
CS783: Theoretical Foundations of Cryptography
Lecture 11 (06/Sep/24)

Instructor: Chethan Kamath



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalent

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

Related computational problem: learning parity with noise
1 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC

2 / 16



Plan for Today’s Lecture...
So far in the public-key setting: adversaries who are passive

Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC
OWF → one-time DS
One-time DS ∗→ DS

2 / 16



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 16



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 16



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 16



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 16



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Task 5: integrity and authentication in the public-key setting

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Task 5: integrity and authentication in the public-key setting

2 / 16



Plan for Today’s Lecture...

1 Digital Signature (DS)

2 One-Time Digital Signatures

3 Many-Time (Stateful) Digital Signatures



Plan for Today’s Lecture

1 Digital Signature (DS)

2 One-Time Digital Signatures

3 Many-Time (Stateful) Digital Signatures

3 / 16



Digital (Analogues of Physical) Signatures...

4 / 16



Digital (Analogues of Physical) Signatures...

4 / 16



Digital (Analogues of Physical) Signatures...

4 / 16



Digital (Analogues of Physical) Signatures...

Requirement: no one should be able to forge Bob’s signature
4 / 16



Digital (Analogues of Physical) Signatures...

Requirement: no one should be able to forge Bob’s signature
4 / 16



Digital (Analogues of Physical) Signatures...

Requirement: no one should be able to forge Bob’s signature
4 / 16



Digital (Analogues of Physical) Signatures...

Requirement: no one should be able to forge Bob’s signature
4 / 16



Digital (Analogues of Physical) Signatures...

Requirement: no one should be able to forge Bob’s signature
4 / 16



Digital (Analogues of Physical) Signatures...

4 / 16



Digital (Analogues of Physical) Signatures...

4 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

5 / 16



Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

Correctness of honest signing: for every � ∈ N, message � ∈ M� ,
Pr(pk,sk)←���(�� ),σ←����(sk,�)[���(pk, σ ,�) = �] = �

5 / 16



How to Define Security?...
Intuitively, what are the security requirements?

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



How to Define Security?...
Intuitively, what are the security requirements?

��� must not be able to forge a valid new signature frompreviously-seen signatures...
... on messages of its choice

Forged new signature can be on any message of ���’s choice
Existential Unforgeability Under Chosen-Message Attack

Defintion 2 (EU-CMA)
A DS Σ = (���, ����,���) is �-EU-CMA secure if no PPT
adversary ��� that makes at most � queries can break Σ as follows
with non-negligible probability.

6 / 16



EU-CMA Secure or Not?
Σ = (���, ����,���) EU-CMA-secure ⇒ Σ′ EU-CMA-secure?

1 Truncate-then-sign: define Σ′ as
����′(sk,� := �� · · ·�ℓ−��ℓ ) ← ����(sk,�� · · ·�ℓ−�)
���′(pk, σ ,�) := ���(pk, σ ,�� · · ·�ℓ−�)

7 / 16



EU-CMA Secure or Not?
Σ = (���, ����,���) EU-CMA-secure ⇒ Σ′ EU-CMA-secure?

1 Truncate-then-sign: define Σ′ as
����′(sk,� := �� · · ·�ℓ−��ℓ ) ← ����(sk,�� · · ·�ℓ−�)
���′(pk, σ ,�) := ���(pk, σ ,�� · · ·�ℓ−�)

2 Sign-then-truncate: define Σ′ as
����′(sk,�) := σ� · · · σ�−�, where σ� · · · σ�−�σ� ← ����(sk,�)
���′(pk, σ ′,�): accept if

���(pk, σ ′
�,�) = � or ���(pk, σ ′

�,�) = �

7 / 16



EU-CMA Secure or Not?
Σ = (���, ����,���) EU-CMA-secure ⇒ Σ′ EU-CMA-secure?

1 Truncate-then-sign: define Σ′ as
����′(sk,� := �� · · ·�ℓ−��ℓ ) ← ����(sk,�� · · ·�ℓ−�)
���′(pk, σ ,�) := ���(pk, σ ,�� · · ·�ℓ−�)

2 Sign-then-truncate: define Σ′ as
����′(sk,�) := σ� · · · σ�−�, where σ� · · · σ�−�σ� ← ����(sk,�)
���′(pk, σ ′,�): accept if

���(pk, σ ′
�,�) = � or ���(pk, σ ′

�,�) = �

3 Sign-then-append: define Σ′ as
����′(sk,�) := σ�, where σ ← ����(sk,�)
���′(pk, σ�,�) := ���(pk, σ ,�)

7 / 16



EU-CMA Secure or Not?
Σ = (���, ����,���) EU-CMA-secure ⇒ Σ′ EU-CMA-secure?

1 Truncate-then-sign: define Σ′ as
����′(sk,� := �� · · ·�ℓ−��ℓ ) ← ����(sk,�� · · ·�ℓ−�)
���′(pk, σ ,�) := ���(pk, σ ,�� · · ·�ℓ−�)

2 Sign-then-truncate: define Σ′ as
����′(sk,�) := σ� · · · σ�−�, where σ� · · · σ�−�σ� ← ����(sk,�)
���′(pk, σ ′,�): accept if

���(pk, σ ′
�,�) = � or ���(pk, σ ′

�,�) = �

3 Sign-then-append: define Σ′ as
����′(sk,�) := σ�, where σ ← ����(sk,�)
���′(pk, σ�,�) := ���(pk, σ ,�)

Exercise 1
Prove by reduction that the Σ′s in � and � are EU-CMA-secure.

7 / 16



Plan for Today’s Lecture

1 Digital Signature (DS)

2 One-Time Digital Signatures

3 Many-Time (Stateful) Digital Signatures

8 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



One-Time DS (� = �): Lamport’s Signature
Construction 1 (OWF � → one-time DS Σ for M := {�, �}ℓ )

9 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Theorem 1
If � is a OWF then Lamport’s scheme is a one-time DS.
Proof sketch: proof by reduction. Idea: “plug and pray”.

10 / 16



Lamport’s Signature is One-Time Secure...
Exercise 2

Can a forger break EU-CMA given two signatures?
Are the signatures unique? If not, can it be made unique?

10 / 16



Lamport’s Signature is One-Time Secure...
Exercise 2

Can a forger break EU-CMA given two signatures?
Are the signatures unique? If not, can it be made unique?
Can we avoid the �/�ℓ loss in inverting advantage?

Theorem 2
If � is a OWF then Lamport’s scheme is a one-time DS

10 / 16



Lamport’s Signature is One-Time Secure...
Exercise 2

Can a forger break EU-CMA given two signatures?
Are the signatures unique? If not, can it be made unique?
Can we avoid the �/�ℓ loss in inverting advantage?

Theorem 2
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages.
Exercise 3 (Domain Extension)
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

10 / 16



Plan for Today’s Lecture

1 Digital Signature (DS)

2 One-Time Digital Signatures

3 Many-Time (Stateful) Digital Signatures

10 / 16



(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

11 / 16



(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

Defintion 3 (Stateful DS)
A stateful DS Σ is a triple of efficient algorithms (���, ����,���)
with the following syntax:

11 / 16



(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

Defintion 3 (Stateful DS)
A stateful DS Σ is a triple of efficient algorithms (���, ����,���)
with the following syntax:

11 / 16



(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

Defintion 3 (Stateful DS)
A stateful DS Σ is a triple of efficient algorithms (���, ����,���)
with the following syntax:

11 / 16



(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

Defintion 3 (Stateful DS)
A stateful DS Σ is a triple of efficient algorithms (���, ����,���)
with the following syntax:

Exercise 4
1 Write down the requirement for correctness of honest signing
2 What is different in the security definition EU-CMA?

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� .

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Construction 2 (One-time DS Σ� = (����, �����,����) ⇒ stateful
DS Σ� . Idea: “chain signatures” )

11 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
Theorem 3
If Σ� is an one-time DS supporting arbitrary-length messages then
Σ� is a stateful DS.
Proof sketch: plug and pray, again.

12 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

13 / 16



(Many-Time) Stateful Digital Signature...
The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 5 (Compact stateful DS)
Prove that the construction Σ� is secure. (Hint: plug and pray.)

13 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

14 / 16



(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

Exercise 6 (EU-CMA-secure DS)
Prove that Σ is secure.

14 / 16



To Recap Today’s Lecture

Introduced digital signatures: public-key analogue of MAC
Theoretical constructions of DS

Lamport’s one-time DS
Tree-based many-time (stateful) DS from one-time DS

15 / 16



To Recap Today’s Lecture

Introduced digital signatures: public-key analogue of MAC
Theoretical constructions of DS

Lamport’s one-time DS
Tree-based many-time (stateful) DS from one-time DS

Lectures 13 and 15(?): efficient DS in “random-oracle model”
From trapdoor OWF via hash-then-invert
Via Fiat-Shamir transform (e.g., Schnorr)

15 / 16



To Recap Today’s Lecture

Introduced digital signatures: public-key analogue of MAC
Theoretical constructions of DS

Lamport’s one-time DS
Tree-based many-time (stateful) DS from one-time DS

Lectures 13 and 15(?): efficient DS in “random-oracle model”
From trapdoor OWF via hash-then-invert
Via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:

15 / 16



To Recap Today’s Lecture

Introduced digital signatures: public-key analogue of MAC
Theoretical constructions of DS

Lamport’s one-time DS
Tree-based many-time (stateful) DS from one-time DS

Lectures 13 and 15(?): efficient DS in “random-oracle model”
From trapdoor OWF via hash-then-invert
Via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:
Constructive:

Bottom up constructive approach
Tree-based “bootstrapping” construction

15 / 16



To Recap Today’s Lecture

Introduced digital signatures: public-key analogue of MAC
Theoretical constructions of DS

Lamport’s one-time DS
Tree-based many-time (stateful) DS from one-time DS

Lectures 13 and 15(?): efficient DS in “random-oracle model”
From trapdoor OWF via hash-then-invert
Via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:
Constructive:

Bottom up constructive approach
Tree-based “bootstrapping” construction

Proof techniques: “Plug and pray”

15 / 16



Next Lecture
Exercise 7 (Domain Extension)
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

16 / 16



Next Lecture
Exercise 7 (Domain Extension)
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

New cryptographic primitive: hash function
Properties of hash function

Preimage resistance
Collision resistance

16 / 16



Next Lecture
Exercise 7 (Domain Extension)
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

New cryptographic primitive: hash function
Properties of hash function

Preimage resistance
Collision resistance

Domain extension for hash function
Merkle-Damgård construction
Merkle trees

16 / 16



References

1 Digital signature and its security models were formally studied
in [GMR88]

2 Lamport’s OTS is from [Lam79]
3 The stateful many-time signature is from [KL14], and is in spirit

with Merkle’s signatures [Mer90]

16 / 16



Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November
1993.
Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest.
A digital signature scheme secure against adaptive chosen-message attacks.
SIAM J. Comput., 17(2):281–308, 1988.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Leslie Lamport.
Constructing digital signatures from a one-way function.
Technical report, 1979.
Ralph C. Merkle.
A certified digital signature.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 218–238.
Springer, Heidelberg, August 1990.

16 / 16


	Digital Signature (DS)
	One-Time Digital Signatures
	Many-Time (Stateful) Digital Signatures

