
CS783: Theoretical Foundations of Cryptography
Lecture 11 (06/Sep/24)

Instructor: Chethan Kamath



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalent

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

1 / 16



Recall from Last Lecture
Discussed post-quantum cryptography

Saw why assumptions like DLog and Factoring do not hold

New computational hardness assumption: LWE
Its decision and search variants are equivalentConstructed key-exchange protocol from DLWE

“Noisy/approximate” Diffie-Hellman-like construction
LWE has sufficient “structure” to support more advancedcryptographic primitives:

1 Fully-homomorphic encryption (FHE): coming up, Lecture 19(?)
2 Identity-based encryption
3 Incrementally-verifiable computation...

Related computational problem: learning parity with noise
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Eavesdroppers of various forms
Lecture 7: integrity and authentication in secret-key setting

Message authentication code (MAC)
PRF → MAC

Task 5: integrity and authentication in the public-key setting
Digital signatures (DS): public-key analogue of MAC
OWF → one-time DS
One-time DS ∗→ DS
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Digital Signatures: Syntax
Public-key analogue of message authentication codes (MAC)

Defintion 1 (Digital signature (DS))
A DS Σ is a triple of efficient algorithms (���, ����,���) with thefollowing syntax:

Correctness of honest signing: for every � ∈ N, message � ∈ M� ,
Pr(pk,sk)←���(�� ),σ←����(sk,�)[���(pk, σ ,�) = �] = �
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���′(pk, σ ′,�): accept if
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3 Sign-then-append: define Σ′ as
����′(sk,�) := σ�, where σ ← ����(sk,�)
���′(pk, σ�,�) := ���(pk, σ ,�)

Exercise 1
Prove by reduction that the Σ′s in � and � are EU-CMA-secure.
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Lamport’s Signature is One-Time Secure...
Exercise 2

Can a forger break EU-CMA given two signatures?
Are the signatures unique? If not, can it be made unique?
Can we avoid the �/�ℓ loss in inverting advantage?

Theorem 2
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages.
Exercise 3 (Domain Extension)
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?
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(Many-Time) DS with Stateful Signer
Syntax: same as before except that ���� is stateful

Defintion 3 (Stateful DS)
A stateful DS Σ is a triple of efficient algorithms (���, ����,���)
with the following syntax:

Exercise 4
1 Write down the requirement for correctness of honest signing
2 What is different in the security definition EU-CMA?
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The size of signatures in Σ� grows linearly with the number ofsignatures issued by the signer. How to fix this?

Idea: “tree of signatures”

Exercise 5 (Compact stateful DS)
Prove that the construction Σ� is secure. (Hint: plug and pray.)
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(Many-Time) Digital Signature...
Compact stateful DS Σ� + pseudo-random function
FK : {�, �}ℓ+� → {�, �}� ⇒ DS Σ

Idea: Use to derandomise underlying signature and key gen.

Exercise 6 (EU-CMA-secure DS)
Prove that Σ is secure.
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one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

New cryptographic primitive: hash function
Properties of hash function

Preimage resistance
Collision resistance

Domain extension for hash function
Merkle-Damgård construction
Merkle trees
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