting case: E = uniform over Z_p
t

t
t

t
t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

<lit

Zip m

 $\blacksquare~\bar{t}$ "determines" $\bar{s},$ but efficient algorithm to recover \bar{s} not known

■ The map $\bar{s} \mapsto (\bar{s}^{\top}\bar{A})^{\top}$ is a "random linear code"

- Two "codewords" $\bar{t}_1^\top := \bar{s}_1^\top \bar{A}$ and $\bar{t}_2^\top := \bar{s}_2^\top \bar{A}$ are "far" (w.h.p.) • However efficient "decoding" algorithm to $\mathcal{I}_2^{n} \cdot \bar{A}$
- However, efficient "decoding" algorithm to recover \bar{s} from "noisy" $\bar{t}^{\top} \approx \bar{s}^{\top} \bar{A}$ not known

Tup

3 Potentially hard: solve "noisy" linear equations over $(\mathbb{Z}_p, +, \cdot)$?

Input
$$(\bar{A}, \bar{t})$$
, where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}$, $\bar{s} \leftarrow \mathbb{Z}_{p}^{n}$, $\bar{e} \leftarrow \mathbb{E}^{m}$ and \bar{p}
 $\bar{t}^{\top} := \bar{s}^{\top}\bar{A} + \bar{e}^{\top} \mod p$
Solution: \bar{s}
Uninteresting case: $E =$ uniform over \mathbb{Z}_{p}
 \bar{t} loses information about \bar{s}
Interesting: $E = E_{\alpha}$, the *discrete Gaussian distribution* over \mathbb{Z}
Centred at 0; parameter $\alpha < 1$ determines s.d. $\sigma := \alpha p$
 $\Pr[e] = \underbrace{1}_{2\Pi, \nabla \cdot exp} \underbrace{e_{2}^{n}}_{2}$
 \bar{t} "determines" \bar{s} , but efficient algorithm to recover \bar{s} not known

Zip

Assumption 1 (Search LWE (SLWE))

The (*n*, *m*, *p*, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible

$$\Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{S} \leftarrow \mathbb{Z}_{p}^{n} \bar{e} \leftarrow \mathbb{E}^{m}}} \left[\operatorname{Inv}(\bar{A}, \bar{S}^{\top} \bar{A} + \bar{e}^{\top}) = \bar{S} \right]$$

Assumption 1 (Search LWE (SLWE)) $P(f(n)) = f_{a,d}(strete & 0)$ (Search LWE (SLWE)) The (n, m, p, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible $Pr = [Inv(\bar{A}, \bar{s}^T \bar{A} + \bar{e}^T) = \bar{s}]$ $\bar{s} \leftarrow \mathbb{Z}_p^n \cdot \bar{e}^T - E^m$

Assumption 1 (Search LWE (SLWE))

The (n, m, p, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible

 $\Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \boldsymbol{\mathfrak{S}} \leftarrow \mathbb{Z}_p^{n} \boldsymbol{\mathfrak{E}} - \mathbb{E}^m}} \left[\operatorname{Inv}(\bar{A}, \boldsymbol{\mathfrak{S}}^\top \bar{A} + \boldsymbol{\mathfrak{E}}^\top) = \boldsymbol{\mathfrak{S}} \right]$

Assumption 2 (Decision LWE (DLWE))

The (n, m, p, E)-DLWE assumption holds if for all QPT distinguishers D the following is negligible

$$\delta(n) := \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{\mathbf{S}} \leftarrow \mathbb{Z}_{p}^{n} \in -\mathbb{E}^{m}}} \left[\mathbb{D}(\bar{A}, \bar{\mathbf{S}}^{\top} \bar{A} + \bar{\mathbf{e}}^{\top}) = \mathbf{0} \right] - \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{\mathbf{C}} \leftarrow \mathbb{Z}_{p}^{n}}} \left[\mathbb{D}(\bar{A}, \bar{\mathbf{p}}^{\top}) = \mathbf{0} \right]$$

Assumption 1 (Search LWE (SLWE))

The (n, m, p, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible

 $\Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \boldsymbol{\mathfrak{S}} \leftarrow \mathbb{Z}_p^{n} \boldsymbol{\mathfrak{E}} - \mathbb{E}^m}} \left[\operatorname{Inv}(\bar{A}, \boldsymbol{\mathfrak{S}}^\top \bar{A} + \boldsymbol{\mathfrak{e}}^\top) = \boldsymbol{\mathfrak{S}} \right]$

Assumption 2 (Decision LWE (DLWE))

The (n, m, p, E)-DLWE assumption holds if for all QPT distinguishers D the following is negligible

$$\delta(n) := \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{S} \leftarrow \mathbb{Z}_{p}^{n} \in \mathbb{P}^{m}}} \left[\mathbb{D}(\bar{A}, \bar{S}^{\top} \bar{A} + \bar{e}^{\top}) = 0 \right] - \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{P} \leftarrow \mathbb{Z}_{p}^{n}}} \left[\mathbb{D}(\bar{A}, \bar{r}^{\top}) = 0 \right]$$

Assumption 1 (Search LWE (SLWE))

The (n, m, p, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible

 $\Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \mathbf{S} \leftarrow \mathbb{Z}_p^{n} \in \mathbf{e}^m}} \left[\operatorname{Inv}(\bar{A}, \mathbf{\bar{S}}^\top \bar{A} + \mathbf{\bar{e}}^\top) = \mathbf{\bar{S}} \right]$

Assumption 2 (Decision LWE (DLWE))

The (n, m, p, E)-DLWE assumption holds if for all QPT distinguishers D the following is negligible

$$\delta(n) := \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{S} \leftarrow \mathbb{Z}_{p}^{n} \in -\mathbb{E}^{m}}} \left[D(\bar{A}, \bar{S}^{\top} \bar{A} + \bar{e}^{\top}) = 0 \right] - \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m} \\ \bar{P} \leftarrow \mathbb{Z}_{p}^{m}}} \left[D(\bar{A}, \bar{r}^{\top}) = 0 \right]$$

Exercise 1

Are DLWE and SLWE random self-reducible?

Assumption 1 (Search LWE (SLWE))

The (n, m, p, E)-SLWE assumption holds if for all quantum polynomial-time (QPT) inverters Inv the following is negligible

 $\Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \mathbf{S} \leftarrow \mathbb{Z}_p^{n} \in \mathbf{e}^m}} \left[\operatorname{Inv}(\bar{A}, \mathbf{\bar{S}}^\top \bar{A} + \mathbf{\bar{e}}^\top) = \mathbf{\bar{S}} \right]$

Assumption 2 (Decision LWE (DLWE))

The (n, m, p, E)-DLWE assumption holds if for all QPT distinguishers D the following is negligible

$$\delta(n) := \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \bar{S} \leftarrow \mathbb{Z}_p^n \bar{\mathbf{e}} \leftarrow \mathbb{E}^m}} \left[\mathsf{D}(\bar{A}, \bar{S}^\top \bar{A} + \bar{\mathbf{e}}^\top) = 0 \right] - \Pr_{\substack{\bar{A} \leftarrow \mathbb{Z}_p^{n \times m} \\ \bar{P} \leftarrow \mathbb{Z}_p^m}} \left[\mathsf{D}(\bar{A}, \bar{\boldsymbol{e}}^\top) = 0 \right]$$

Exercise 1

Are DLWE and SLWE random self-reducible?

Decision and Search LWE are Equivalent!

■ Note: this is not true for, e.g, CDH and DDH!

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

• Focus on extracting first coordinate s_1 of \bar{s}

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

- Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)
- Focus on extracting first coordinate s_1 of \bar{s}

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

- Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)
- Focus on extracting first coordinate s_1 of \bar{s}

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

(ā, š'ā+e,

SLWE Inverter INV

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

• Focus on extracting first coordinate s_1 of \bar{s}

DI WE DIST. D

♦ Is it possible to transform (ā, sta+e) into another sample (ā', sta'+e)?

9/15

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

• Focus on extracting first coordinate s_1 of \bar{s}

DI WE DIST. D

◆ is it possible to transform $(\overline{a}, \overline{s^{T}a} + e)$ into another sample $(\overline{a}, \overline{s^{T}a} + e)$?

♦ What if you knew S1?

(ā, š'ā+e,

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}

 $(\overline{a}, \overline{s^{T}}\overline{a} + e) \bigoplus_{SLWE \text{ inverter INV}} \mathcal{P}_{LWE \text{ Dist. D}}$

♦ Is it possible to transform (ā, s^Ta+e) into another sample (ā', s^Ta'+e)?
♦ What if you knew s₁? somple a₁ < Z_p:
(ā, s^Ta+e) → (āt (a'_1, a, ..., a), s^Ta + e + a'_1s_1)
= (ā', s^Ta'+e)

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}

athate s_1 of s◆ is it possible to transform $(\bar{a}, \bar{s}^T\bar{a}+e)$ into another sample $(\bar{a}', \bar{s}^T\bar{a}'+e)$? ◆ What if you knew s_1 ? sample $a_i \leftarrow \bar{a}_p$: $(\bar{a}, \bar{s}^T\bar{a}+e) \mapsto (\bar{a}+(a'_1, 0, \dots, 0), \bar{s}^T\bar{a}+e+a'_1s_1)$ $= (\bar{a}', \bar{s}^T\bar{a}'+e)$ ◆ Why not guess s_1 ?

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}

Inate s_1 of s• Is t possible to transform $(\bar{a}, \bar{s}^T\bar{a}+e)$ into another sample $(\bar{a}', \bar{s}^T\bar{a}'+e)^2$. • What if you knews s_1 ? sample $a_i \leftarrow \bar{a}_p$: $(\bar{a}, \bar{s}^T\bar{a}+e) \mapsto (\bar{a}_1(a'_{1,0},...,0), \bar{s}^T\bar{a}+e+a_1s_1)$ $= (\bar{a}', \bar{s}^T\bar{a}'+e)$ • Why not guess s_1 ? What if guess wrong? $(\bar{a}, \bar{s}^T\bar{a}+e) \mapsto (\bar{a}', \bar{s}^T\bar{a}+e+a_1s_1)$ random

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}

If it is to cool difference is the set of t

■ Note: this is not true for, e.g, CDH and DDH!

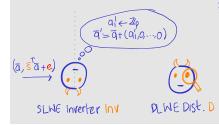
Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}



(a, $\overline{s}^{T}\overline{a}+e$) \mapsto (\overline{a}' , $\overline{s}^{T}\overline{a}+e$) $(\overline{a}', \overline{s}^{T}\overline{a}+e)$ (a, $\overline{s}^{T}\overline{a}+e$) \mapsto (\overline{a}' , $\overline{s}^{T}\overline{a}+e)$ ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto (\overline{a}' , ($\overline{a}, \overline{s}^{T}\overline{a}+e+a|s_{1}$) ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a|s_{1}$) ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a|s_{1}$) random ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a|s_{1}$) random ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a|s_{1}$) random ($\overline{a}, \overline{s}^{T}\overline{a}+e+a|s_{1})$ random (

■ Note: this is not true for, e.g, CDH and DDH!

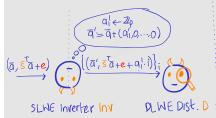
Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

Focus on extracting first coordinate s_1 of \bar{s}



(a, $\overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e$) $(\overline{a}', \overline{s}^{T}\overline{a}+e)$ into another sample ($\overline{a}', \overline{s}^{T}\overline{a}+e$)? ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}+(a_{1}', a, \dots, a_{l}), \overline{s}^{T}\overline{a}+e+a_{l}'s_{l}$) $= (\overline{a}', \overline{s}^{T}\overline{a}+e)$ ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a_{l}'s_{l}$) ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a_{l}'s_{l}$) random! ($\overline{a}, \overline{s}^{T}\overline{a}+e$) \mapsto ($\overline{a}', \overline{s}^{T}\overline{a}+e+a_{l}'s_{l}$) random!

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

• Focus on extracting first coordinate s_1 of \bar{s}

$$(\overline{a}, \overline{s}^{T}\overline{a}+e) \bigoplus \{\overline{a}', \overline{s}^{T}\overline{a}+e+a_{1}^{(\cdot)}\}_{i} \in \mathbb{Q}$$

SLWE Inverter INV PLWE DISt. D

$$(\overline{a}, \overline{s}^{T}\overline{a}+e) \longmapsto (\overline{a}', \overline{s}^{T}\overline{a}+e+a_{1}^{(\cdot)})_{i} \in \mathbb{Q}$$

■ Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)

For any $n \in \mathbb{N}$, $m, p \in poly(n)$ and E, and sufficiently large m', (n, m', p, E)-SLWE problem reduces to (n, m, p, E)-DLWE problem.

Proof sketch. $\exists Inv$ for SLWE $\leftarrow \exists D$ for DLWE.

• Assume *perfect* dist. for single sample $(\bar{a}, \bar{s}^{\top}\bar{a} + e)$ and (\bar{a}, r)

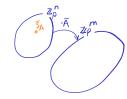
• Focus on extracting first coordinate s_1 of \bar{s}

(a,
$$\overline{s}^{T}\overline{a}+e$$
)
SLWE Inverter INV PLWE DIst. D
(a) St. Positize to Haristorm (a, sa+e) into
another sample ($\overline{a}', \overline{s}^{T}\overline{a}+e$)
(a) St. Positize to Haristorm (a, sa+e) into
another sample ($\overline{a}', \overline{s}^{T}\overline{a}+e$)?
(a) What if you knews si? sample $a_{i} \leftarrow \overline{a}_{p}$:
($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}+(a_{i}', 0, \dots, 0), \overline{s}^{T}\overline{a}+e+a_{i}'s_{i})$
($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}', \overline{s}^{T}\overline{a}+e+a_{i}'s_{i})$
($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}', \overline{s}^{T}\overline{a}+e+a_{i}'s_{i})$
($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}', \overline{s}^{T}\overline{a}+e+a_{i}'s_{i})$ random ($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}, \overline{s}^{T}\overline{a}+e+a_{i}'s_{i})$ random ($\overline{a}, \overline{s}^{T}\overline{a}+e$) $\mapsto (\overline{a}, \overline{s}^{T}\overline{a}+e)$ $\mapsto (\overline{a}$

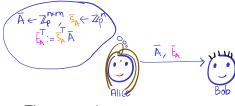
Plan for this Lecture

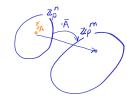
4 LWE and Lattices

■ The protocol:

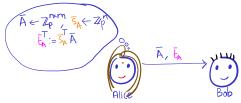


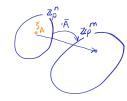
■ The protocol:



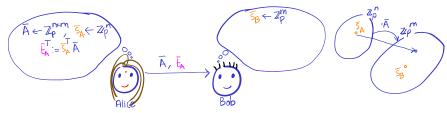


■ The protocol:

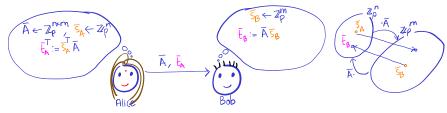




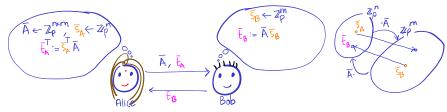
■ The protocol: 1 Alice→Bob: send ($\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A}$), where ■ $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$



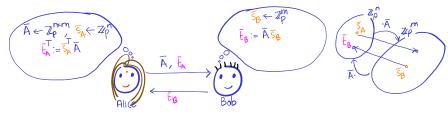
■ The protocol: 1 Alice→Bob: send ($\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A}$), where ■ $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$



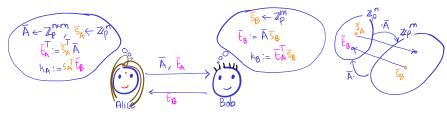
The protocol: 1 Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A})$, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$



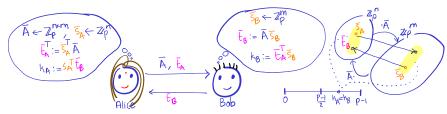
■ The protocol: 1 Alice→Bob: send ($\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A}$), where ■ $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$



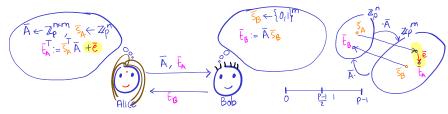
- The protocol: Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A} + \bar{e}^\top)$, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$
 - 2 Alice \leftarrow Bob: send ($\bar{t}_B := \bar{A}\bar{s}_B$ |), where $\bar{s}_B \leftarrow Z_{\rho}^{m}$



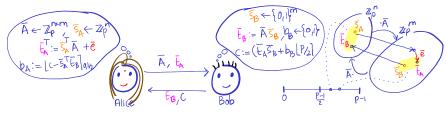
- The protocol: Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A} + \bar{e}^\top)$, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$
 - 2 Alice \leftarrow Bob: send ($\bar{t}_B := \bar{A}\bar{s}_B$ |), where $\bar{s}_B \leftarrow Z_{\rho}^{m}$



- The protocol: Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_{A}^{\top} := \bar{s}_{A}^{\top}\bar{A} + \bar{e}^{\top})$, where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}, \bar{s}_{A} \leftarrow \mathbb{Z}_{p}^{n}$
 - 2 Alice \leftarrow Bob: send ($\bar{t}_B := \bar{A}\bar{s}_B$ |), where $\bar{s}_B \leftarrow Z_{\rho}^{m}$



The protocol: 1 Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_{A}^{\top} := \bar{s}_{A}^{\top}\bar{A} + \bar{e}^{\top})$, where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}, \bar{s}_{A} \leftarrow \mathbb{Z}_{p}^{n}$ $\bar{e} \leftarrow \mathbb{E}_{o}^{m}$ 2 Alice \leftarrow Bob: send $(\bar{t}_{B} := \bar{A}\bar{s}_{B}$ |), where $\bar{s}_{B} \leftarrow \{0, 1\}^{m}$

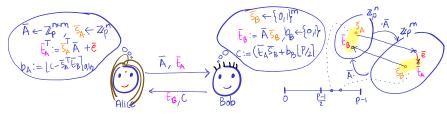


■ The protocol:

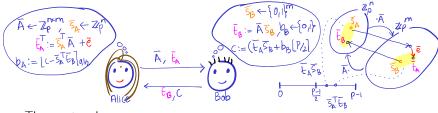
■ Alice→Bob: send $(\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A} + \bar{e}^\top)$, where ■ $\bar{A} \leftarrow \mathbb{Z}_n^{n \times m}, \, \bar{s}_A \leftarrow \mathbb{Z}_n^n$

2 Alice \leftarrow Bob: send $(\bar{t}_B := \bar{A}\bar{s}_B, c := (\bar{t}_A^\top \bar{s}_B + b_B \lfloor p/2 \rfloor)$, where **a** $\bar{s}_B \leftarrow \{0, 1\}^m$ **b** $_B \leftarrow \{0, 1\}$

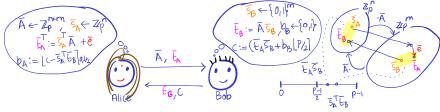
3 Alice outputs $b_A := \left[c - \bar{s}_A^\top \bar{t}_B \right]_{0,1/2}$ and Bob outputs b_B



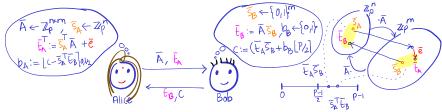
■ The protocol: 1 Alice→Bob: send $(\bar{A}, \bar{t}_A^\top := \bar{s}_A^\top \bar{A} + \bar{e}^\top)$, where $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}, \bar{s}_A \leftarrow \mathbb{Z}_p^n$ $\bar{e} \leftarrow \mathbb{E}_a^m$ 2 Alice←Bob: send $(\bar{t}_B := \bar{A}\bar{s}_B, c := (\bar{t}_A^\top \bar{s}_B + b_B \lfloor p/2 \rfloor)$, where $\bar{s}_B \leftarrow \{0, 1\}^m$ $b_B \leftarrow \{0, 1\}$ 3 Alice outputs $b_A := |c - \bar{s}_A^\top \bar{t}_B|_{0, 1/2}$ and Bob outputs b_B



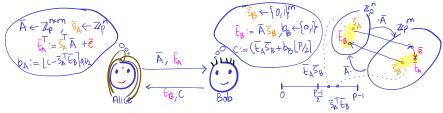
The protocol: 1 Alice \rightarrow Bob: send $(\bar{A}, \bar{t}_{A}^{\top} := \bar{s}_{A}^{\top}\bar{A} + \bar{e}^{\top})$, where $\bar{A} \leftarrow \mathbb{Z}_{p}^{n \times m}, \bar{s}_{A} \leftarrow \mathbb{Z}_{p}^{n}$ $\bar{e} \leftarrow \mathbb{E}_{\alpha}^{m}$ 2 Alice \leftarrow Bob: send $(\bar{t}_{B} := \bar{A}\bar{s}_{B}, c := (\bar{t}_{A}^{\top}\bar{s}_{B} + b_{B}\lfloor p/2 \rfloor)$, where $\bar{s}_{B} \leftarrow \{0, 1\}^{m}$ $b_{B} \leftarrow \{0, 1\}$ 3 Alice outputs $b_{A} := |c - \bar{s}_{A}^{\top}\bar{t}_{B}|_{0, 1/2}$ and Bob outputs b_{B}



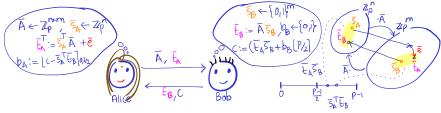
■ Correctness of key generation:



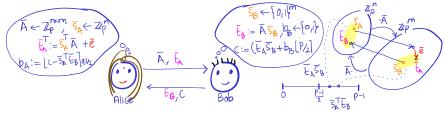
• Correctness of key generation: Note that $(-\overline{s_A}TE) = \overline{E_A} \cdot \overline{s_B} - \overline{s_A}TE + b_A \lfloor P_2 \rfloor$



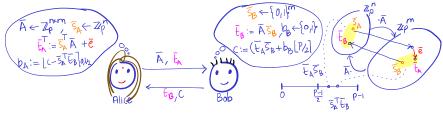
• Correctness of key generation: Note that $(-\overline{s}_{A}^{T}\overline{t}_{B} = \overline{t}_{A}^{T} \cdot \overline{s}_{B} - \overline{s}_{A}^{T}\overline{t}_{B} + b_{A}\lfloor P_{2} \rfloor$ $= (\overline{s}_{A}^{T}\overline{A} + e^{T})\overline{s}_{B} - \overline{s}_{A}^{T}\overline{A}s_{B} + b_{A}\lfloor P_{2} \rceil$



• Correctness of key generation: Note that $(-\overline{s}_{A}^{T}\overline{t}_{B} = \overline{t}_{A}^{T} \cdot \overline{s}_{B} - \overline{s}_{A}^{T}\overline{t}_{B} + b_{A}\lfloor P_{2} \rfloor$ $= (\overline{s}_{A}^{T}\overline{t}_{A} + e^{T})\overline{s}_{B} - \overline{s}_{A}^{T}\overline{t}_{B} + b_{A}\lfloor P_{2} \rfloor$ $= e^{T}\overline{s}_{B} + b_{A}\lfloor P_{2} \rfloor$



• Correctness of key generation: Note that $(-\overline{s_A}\overline{F_B} = \overline{E_A} \cdot \overline{s_B} - \overline{s_A}\overline{F_B} + b_A[P_2]$ $= (\overline{s_A}\overline{A} + e^T)\overline{s_B} - \overline{s_A}\overline{A}\overline{s_B} + b_A[P_2]$ $= e^T\overline{s_B} + b_A[P_2] \implies b_A = b_B \text{ if } |e^T\overline{s_B}| < P_4$



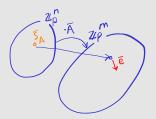
• Correctness of key generation: Note that $(-\overline{s_A}\overline{F_B} = \overline{E_A}^T \cdot \overline{s_B} - \overline{s_A}\overline{F_B} + b_A[P_{l_2}]$ $= (\overline{s_A}\overline{A} + e^T)\overline{s_B} - \overline{s_A}\overline{Asg} + b_A[P_{l_2}]$ $= e^T\overline{s_B} + b_A[P_{l_2}] \implies b_A = b_B \text{ if } |e^T\overline{s_B}| < P_A$ \uparrow • Scheme has negligible key-exchange error if $\alpha < 1/\tilde{O}(\sqrt{n})$

Regev's Encryption: 1-Bit PKE ← DLWE

Construction 1

- Key generation $Gen(1^n)$:

 - 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_{\alpha}^m$



Regev's Encryption: 1-Bit PKE \leftarrow DLWE

Construction 1

• Key generation $Gen(1^n)$: 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_a^m$ 3 Output (pk := $\begin{pmatrix} \bar{A} \\ \bar{t}_A^{\top} \end{pmatrix}$, sk := \bar{s}_A), where \bar{t}_A^{\top} := $\bar{s}_A^{\top}\bar{A} + \bar{e}^{\top} \mod p$ ·Á

Construction 1

• Key generation $Gen(1^n)$: 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_{\alpha}^m$ 3 Output (pk := $\begin{pmatrix} \bar{A} \\ \bar{t}_A^\top \end{pmatrix}$, sk := \bar{s}_A), where \bar{t}_A^\top := $\bar{s}_A^\top \bar{A} + \bar{e}^\top \mod p$ ·Á ■ Encryption Enc(pk, b): 1 Sample random coin $\bar{s}_B \leftarrow \{0,1\}^m$ $\underbrace{F_{p_1,p_2,p_3,p_4,p_4,p_4,p_4,p_4}}_{\text{Constraints}} 2 \quad Encode \ message \ \tilde{b} := b \cdot |p/2]$

Construction 1

 \blacksquare Key generation Gen (1^n) : 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_{\alpha}^m$ 3 *Output* (pk := $\begin{pmatrix} \bar{A} \\ \bar{t}_A^\top \end{pmatrix}$, sk := \bar{s}_A), where \bar{t}_A^\top := $\bar{s}_A^\top \bar{A} + \bar{e}^\top \mod p$ ·Á ■ Encryption Enc(pk, b): \$A 1 Sample random coin $\bar{s}_B \leftarrow \{0,1\}^m$ $\sum_{\substack{p=1\\p \neq 2\\p \neq 2\\p$

Construction 1

• Key generation $Gen(1^n)$: 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_{\alpha}^m$ **3** Output (pk := $\begin{pmatrix} \bar{A} \\ \bar{t}_{\perp}^{\top} \end{pmatrix}$, sk := \bar{s}_A), where \bar{t}_A^{\top} := $\bar{s}_A^{\top}\bar{A} + \bar{e}^{\top} \mod p$ ■ Encryption Enc(pk, b): ·Á SA. 1 Sample random coin $\bar{s}_B \leftarrow \{0, 1\}^m$ $= Decryption Dec(sk, \bar{c}): output [(0, 1])$ $= Decryption Dec(sk, \bar{c}): output [(-\bar{s}_{A}^{T}, 1)\bar{c} \mod p]_{0,1/2}$

Construction 1

• Key generation $Gen(1^n)$: 1 Sample matrix $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$ for m, p = poly(n)2 Sample secret key $\bar{s}_A \leftarrow \mathbb{Z}_p^n$ and error $\bar{e} \leftarrow \mathbb{E}_{\alpha}^m$ 3 Output (pk := $\begin{pmatrix} \bar{A} \\ \bar{t}_{\perp}^{\top} \end{pmatrix}$, sk := \bar{s}_A), where \bar{t}_A^{\top} := $\bar{s}_A^{\top}\bar{A} + \bar{e}^{\top} \mod p$ Ā ■ Encryption Enc(pk, b): ŠA 1 Sample random coin $\bar{s}_B \leftarrow \{0,1\}^m$ $= Decryption Dec(sk, \bar{c}): output [(-\bar{s}_{A}^{T}, 1)\bar{c} \mod p]_{0,1/2}$ ■ Correctness of decryption: similar argument to key exchange

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.

```
step1: Real world H.
Rondom world HI
```

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.

Step 1: Real world
$$H_0: pk = \begin{pmatrix} \bar{A} \\ \bar{E}A \end{pmatrix}$$
, where $\bar{E}_A:= \overline{S_A}\overline{A} + \overline{e}$
Rondom world $H_1: pk = \begin{pmatrix} \bar{A} \\ \bar{E} \end{pmatrix}$, where $\bar{F} \leftarrow Z_p^m$

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.

Step 1: Real world H_0 : $pk = \begin{pmatrix} \bar{A} \\ \bar{L}_A \end{pmatrix}$, where $\bar{L}_A := \bar{s}_A \bar{A} + \bar{e}$ Rondom world H_1 : $pk = \begin{pmatrix} \bar{A} \\ \bar{r} \end{pmatrix}$, where $\bar{r} \leftarrow Z_p^m$ <u>Claim</u>1: H_0 is quantum indistinguishable from H_1 assuming DLWE.

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps.

Step 1: Real world H_0 : $pk = \begin{pmatrix} \bar{A} \\ \bar{E}_A \end{pmatrix}$, where $\bar{E}_A := \bar{S}_A \bar{A} + \bar{e}$ Rondom world H_1 : $pk = \begin{pmatrix} \bar{A} \\ \bar{F} \end{pmatrix}$, where $\bar{F} \leftarrow Z_p^m$ <u>Claim</u>1: H_0 is quantum indistinguishable from H_1 assuming DLWE. <u>Proof</u>: $\exists D'$ distinguisher for $R_1 WE \leftarrow \exists D$ distinguisher for H_0 and H_1

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps. Step 1: Real world $H_0: P^{k} = \begin{pmatrix} \overline{A} \\ E_A \end{pmatrix}$, where $\overline{E}_A := \overline{S}_A^T \overline{A} + \overline{e}$ Rondom world $H_1: P^{k} = \begin{pmatrix} \overline{A} \\ F \end{pmatrix}$, where $\overline{F} \leftarrow Z_p^{m}$ Claim1: H_0 is quantum indistinguishable from H_1 assuming DLWE. Proof: $\exists D'$ distinguisher for $Q_{WE} \leftarrow \exists D$ distinguisher for H_0 and H_1

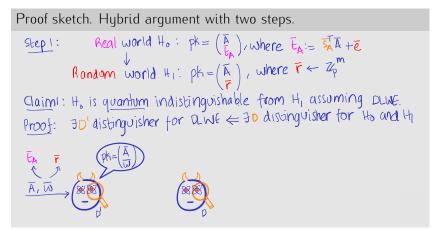
Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

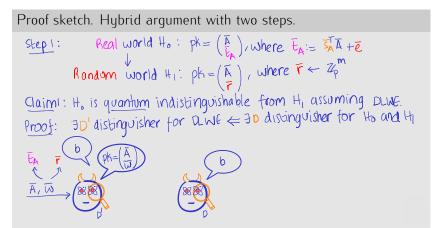
Proof sketch. Hybrid argument with two steps.

Step 1: Real world H_0 : $pk = \begin{pmatrix} \bar{A} \\ \bar{E}_{A} \end{pmatrix}$, where $\bar{E}_{A} := \bar{s}_{A}\bar{A} + \bar{e}$ Rondom world H_1 : $pk = \begin{pmatrix} \bar{A} \\ \bar{F} \end{pmatrix}$, where $\bar{F} \leftarrow Z_{p}^{m}$ <u>Claim</u>1: H_0 is quantum indistinguishable from H_1 assuming DLWE. Proof: $\exists D'$ distinguisher for $QLWE \leftarrow \exists D$ distinguisher for H_0 and H_1

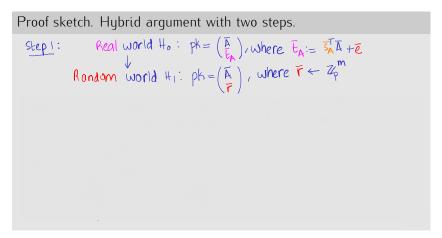
Theorem 3 (LWE \rightarrow Quantum CPA-PKE)



Theorem 3 (LWE \rightarrow Quantum CPA-PKE)



Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

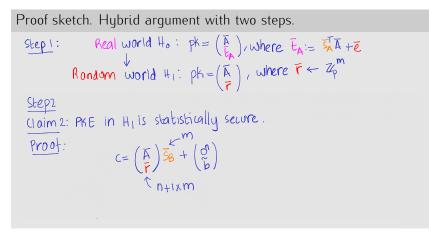


Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

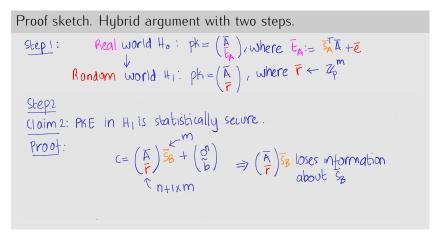
Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps. Step 1: Real world $H_0: P^{k} = (\overline{A}_{k_A})$, where $\overline{t}_A := \overline{s}_A^T \overline{A} + \overline{e}$ Rondom world $H_1: P^{k} = (\overline{A}_{\overline{r}})$, where $\overline{r} \leftarrow \mathbb{Z}_p^m$ <u>Step2</u> (Laim 2: PKE in H_1 is statistically secure.

Theorem 3 (LWE \rightarrow Quantum CPA-PKE)



Theorem 3 (LWE \rightarrow Quantum CPA-PKE)



Theorem 3 (LWE \rightarrow Quantum CPA-PKE)

Regev PKE is quantum CPA-secret under DLWE assumption.

Proof sketch. Hybrid argument with two steps. Step 1: Real world H_0 : $pk = \left(\frac{\overline{A}}{\overline{b}_A}\right)$, where $\overline{b}_A := \overline{s}_A^T \overline{A} + \overline{e}$ Rondom world H_1 : $pk = \left(\frac{\overline{A}}{\overline{b}_A}\right)$, where $\overline{r} \leftarrow Z_p^m$ Step2 Claim 2: PKE in His statistically secure. Proof: $c = \left(\frac{\overline{A}}{\overline{F}}\right) \frac{\overline{S}_{B}}{\overline{S}_{B}} + \left(\begin{array}{c} 0^{n} \\ \overline{b} \end{array}\right) \implies \left(\frac{\overline{A}}{\overline{F}}\right) \frac{\overline{S}_{B}}{\overline{S}_{B}} \text{ loses information} \\ \begin{array}{c} c = \left(\frac{\overline{A}}{\overline{F}}\right) \frac{\overline{S}_{B}}{\overline{S}_{B}} \text{ loses information} \\ c = \left(\frac{\overline{A}}{\overline{F}}\right) \frac{\overline{S}_{B}}{\overline{S}_{B}} \text{ loses information} \\ \end{array}$ $\mathsf{Matrix}^{\mathsf{n}}\mathsf{Leftover} \mathsf{hash} \mathsf{lemma}^{\mathsf{n}}: \mathsf{For}\left(\frac{\overline{A}}{\mathbf{r}}\right) \leftarrow \mathcal{U}_{\mathsf{P}}^{(\mathsf{n}+1)\mathsf{km}}\left(\left(\frac{\overline{A}}{\mathbf{r}}\right), \left(\frac{\overline{A}}{\mathbf{r}}\right) \tilde{\boldsymbol{s}}_{\mathsf{B}}\right) \approx_{\mathsf{s}}\left(\left(\frac{\overline{A}}{\mathbf{r}}\right), \overline{\mathbf{r}}' \leftarrow \mathcal{U}_{\mathsf{A}}^{(\mathsf{n}+1)}\right)_{\mathsf{s}}$

Exercise 2

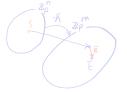
Show that the following variants of Regev's scheme are also quantum secret assuming DLWE:

- 1 Gaussian secret-keys: same as in Construction 1 except sample the secret key as $\bar{s}_A \leftarrow E_{\alpha}^n$
- 2 Gaussian random coins: same as in Construction 1 except sample the random coin as $\bar{s}_B \leftarrow E^m_{\alpha}$

Plan for This Lecture...

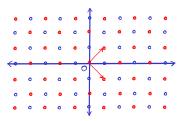
1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)



3 Cryptography from LWE

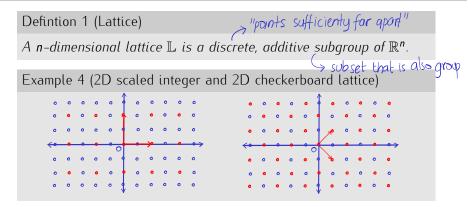
4 LWE and Lattices

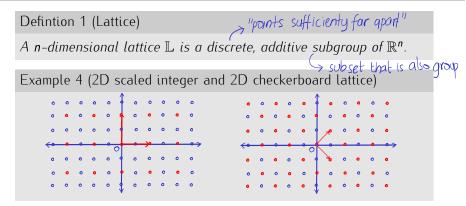


Definiton 1 (Lattice)

A *n*-dimensional lattice \mathbb{L} is a discrete, additive subgroup of \mathbb{R}^n .

Definition 1 (Lattice) A n-dimensional lattice \mathbb{L} is a discrete, additive subgroup of \mathbb{R}^n . absorred back is also group





Represented using a basis $\bar{B} = (\bar{b}_1, \cdots, \bar{b}_n) \in \mathbb{R}^{n \times n}$ as its integer linear combination:

$$\mathbb{L}(\bar{B}) := \left\{ \bar{v} := \sum_{i \in [n]} a_i \bar{b}_i \text{ for } (a_1, \dots, a_n) \in \mathbb{Z}^n \right\}$$

■ Some *worst-case* hard problems on lattices:

- 1 Shortest vector problem (SVP)
 - \blacksquare Input: lattice $\mathbb L$ via basis ar B
 - Solution: shortest (in 2-norm) non-zero vector in L

- Some *worst-case* hard problems on lattices:
 - 1 Shortest vector problem (SVP)
 - Input: lattice \mathbb{L} via basis \overline{B}
 - Solution: shortest (in 2-norm) non-zero vector in L
 - **2** GapSVP $_{\gamma}$: decision version of SVP
 - \blacksquare Input: lattice $\mathbb L$ via basis ilde B, and $d \in \mathbb R$
 - Decide whether the shortest vector has length $\geq \gamma d$ or < d
 - **NP**-hard for constant γ , but not for $\gamma = poly(n)$

- Some *worst-case* hard problems on lattices:
 - 1 Shortest vector problem (SVP)
 - Input: lattice \mathbb{L} via basis \overline{B}
 - Solution: shortest (in 2-norm) non-zero vector in L
 - 2 GapSVP_{γ}: decision version of SVP
 - Input: lattice $\mathbb L$ via basis \tilde{B} , and $d \in \mathbb R$
 - Decide whether the shortest vector has length $\geq \gamma d$ or < d
 - **•** NP-hard for constant γ , but not for $\gamma = poly(n)$

Theorem 5 (Worst-case to average case reduction)

Solving $(n, m, p, \mathbb{E}_{\alpha})$ -LWE, for $\alpha p \geq \sqrt{n}$, in the average case is at least as hard as deciding $GapSVP_{\tilde{O}(n^2)}$ for any *n*-dimensional lattice \mathbb{L}

- Some *worst-case* hard problems on lattices:
 - 1 Shortest vector problem (SVP)
 - Input: lattice \mathbb{L} via basis \overline{B}
 - \blacksquare Solution: shortest (in 2-norm) non-zero vector in \mathbbm{L}
 - 2 GapSVP_{γ}: decision version of SVP
 - Input: lattice $\mathbb L$ via basis \tilde{B} , and $d \in \mathbb R$
 - Decide whether the shortest vector has length $\geq \gamma d$ or < d
 - **NP**-hard for constant γ , but not for $\gamma = poly(n)$

Theorem 5 (Worst-case to average case reduction)

Solving $(n, m, p, \mathbb{E}_{\alpha})$ -LWE, for $\alpha p \geq \sqrt{n}$, in the average case is at least as hard as deciding $GapSVP_{\tilde{O}(n^2)}$ for any *n*-dimensional lattice \mathbb{L}

- Compare with factoring
 - Only weakly one-way and most instances are easy
 - Worst-case to average case reduction not known

Discussed motivation for post-quantum cryptography

- Discussed motivation for post-quantum cryptography
- Introduced a new hardness assumption: LWE
 - Saw equivalence between its decision and search variants
 - Constructed key-exchange protocol from DLWE

- Discussed motivation for post-quantum cryptography
- Introduced a new hardness assumption: LWE
 - Saw equivalence between its decision and search variants
 - Constructed key-exchange protocol from DLWE
- LWE has enough "structure" to support more advanced cryptographic primitives:
 - 1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
 - 2 Identity-based encryption: PKE where the public keys are arbitrary strings
 - 3 Incrementally-verifiable computation ...

- Discussed motivation for post-quantum cryptography
- Introduced a new hardness assumption: LWE
 - Saw equivalence between its decision and search variants
 - Constructed key-exchange protocol from DLWE
- LWE has enough "structure" to support more advanced cryptographic primitives:
 - 1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
 - 2 Identity-based encryption: PKE where the public keys are arbitrary strings
 - 3 Incrementally-verifiable computation ...
- Related computational problem: learning *parity* with noise
 - "Modulus 2 version" of LWE
 - Open: PKE from LPN

Next Lecture

■ So far in Module II: secrecy in the public-key setting

Next Lecture

- So far in Module II: secrecy in the public-key setting
- Next lecture: integrity + authentication in *public-key* setting
- New cryptographic primitive: *digital signatures*
 - Two construction, both quantum secure
 - $\blacksquare \text{ Lamport's one-time signature} \leftarrow \text{OWF}$
 - Theoretic construction of stateless signature
 - New proof technique: plug and pray!

References

- 1 [KL14, §14.3] for details of this chapter
- For a formal introduction to quantum computing, use [NC10]; a quick introduction can be found in [AB09, Chapter 10] (including Grover's and Shor's algorithms)
- **3** For a formal introduction to lattice-based cryptography, refer to Peikert's survey [Pei16] or lecture notes of Vaikuntanathan's CS294 course.
- The LWE-based encryption in Construction 1 is from [Reg05], but the presentation is from [Pei16, §5.2.1]
- The worst-case to average-case reduction for LWE in the form stated in Theorem 5 is due to a series of works: [Reg05, Pei09, LM09]

Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge University Press, 2009.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.

Vadim Lyubashevsky and Daniele Micciancio.

On bounded distance decoding, unique shortest vectors, and the minimum distance problem.

In Shai Halevi, editor, *CRYPTO 2009*, volume 5677 of *LNCS*, pages 577–594. Springer, Heidelberg, August 2009.

Michael A. Nielsen and Isaac L. Chuang.

Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.

Chris Peikert.

Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.

In Michael Mitzenmacher, editor, *41st ACM STOC*, pages 333–342. ACM Press, May / June 2009.

Chris Peikert.

A decade of lattice cryptography.

Found. Trends Theor. Comput. Sci., 10(4):283-424, 2016.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. In Harold N. Gabow and Ronald Fagin, editors, *37th ACM STOC*, pages 84–93. ACM Press, May 2005.