
CS783: Theoretical Foundations of Cryptography
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Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE ← DDH assumption
Goldwasser-Micali PKE ← QR assumption

Conceptual takeaways:
1 Two-message key-exchange ↔ PKE
2 Structure vs. hardness

Some open questions:
1 CPA-PKE ?→ CCA-PKE

Recall that CPA-SKE → CCA-SKE!
2 DLog ?→ CPA-PKE

We know CDH → CPA-PKE in the “random-oracle model”
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Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits

2 Classical state

3 Classical circuit

4

5 PPT adversary

Qubits (Quantum bits)

Quantum state

Quantum circuits

Measurement

Quantum PT adversary
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Cryptography in a quantum world (quantum cryptography)
All parties have access to quantum computers and channel
E.g.: key-exchange possible assuming only authenticated
classical channel: see BB84 and Ekert’s protocol

vs.

Post-quantum cryptography
Honest parties are classical; adversary is quantumPossible attack scenario: “Harvest now, decrypt later”

Potential adversaries: Five Eyes, state actors...
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Modelling the Setting for Quantum Adversaries...

Recent effort to research/deploy post-quantum cryptography
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Input: �-variable Boolean formula φ
Solution: a satisfying assignment � ∈ {�, �}� : φ(�) = �

Classical setting:
�� complete (SAT)
Sub-exponential-time algorithms believed to not exist
(exponential-time hypothesis)

Quantum setting:
Theorem 1 (Grover’s algorithm)
There is a quantum algorithm that given φ (represented as a
classical circuit) finds a satisfying assignment in time �� (�/�)

Impact on cryptography: SKEs broken in quantum time �� (�/�)
Solution: double key-size (use 256-bit AES instead of 128-bit)
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Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(� )

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�? λ(�) := (� − �)(� − �)/� (w.h.p.)
Finding λ(�) equivalent to factoring �

2 f� ,�(�, �) := ���−� mod �, where G = (Z×
� , ·) and � , � ← Z×

�What is the period of f�,�? λ(�,�) := (log�(�),�), the discrete log!
Quantum setting:

Theorem 2 (Shor’s algorithm)
There is a quantum algorithm that finds the period λ of a periodic
function f as above (represented as a classical circuit) in time
polynomial in |Zℓ | = log(ℓ).
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What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!
Impact on cryptography: PKEs from previous lecture insecure!

We need: hardness assumption that holds against QPT...
...that has sufficient structure to allow PKE/key exchange
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Plan for this Lecture

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices
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Regev’s Encryption is Quantum Secret...

Exercise 2
Show that the following variants of Regev’s scheme are also
quantum secret assuming DLWE:

1 Gaussian secret-keys: same as in Construction 1 except
sample the secret key as �̄� ← E�α

2 Gaussian random coins: same as in Construction 1 except
sample the random coin as �̄� ← E�α
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Plan for This Lecture...

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices
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Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .
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What has LWE to Do with Lattices?...
Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .
Example 4 (2D scaled integer and 2D checkerboard lattice)

Represented using a basis �̄ = (�̄�, · · · , �̄� ) ∈ R�×� as its
integer linear combination:

L(�̄ ) :=

�̄ := X

�∈[� ]
�� �̄� for (��, . . . , �� ) ∈ Z�



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What has LWE to Do with Lattices?...
Some worst-case hard problems on lattices:

1 Shortest vector problem (SVP)
Input: lattice L via basis �̄
Solution: shortest (in �-norm) non-zero vector in L
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2 GapSVPγ : decision version of SVP
Input: lattice L via basis �̄ , and � ∈ R
Decide whether the shortest vector has length ≥ γ� or < �

��-hard for constant γ , but not for γ = ����(�)
Theorem 5 (Worst-case to average case reduction)
Solving (�,�, �, Eα )-LWE, for α� ≥ √

�, in the average case is at
least as hard as deciding GapSVP

�̃ (��) for any �-dimensional
lattice L

Compare with factoring
Only weakly one-way and most instances are easy
Worst-case to average case reduction not known
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To Recap Today’s Lecture
Discussed motivation for post-quantum cryptography

Introduced a new hardness assumption: LWE
Saw equivalence between its decision and search variants
Constructed key-exchange protocol from DLWE

LWE has enough “structure” to support more advancedcryptographic primitives:
1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption: PKE where the public keys are

arbitrary strings
3 Incrementally-verifiable computation ...

Related computational problem: learning parity with noise
“Modulus � version” of LWE
Open: PKE from LPN
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Next Lecture

So far in Module II: secrecy in the public-key setting
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Next Lecture

So far in Module II: secrecy in the public-key setting

Next lecture: integrity + authentication in public-key setting
New cryptographic primitive: digital signatures

Two construction, both quantum secure
Lamport’s one-time signature ← OWF
Theoretic construction of stateless signature

New proof technique: plug and pray!
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