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CS783: Theoretical Foundations of Cryptography

Lecture 11 (06/Sep/24)

Instructor: Chethan Kamath
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I\ Paper 2024/555 B4 | 2y

Quantum Algorithms for Lattice Problems :

Yilei Chen @ Tsinghua University, Shanghai Artificial Intelligence Laboratory,
Shanghai Qi Zhi Institute

m Related computational problem: learning parity with noise
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Digital Signatures: Syntax

m Public-key analogue of message authentication codes (MAC)
Defintion 1 (Digital signature (DS))

A DS ¥ is a triple of efficient algorithms (Gen, Sign, Ver) with the
following syntax:
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m Correctness of honest signing: for every n € N, message m € M,

P Ver(pk =1=1
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Exercise 2

m Can a forger break EU-CMA given two signatures?
m Are the signatures unique? If not, can it be made unique?

m Can we avoid the 1/2¢ loss in inverting advantage?

Theorem 2

If f is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages.

Exercise 3 (Domain Extension)

Given a compressing function H : {0,1}?* — {0, 1}, construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?
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(Many-Time) DS with Stateful Signer

m Syntax: same as before except that Sign is stateful
Defintion 3 (Stateful DS)

A stateful DS ¥ is a triple of efficient algorithms (Gen, Sign, Ver)
with the following syntax:

B0
(SINER)

Exercise 4

1 Write down the requirement for correctness of honest signing
2 What is different in the security definition EU-CMA?
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(Many-Time) Stateful Digital Signature

Construction 2 (One-time DS Y1 = (Gen!, Sign!, Ver!) = <iateiul
DS £°.@ldea: “chain signatures” )

Ver (P, m:,T)
M
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(Many-Time) Stateful Digital Signature

Construction 2 (One-time DS Y1 = (Gen!, Sign!, Ver!) = <iateiul
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If £ is an one-time DS supporting arbitrary-length messages then
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&B The size of signatures in £° grows linearly with the number of
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& Idea: “tree of signatures’

Voeloits %@sm‘@w

P b Pha Sl
Phe o6 ° © Phy Chos

.......... v
Py Cho

Exercise 5 (Compact stateful DS)
Prove that the construction L is secure. (/—[tun£ plug and pray.)
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Exercise 6 (EU-CMA-secure DS)

Prove that L is secure.
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m Bottom up constructive approach b

m [ree-based "bootstrapping” construction
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Next Lecture

Exercise 7 (Domain Extension)

Given a compressing function H : {0, 1}% — {0, l}g, construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?
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Exercise 7 (Domain Extension)

Given a compressing function H : {0, 1}% — {0, l}g, construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

m New cryptographic primitive: hash function
m Properties of hash function

m Preimage resistance
m Collision resistance

m Domain extension for hash function

m Merkle-Damgard construction
m Merkle trees
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