
CS783: Theoretical Foundations of Cryptography
Lecture 10 (03/Sep/24)

Instructor: Chethan Kamath

Recall from Last Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)

1 / 15

Recall from Last Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE ← DDH assumption
Goldwasser-Micali PKE ← QR assumption

1 / 15

Recall from Last Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE ← DDH assumption
Goldwasser-Micali PKE ← QR assumption

Conceptual takeaways:
1 Two-message key-exchange ↔ PKE
2 Structure vs. hardness

1 / 15

Recall from Last Lecture
Task 4: Public-key encryption

Modelled setting and security (CPA secrecy)
Saw two CPA-secret constructions, with proofs:

ElGamal PKE ← DDH assumption
Goldwasser-Micali PKE ← QR assumption

Conceptual takeaways:
1 Two-message key-exchange ↔ PKE
2 Structure vs. hardness

Some open questions:
1 CPA-PKE ?→ CCA-PKE

Recall that CPA-SKE → CCA-SKE!
2 DLog ?→ CPA-PKE

We know CDH → CPA-PKE in the “random-oracle model”
1 / 15

Plan for This Lecture...
Minicrypt to Cryptomania

2 / 15

Plan for This Lecture...
Minicrypt to Cryptomania

2 / 15

Plan for This Lecture...
Minicrypt to Cryptomania

Today: Task 4 against stronger class of quantum ���s

2 / 15

Plan for This Lecture...
Minicrypt to Cryptomania

Today: Task 4 against stronger class of quantum ���s

2 / 15

Plan for This Lecture...
Minicrypt to Cryptomania

Today: Task 4 against stronger class of quantum ���s

2 / 15

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 15

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 15

Plan for This Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 15

Plan for This Lecture...

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices

Plan for This Lecture...

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits Qubits (Quantum bits)

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits

2 Classical state

Qubits (Quantum bits)

Quantum state

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits

2 Classical state

3 Classical circuit

Qubits (Quantum bits)

Quantum state

Quantum circuits

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits

2 Classical state

3 Classical circuit

4

Qubits (Quantum bits)

Quantum state

Quantum circuits

Measurement

3 / 15

Quantum Computation
Based on principles of quantum mechanics

1 Certain physical properties (e.g., electron spin) are “discrete”
2 Its value is a “superposition” of these discrete values

Classical computation vs. Quantum computation
1 Bits

2 Classical state

3 Classical circuit

4

5 PPT adversary

Qubits (Quantum bits)

Quantum state

Quantum circuits

Measurement

Quantum PT adversary
3 / 15

Modelling the Setting for Quantum Adversaries...

Cryptography in a quantum world (quantum cryptography)
All parties have access to quantum computers and channel

4 / 15

Modelling the Setting for Quantum Adversaries...

Cryptography in a quantum world (quantum cryptography)
All parties have access to quantum computers and channel
E.g.: key-exchange possible assuming only authenticated
classical channel: see BB84 and Ekert’s protocol

4 / 15

Modelling the Setting for Quantum Adversaries...

Cryptography in a quantum world (quantum cryptography)
All parties have access to quantum computers and channel
E.g.: key-exchange possible assuming only authenticated
classical channel: see BB84 and Ekert’s protocol

vs.

Post-quantum cryptography
Honest parties are classical; adversary is quantum

4 / 15

Modelling the Setting for Quantum Adversaries...

Cryptography in a quantum world (quantum cryptography)
All parties have access to quantum computers and channel
E.g.: key-exchange possible assuming only authenticated
classical channel: see BB84 and Ekert’s protocol

vs.

Post-quantum cryptography
Honest parties are classical; adversary is quantumPossible attack scenario: “Harvest now, decrypt later”

Potential adversaries: Five Eyes, state actors...

4 / 15

Modelling the Setting for Quantum Adversaries...

Recent effort to research/deploy post-quantum cryptography
4 / 15

What is Easier for Quantum Computers?...
Unstructured search problem:

Input: �-variable Boolean formula φ
Solution: a satisfying assignment � ∈ {�, �}� : φ(�) = �

5 / 15

What is Easier for Quantum Computers?...
Unstructured search problem:

Input: �-variable Boolean formula φ
Solution: a satisfying assignment � ∈ {�, �}� : φ(�) = �

Classical setting:
�� complete (SAT)
Sub-exponential-time algorithms believed to not exist
(exponential-time hypothesis)

5 / 15

What is Easier for Quantum Computers?...
Unstructured search problem:

Input: �-variable Boolean formula φ
Solution: a satisfying assignment � ∈ {�, �}� : φ(�) = �

Classical setting:
�� complete (SAT)
Sub-exponential-time algorithms believed to not exist
(exponential-time hypothesis)

Quantum setting:
Theorem 1 (Grover’s algorithm)
There is a quantum algorithm that given φ (represented as a
classical circuit) finds a satisfying assignment in time �� (�/�)

5 / 15

What is Easier for Quantum Computers?...
Unstructured search problem:

Input: �-variable Boolean formula φ
Solution: a satisfying assignment � ∈ {�, �}� : φ(�) = �

Classical setting:
�� complete (SAT)
Sub-exponential-time algorithms believed to not exist
(exponential-time hypothesis)

Quantum setting:
Theorem 1 (Grover’s algorithm)
There is a quantum algorithm that given φ (represented as a
classical circuit) finds a satisfying assignment in time �� (�/�)

Impact on cryptography: SKEs broken in quantum time �� (�/�)
Solution: double key-size (use 256-bit AES instead of 128-bit)

5 / 15

What is Easier for Quantum Computers?...
Addition modulo prime � Multiplication modulo prime �

Multiplication modulo � = �� Elliptic curves modulo prime �

6 / 15

What is Easier for Quantum Computers?...
Addition modulo prime � Multiplication modulo prime �

Multiplication modulo � = �� Elliptic curves modulo prime �

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs.

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�?

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�? λ(�) := (� − �)(� − �)/� (w.h.p.)
Finding λ(�) equivalent to factoring �

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�? λ(�) := (� − �)(� − �)/� (w.h.p.)
Finding λ(�) equivalent to factoring �

2 f� ,�(�, �) := ���−� mod �, where G = (Z×
� , ·) and � , � ← Z×

�What is the period of f�,�?

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�? λ(�) := (� − �)(� − �)/� (w.h.p.)
Finding λ(�) equivalent to factoring �

2 f� ,�(�, �) := ���−� mod �, where G = (Z×
� , ·) and � , � ← Z×

�What is the period of f�,�? λ(�,�) := (log�(�),�), the discrete log!

6 / 15

What is Easier for Quantum Computers?...
Structured period-finding problem for functions over (Zℓ , +)

Input: f : (Zℓ , +) → G that is “periodic”
That is, ∃λ ∈ Zℓ∀� ∈ Zℓ : f(� + λ) = f(�)

Solution: smallest “period” λ
Classical setting: PPT algorithms believed not to exist forcertain fs. E.g.:

1 f�,� (�) := �� mod � , where G = (Z×
� , ·) and � ← Z×

�What is the period of f�,�? λ(�) := (� − �)(� − �)/� (w.h.p.)
Finding λ(�) equivalent to factoring �

2 f� ,�(�, �) := ���−� mod �, where G = (Z×
� , ·) and � , � ← Z×

�What is the period of f�,�? λ(�,�) := (log�(�),�), the discrete log!
Quantum setting:

Theorem 2 (Shor’s algorithm)
There is a quantum algorithm that finds the period λ of a periodic
function f as above (represented as a classical circuit) in time
polynomial in |Zℓ | = log(ℓ).

6 / 15

What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!

6 / 15

What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!

6 / 15

What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!
Impact on cryptography: PKEs from previous lecture insecure!

6 / 15

What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!
Impact on cryptography: PKEs from previous lecture insecure!

We need: hardness assumption that holds against QPT...
6 / 15

What is Easier for Quantum Computers?...

Corollary: factoring and discrete log are quantum easy!
Impact on cryptography: PKEs from previous lecture insecure!

We need: hardness assumption that holds against QPT...
...that has sufficient structure to allow PKE/key exchange

6 / 15

Plan for this Lecture

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?
Problem: Information-theoretically hard!
Solution: some preimage �̄′ of �̄?

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?
Problem: Information-theoretically hard!
Solution: some preimage �̄′ of �̄?
Problem: Solvable in polynomial time: Gaussian elimination

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?
Problem: Information-theoretically hard!
Solution: some preimage �̄′ of �̄?
Problem: Solvable in polynomial time: Gaussian elimination

2 Solve system of random linear equations over (Z�, +, ·)?
Input: (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� and
�̄⊤ := �̄⊤�̄ mod �

Solution: �̄?

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?
Problem: Information-theoretically hard!
Solution: some preimage �̄′ of �̄?
Problem: Solvable in polynomial time: Gaussian elimination

2 Solve system of random linear equations over (Z�, +, ·)?
Input: (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� and
�̄⊤ := �̄⊤�̄ mod �

Solution: �̄?

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
Let’s consider (Z� , +, ·), i.e., (Z� , +) with multiplication over Z×

�

Candidates:
1 Solve system of random linear equations over (Z�, +, ·)?

Input: (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�� and

�̄ := �̄�̄ mod �

Solution: �̄?
Problem: Information-theoretically hard!
Solution: some preimage �̄′ of �̄?
Problem: Solvable in polynomial time: Gaussian elimination

2 Solve system of random linear equations over (Z�, +, ·)?
Input: (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� and
�̄⊤ := �̄⊤�̄ mod �

Solution: �̄?
Problem: Still solvable by Gaussian elimination

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

3 Potentially hard: solve “noisy” linear equations over (Z� , +, ·)?
Input (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

3 Potentially hard: solve “noisy” linear equations over (Z� , +, ·)?
Input (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

3 Potentially hard: solve “noisy” linear equations over (Z� , +, ·)?
Input (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄Uninteresting case: E = uniform over Z�
�̄ loses information about �̄

7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

3 Potentially hard: solve “noisy” linear equations over (Z� , +, ·)?
Input (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄Uninteresting case: E = uniform over Z�
�̄ loses information about �̄

Interesting: E = Eα , the discrete Gaussian distribution over Z
Centred at �; parameter α < � determines s.d. σ := α�

�̄ “determines” �̄, but efficient algorithm to recover �̄ not known
7 / 15

Solving Linear Equations Over (Z�, +, ·)...
The map �̄ 7→ (�̄⊤�̄)⊤ is a “random linear code”

Two “codewords” �̄⊤
�

:= �̄⊤
�
�̄ and �̄⊤

�
:= �̄⊤

�
�̄ are “far” (w.h.p.)

However, efficient “decoding” algorithm to
recover �̄ from “noisy” �̄⊤ ≈ �̄⊤�̄ not known

3 Potentially hard: solve “noisy” linear equations over (Z� , +, ·)?
Input (�̄, �̄), where �̄ ← Z�×�

� , �̄ ← Z�� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄Uninteresting case: E = uniform over Z�
�̄ loses information about �̄

Interesting: E = Eα , the discrete Gaussian distribution over Z
Centred at �; parameter α < � determines s.d. σ := α�

�̄ “determines” �̄, but efficient algorithm to recover �̄ not known
7 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

8 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

8 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

Assumption 2 (Decision LWE (DLWE))
The (�,�, �, E)-DLWE assumption holds if for all QPT
distinguishers � the following is negligible

δ(�) := Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[�(�̄, �̄⊤�̄ + �̄⊤) = �] − Pr

�̄←Z�×�
�

�̄←Z��

[�(�̄, �̄⊤) = �]

8 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

Assumption 2 (Decision LWE (DLWE))
The (�,�, �, E)-DLWE assumption holds if for all QPT
distinguishers � the following is negligible

δ(�) := Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[�(�̄, �̄⊤�̄ + �̄⊤) = �] − Pr

�̄←Z�×�
�

�̄←Z��

[�(�̄, �̄⊤) = �]

8 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

Assumption 2 (Decision LWE (DLWE))
The (�,�, �, E)-DLWE assumption holds if for all QPT
distinguishers � the following is negligible

δ(�) := Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[�(�̄, �̄⊤�̄ + �̄⊤) = �] − Pr

�̄←Z�×�
�

�̄←Z��

[�(�̄, �̄⊤) = �]

Exercise 1
Are DLWE and SLWE random self-reducible?

8 / 15

Learning with Errors (LWE)
Assumption 1 (Search LWE (SLWE))
The (�,�, �, E)-SLWE assumption holds if for all quantum
polynomial-time (QPT) inverters ��� the following is negligible

Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[���(�̄, �̄⊤�̄ + �̄⊤) = �̄]

Assumption 2 (Decision LWE (DLWE))
The (�,�, �, E)-DLWE assumption holds if for all QPT
distinguishers � the following is negligible

δ(�) := Pr
�̄←Z�×�

�

�̄←Z��,�̄←E�
[�(�̄, �̄⊤�̄ + �̄⊤) = �] − Pr

�̄←Z�×�
�

�̄←Z��

[�(�̄, �̄⊤) = �]

Exercise 1
Are DLWE and SLWE random self-reducible?

8 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Decision and Search LWE are Equivalent!
Note: this is not true for, e.g, CDH and DDH!

Claim 1 (Search to decision reduction for LWE)
For any � ∈ N, �, � ∈ ����(�) and E, and sufficiently large �′,
(�,�′, �, E)-SLWE problem reduces to (�,�, �, E)-DLWE problem.
Proof sketch. ∃��� for SLWE ⇐ ∃� for DLWE.

Assume perfect dist. for single sample (�̄, �̄⊤�̄ + �) and (�̄, �)
Focus on extracting first coordinate �� of �̄

9 / 15

Plan for this Lecture

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

3 Alice outputs �� := �
� − �̄⊤

� �̄�
�
�,�/� and Bob outputs ��

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

3 Alice outputs �� := �
� − �̄⊤

� �̄�
�
�,�/� and Bob outputs ��

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

The protocol:
1 Alice→Bob: send (�̄, �̄⊤

� := �̄⊤
� �̄+ �̄⊤), where

�̄ ← Z�×�
� , �̄� ← Z��

�̄ ← E�α
2 Alice←Bob: send (�̄� := �̄�̄� , � := (�̄⊤

� �̄� + ��⌊�/�⌉), where
�̄� ← {�,�}�
�� ← {�,�}

3 Alice outputs �� := �
� − �̄⊤

� �̄�
�
�,�/� and Bob outputs ��

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

�-Bit Key-Exchange Protocol ← DLWE...

Correctness of key generation:

Scheme has negligible key-exchange error if α ≤ �/�̃(√�)

10 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α

11 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α
3 Output (pk :=

�
�̄

�̄⊤
�

�
, sk := �̄�), where �̄⊤

� := �̄⊤
� �̄+ �̄⊤ mod �

11 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α
3 Output (pk :=

�
�̄

�̄⊤
�

�
, sk := �̄�), where �̄⊤

� := �̄⊤
� �̄+ �̄⊤ mod �

Encryption ���(pk, �):
1 Sample random coin �̄� ← {�, �}�
2 Encode message �̃ := � · ⌊�/�⌉

11 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α
3 Output (pk :=

�
�̄

�̄⊤
�

�
, sk := �̄�), where �̄⊤

� := �̄⊤
� �̄+ �̄⊤ mod �

Encryption ���(pk, �):
1 Sample random coin �̄� ← {�, �}�
2 Encode message �̃ := � · ⌊�/�⌉
3 Output �̄ := pk�̄� +

�
��

�̃

�
mod �

11 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α
3 Output (pk :=

�
�̄

�̄⊤
�

�
, sk := �̄�), where �̄⊤

� := �̄⊤
� �̄+ �̄⊤ mod �

Encryption ���(pk, �):
1 Sample random coin �̄� ← {�, �}�
2 Encode message �̃ := � · ⌊�/�⌉
3 Output �̄ := pk�̄� +

�
��

�̃

�
mod �

Decryption ���(sk, �̄): output �(−�̄⊤
� , �)�̄ mod ��

�,�/�

11 / 15

Regev’s Encryption: 1-Bit PKE ← DLWE
Construction 1

Key generation ���(��):
1 Sample matrix �̄ ← Z�×�

� for �, � = ����(�)
2 Sample secret key �̄� ← Z�� and error �̄ ← E�α
3 Output (pk :=

�
�̄

�̄⊤
�

�
, sk := �̄�), where �̄⊤

� := �̄⊤
� �̄+ �̄⊤ mod �

Encryption ���(pk, �):
1 Sample random coin �̄� ← {�, �}�
2 Encode message �̃ := � · ⌊�/�⌉
3 Output �̄ := pk�̄� +

�
��

�̃

�
mod �

Decryption ���(sk, �̄): output �(−�̄⊤
� , �)�̄ mod ��

�,�/�
Correctness of decryption: similar argument to key exchange

11 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...
Theorem 3 (LWE → Quantum CPA-PKE)
Regev PKE is quantum CPA-secret under DLWE assumption.
Proof sketch. Hybrid argument with two steps.

12 / 15

Regev’s Encryption is Quantum Secret...

Exercise 2
Show that the following variants of Regev’s scheme are also
quantum secret assuming DLWE:

1 Gaussian secret-keys: same as in Construction 1 except
sample the secret key as �̄� ← E�α

2 Gaussian random coins: same as in Construction 1 except
sample the random coin as �̄� ← E�α

12 / 15

Plan for This Lecture...

1 Motivation: Quantum Adversaries

2 Learning with Errors (LWE)

3 Cryptography from LWE

4 LWE and Lattices

What has LWE to Do with Lattices?...
Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .

13 / 15

What has LWE to Do with Lattices?...
Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .

13 / 15

What has LWE to Do with Lattices?...
Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .
Example 4 (2D scaled integer and 2D checkerboard lattice)

13 / 15

What has LWE to Do with Lattices?...
Defintion 1 (Lattice)
A �-dimensional lattice L is a discrete, additive subgroup of R� .
Example 4 (2D scaled integer and 2D checkerboard lattice)

Represented using a basis �̄ = (�̄�, · · · , �̄�) ∈ R�×� as its
integer linear combination:

L(�̄) :=

�̄ := X

�∈[�]
�� �̄� for (��, . . . , ��) ∈ Z�

13 / 15

What has LWE to Do with Lattices?...
Some worst-case hard problems on lattices:

1 Shortest vector problem (SVP)
Input: lattice L via basis �̄
Solution: shortest (in �-norm) non-zero vector in L

13 / 15

What has LWE to Do with Lattices?...
Some worst-case hard problems on lattices:

1 Shortest vector problem (SVP)
Input: lattice L via basis �̄
Solution: shortest (in �-norm) non-zero vector in L

2 GapSVPγ : decision version of SVP
Input: lattice L via basis �̄ , and � ∈ R
Decide whether the shortest vector has length ≥ γ� or < �

��-hard for constant γ , but not for γ = ����(�)

13 / 15

What has LWE to Do with Lattices?...
Some worst-case hard problems on lattices:

1 Shortest vector problem (SVP)
Input: lattice L via basis �̄
Solution: shortest (in �-norm) non-zero vector in L

2 GapSVPγ : decision version of SVP
Input: lattice L via basis �̄ , and � ∈ R
Decide whether the shortest vector has length ≥ γ� or < �

��-hard for constant γ , but not for γ = ����(�)
Theorem 5 (Worst-case to average case reduction)
Solving (�,�, �, Eα)-LWE, for α� ≥ √

�, in the average case is at
least as hard as deciding GapSVP

�̃ (��) for any �-dimensional
lattice L

13 / 15

What has LWE to Do with Lattices?...
Some worst-case hard problems on lattices:

1 Shortest vector problem (SVP)
Input: lattice L via basis �̄
Solution: shortest (in �-norm) non-zero vector in L

2 GapSVPγ : decision version of SVP
Input: lattice L via basis �̄ , and � ∈ R
Decide whether the shortest vector has length ≥ γ� or < �

��-hard for constant γ , but not for γ = ����(�)
Theorem 5 (Worst-case to average case reduction)
Solving (�,�, �, Eα)-LWE, for α� ≥ √

�, in the average case is at
least as hard as deciding GapSVP

�̃ (��) for any �-dimensional
lattice L

Compare with factoring
Only weakly one-way and most instances are easy
Worst-case to average case reduction not known

13 / 15

To Recap Today’s Lecture
Discussed motivation for post-quantum cryptography

14 / 15

To Recap Today’s Lecture
Discussed motivation for post-quantum cryptography

Introduced a new hardness assumption: LWE
Saw equivalence between its decision and search variants
Constructed key-exchange protocol from DLWE

14 / 15

To Recap Today’s Lecture
Discussed motivation for post-quantum cryptography

Introduced a new hardness assumption: LWE
Saw equivalence between its decision and search variants
Constructed key-exchange protocol from DLWE

LWE has enough “structure” to support more advancedcryptographic primitives:
1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption: PKE where the public keys are

arbitrary strings
3 Incrementally-verifiable computation ...

14 / 15

To Recap Today’s Lecture
Discussed motivation for post-quantum cryptography

Introduced a new hardness assumption: LWE
Saw equivalence between its decision and search variants
Constructed key-exchange protocol from DLWE

LWE has enough “structure” to support more advancedcryptographic primitives:
1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption: PKE where the public keys are

arbitrary strings
3 Incrementally-verifiable computation ...

Related computational problem: learning parity with noise
“Modulus � version” of LWE
Open: PKE from LPN

14 / 15

Next Lecture

So far in Module II: secrecy in the public-key setting

15 / 15

Next Lecture

So far in Module II: secrecy in the public-key setting

Next lecture: integrity + authentication in public-key setting
New cryptographic primitive: digital signatures

Two construction, both quantum secure
Lamport’s one-time signature ← OWF
Theoretic construction of stateless signature

New proof technique: plug and pray!

15 / 15

References

1 [KL14, §14.3] for details of this chapter
2 For a formal introduction to quantum computing, use [NC10]; a

quick introduction can be found in [AB09, Chapter 10]
(including Grover’s and Shor’s algorithms)

3 For a formal introduction to lattice-based cryptography, refer to
Peikert’s survey [Pei16] or lecture notes of Vaikuntanathan’s
CS294 course.

4 The LWE-based encryption in Construction 1 is from [Reg05],
but the presentation is from [Pei16, §5.2.1]

5 The worst-case to average-case reduction for LWE in the form
stated in Theorem 5 is due to a series of works:
[Reg05, Pei09, LM09]

Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Vadim Lyubashevsky and Daniele Micciancio.
On bounded distance decoding, unique shortest vectors, and the minimum
distance problem.
In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 577–594.
Springer, Heidelberg, August 2009.
Michael A. Nielsen and Isaac L. Chuang.
Quantum Computation and Quantum Information: 10th Anniversary Edition.
Cambridge University Press, 2010.
Chris Peikert.
Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM
Press, May / June 2009.

15 / 15

Chris Peikert.
A decade of lattice cryptography.
Found. Trends Theor. Comput. Sci., 10(4):283–424, 2016.
Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

15 / 15

	Motivation: Quantum Adversaries
	Learning with Errors (LWE)
	Cryptography from LWE
	LWE and Lattices

