
CS783: Theoretical Foundations of Cryptography
Lecture 12 (10/Sep/24)

Instructor: Chethan Kamath



Plan for Today’s Lecture

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

2 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”
One-time DS → compact stateful DS: “tree of signatures”

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”
One-time DS → compact stateful DS: “tree of signatures”
Stateless DS via derandomisation using PRF

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”
One-time DS → compact stateful DS: “tree of signatures”
Stateless DS via derandomisation using PRF

Efficient DS in “random-oracle model”
Lectures 13: from trapdoor OWP via hash-then-invert
Lecture 15(?): via Fiat-Shamir transform (e.g., Schnorr)

1 / 16



Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”
One-time DS → compact stateful DS: “tree of signatures”
Stateless DS via derandomisation using PRF

Efficient DS in “random-oracle model”
Lectures 13: from trapdoor OWP via hash-then-invert
Lecture 15(?): via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:
Constructive: “bootstrapping” one-time to many-time signatures
Proof techniques: “plug and pray”

1 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS

2 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages {�, �}ℓ .

2 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages {�, �}ℓ .

2 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages {�, �}ℓ .
Theorem 2 (PRF→ MAC: Theorem 2, Lecture 7)
If {Fk : {�, �}� → {�, �}�}k∈{�,�}� is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {�, �}� .

2 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages {�, �}ℓ .
Theorem 2 (PRF→ MAC: Theorem 2, Lecture 7)
If {Fk : {�, �}� → {�, �}�}k∈{�,�}� is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {�, �}� .
Exercise 1 (Exercise 3, Lecture 11 (Domain Extension))
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

2 / 16



Plan for Today’s Lecture...

Theorem 1 (Theorem 1, Lecture 11)
If � is a OWF then Lamport’s scheme is a one-time DS for
fixed-length messages {�, �}ℓ .
Theorem 2 (PRF→ MAC: Theorem 2, Lecture 7)
If {Fk : {�, �}� → {�, �}�}k∈{�,�}� is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {�, �}� .
Exercise 1 (Exercise 3, Lecture 11 (Domain Extension))
Given a compressing function H : {�, �}�ℓ → {�, �}ℓ , construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Sub-task 5.a: domain-extension of digital signature/MAC
Sufficient to construct hash functions with certain properties

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Sub-task 5.a: domain-extension of digital signature/MAC
Sufficient to construct hash functions with certain properties

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Sub-task 5.a: domain-extension of digital signature/MAC
Sufficient to construct hash functions with certain properties

2 / 16



Plan for Today’s Lecture...
Minicrypt to Cryptomania

Sub-task 5.a: domain-extension of digital signature/MAC
Sufficient to construct hash functions with certain properties

2 / 16



Plan for Today’s Lecture...

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?



Plan for Today’s Lecture

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

2 / 16



Extending Lamport’s One-Time DS for Longer Messages...

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

Hash-then-sign: compute “hash” � = H(�) and then sign �

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

Hash-then-sign: compute “hash” � = H(�) and then sign �

What are the requirements from H?/When can ��� forge?

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

Hash-then-sign: compute “hash” � = H(�) and then sign �

What are the requirements from H?/When can ��� forge?
Must be one-way. Is one-wayness sufficient?

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

Hash-then-sign: compute “hash” � = H(�) and then sign �

What are the requirements from H?/When can ��� forge?
Must be one-way. Is one-wayness sufficient?No, it must be hard to find inputs that “collide”

Collisions are guaranteed to exist (pigeonhole principle)
Is “collision-resistance” sufficient?

3 / 16



Extending Lamport’s One-Time DS for Longer Messages...

Hash-then-sign: compute “hash” � = H(�) and then sign �

What are the requirements from H?/When can ��� forge?
Must be one-way. Is one-wayness sufficient?No, it must be hard to find inputs that “collide”

Collisions are guaranteed to exist (pigeonhole principle)
Is “collision-resistance” sufficient? Yes, as we’ll see.

3 / 16



Collision-Resistant Hash Function (CRHF)...

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

Problem: trivial for non-uniform adversaries

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

Problem: trivial for non-uniform adversaries
Defintion 2 (CRHF, with key generation algorithm ���)
A keyed function (family) �H : K × {�, �}∗ → {�, �}�	 is a CRHF if
for every PPT collision-finder �, the following is negligible.

Prk←���(��)(��,��)←�(k)
[H(k, ��) = H(k, ��)]

4 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)
3 Double hash: H(k�k�, �) := H�(k�, �)H�(k�, �)

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)
3 Double hash: H(k�k�, �) := H�(k�, �)H�(k�, �)
4 Hash-then-XOR: H(k�k�, �) := H�(k�, �) ⊕ H�(k�, �)

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)
3 Double hash: H(k�k�, �) := H�(k�, �)H�(k�, �)
4 Hash-then-XOR: H(k�k�, �) := H�(k�, �) ⊕ H�(k�, �)
5 Hash-of-hash: H(k, ����) := H�(k, H�(k, ��))

5 / 16



Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)
3 Double hash: H(k�k�, �) := H�(k�, �)H�(k�, �)
4 Hash-then-XOR: H(k�k�, �) := H�(k�, �) ⊕ H�(k�, �)
5 Hash-of-hash: H(k, ����) := H�(k, H�(k, ��))

Exercise 2
Prove formally the cases where H is a CRHF; describe
counter-example otherwise.

5 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principle

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradox

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradoxCompute hash of � := � (��/�) random inputs ��, . . . , ��

With noticeable probability, there exist colliding pairs of inputs
Consequence: key-size/output length must be �× security level

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradoxCompute hash of � := � (��/�) random inputs ��, . . . , ��

With noticeable probability, there exist colliding pairs of inputs
Consequence: key-size/output length must be �× security level

Exercise 3
1 Is deterministic �(��/�)-time+�(���/�)-space collision-finder

possible?
2 Is rand. �(��/�)-time+�(�)-space collision-finder possible?

6 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Extending Lamport’s One-Time DS for Longer Messages...
Theorem 3
If f is a OWF and H is CRHF then the “hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: ∃��� for f or ∃� for H ⇐ ∃��� for “hash-then-sign”.

7 / 16



Plan for Today’s Lecture

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

7 / 16



Compression Functions and Domain-Extension
(Collision-resistant) compression function: CRHF for fixedinput length ℓ(�) > �

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size

8 / 16



Compression Functions and Domain-Extension
(Collision-resistant) compression function: CRHF for fixedinput length ℓ(�) > �

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size

Defintion 3 (ℓ(�)-compression function)
A keyed function (family) {H : K × {�, �}ℓ(�) → {�, �}�} is an
ℓ(�)-compression function if for every PPT collision-finder �, the
following is negligible.

Prk←���(��)(��,��)←�(k)
[H(k, ��) = H(k, ��)]

8 / 16



Compression Functions and Domain-Extension
(Collision-resistant) compression function: CRHF for fixedinput length ℓ(�) > �

Easier to construct in practice: e.g., MD5, SHA2 (unkeyed)
compression function of certain block-size

Defintion 3 (ℓ(�)-compression function)
A keyed function (family) {H : K × {�, �}ℓ(�) → {�, �}�} is an
ℓ(�)-compression function if for every PPT collision-finder �, the
following is negligible.

Prk←���(��)(��,��)←�(k)
[H(k, ��) = H(k, ��)]

Domain extension: ℓ(�)-compression function ⇒
�(�)-compression function for �(�) > ℓ(�)

8 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Construction 1 ((�+ �)-compression function H ⇒ ℓ(�)-compression
function H′, for any polynomial ℓ(�))

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle-Damgård Transform (Chaining)...
Theorem 4
If H is a compression function then so is H′

Proof sketch: ∃ collision finder � for H ⇐ ∃ coll. finder �′ for H′.

9 / 16



Merkle Trees
Construction 2 (��-compression function H ⇒ �� ��-compression
function H′, for any � ∈ N)

10 / 16



Merkle Trees
Construction 2 (��-compression function H ⇒ �� ��-compression
function H′, for any � ∈ N)

10 / 16



Merkle Trees
Construction 2 (��-compression function H ⇒ �� ��-compression
function H′, for any � ∈ N)

Exercise 4
Show that if H is a compression function then so is H′

10 / 16



Merkle Trees
Construction 2 (��-compression function H ⇒ �� ��-compression
function H′, for any � ∈ N)

Exercise 4
Show that if H is a compression function then so is H′

Has several interesting properties:
1 Parallelisable: computable in depth � (� )
2 Locally verifiable: parts of input can be verified

10 / 16



What If We Use Construction � for {�, �}∗?
Is it possible to find collisions of different length?

11 / 16



What If We Use Construction � for {�, �}∗?
Is it possible to find collisions of different length?

Yes, consider H for which H(k, ��+�) = �
� (for all k)

For H′ instantiated with above H: H′(k, ���) = H′(k, �)

11 / 16



What If We Use Construction � for {�, �}∗?
Is it possible to find collisions of different length?

Yes, consider H for which H(k, ��+�) = �
� (for all k)

For H′ instantiated with above H: H′(k, ���) = H′(k, �)

Exercise 5
1 Find similar “length-extension” attack for Construction �

2 Tweak Constructions � and � to obtain CRHF (i.e., for domain{�, �}∗)
Hint: add appropriate padding in the end

11 / 16



Plan for Today’s Lecture

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

12 / 16



How to Construct Compression Functions in Practice?
Unkeyed compression function for fixed input (block)length/output length

13 / 16



How to Construct Compression Functions in Practice?
Unkeyed compression function for fixed input (block)length/output length

13 / 16Image credit: Wikipedia (Surachit,kockmeyer)



How to Construct Compression Functions in Practice?
Unkeyed compression function for fixed input (block)length/output length

Message Digest (MD) family
MD5 (512/128): collisions have been found!

13 / 16Image credit: Wikipedia (Surachit,kockmeyer)



How to Construct Compression Functions in Practice?
Unkeyed compression function for fixed input (block)length/output length

Message Digest (MD) family
MD5 (512/128): collisions have been found!

Secure-Hashing Algorithm (SHA) family
SHA2 (512/256,1024/512...): Davis-Meyer compression function
SHA3 (1152/224,576,512): “Sponge”-based compression function

13 / 16Image credit: Wikipedia (Surachit,kockmeyer)



How to Construct Compression Functions in Theory?
Discrete-logarithm-based compression function
{H : (Z×

� )� × Z�
� → Z×

� }:
H((� , �), (�, �)) := � ��� mod �

14 / 16



How to Construct Compression Functions in Theory?
Discrete-logarithm-based compression function
{H : (Z×

� )� × Z�
� → Z×

� }:
H((� , �), (�, �)) := � ��� mod �

How to solve DLog given a collision ((�, �), (�′, �′))?

14 / 16



How to Construct Compression Functions in Theory?
Discrete-logarithm-based compression function
{H : (Z×

� )� × Z�
� → Z×

� }:
H((� , �), (�, �)) := � ��� mod �

How to solve DLog given a collision ((�, �), (�′, �′))?
Lattice-based compression function
{H : Z�×�

� × {�, �}� → Z�
�} for � ≥ ⌈� log(�)⌉:

H(�̄, �̄ ) := �̄�̄ mod �

14 / 16



How to Construct Compression Functions in Theory?
Discrete-logarithm-based compression function
{H : (Z×

� )� × Z�
� → Z×

� }:
H((� , �), (�, �)) := � ��� mod �

How to solve DLog given a collision ((�, �), (�′, �′))?
Lattice-based compression function
{H : Z�×�

� × {�, �}� → Z�
�} for � ≥ ⌈� log(�)⌉:

H(�̄, �̄ ) := �̄�̄ mod �

Based on short integer solution (SIS) problem:
Input: �̄ ← Z�×�

�
, with � ≥ ⌈� log(�)⌉

Solution: non-zero vector �̄ ∈ {�, ±�}� in �̄’s kernel, i.e.,
�̄�̄ = �̄ mod �

14 / 16



How to Construct Compression Functions in Theory?
Discrete-logarithm-based compression function
{H : (Z×

� )� × Z�
� → Z×

� }:
H((� , �), (�, �)) := � ��� mod �

How to solve DLog given a collision ((�, �), (�′, �′))?
Lattice-based compression function
{H : Z�×�

� × {�, �}� → Z�
�} for � ≥ ⌈� log(�)⌉:

H(�̄, �̄ ) := �̄�̄ mod �

Based on short integer solution (SIS) problem:
Input: �̄ ← Z�×�

�
, with � ≥ ⌈� log(�)⌉

Solution: non-zero vector �̄ ∈ {�, ±�}� in �̄’s kernel, i.e.,
�̄�̄ = �̄ mod �

How to solve SIS given a collision (�̄, �̄′)?
14 / 16



To Recap Today’s Lecture

Introduced a new primitive: collision-resistant hash function
Motivation: domain-extension for MAC/DS

15 / 16



To Recap Today’s Lecture

Introduced a new primitive: collision-resistant hash function
Motivation: domain-extension for MAC/DS

Generic attack via birthday bound

15 / 16



To Recap Today’s Lecture

Introduced a new primitive: collision-resistant hash function
Motivation: domain-extension for MAC/DS

Generic attack via birthday bound
Domain extension for compression functions

Merkle-Damgård transform
Merkle trees

15 / 16



To Recap Today’s Lecture

Introduced a new primitive: collision-resistant hash function
Motivation: domain-extension for MAC/DS

Generic attack via birthday bound
Domain extension for compression functions

Merkle-Damgård transform
Merkle trees

Some constructions:
Practical/unkeyed: SHA2, MD5
Theoretical/keyed: DLog- and SIS-based

15 / 16



Next Lecture

New cryptographic primitive: trap-door (one-way) permutation(TDP)

16 / 16



Next Lecture

New cryptographic primitive: trap-door (one-way) permutation(TDP)
OWP that is easy to invert given “trapdoor” informationCandidates

RSA TDP
Rabin TDP

16 / 16



Next Lecture

New cryptographic primitive: trap-door (one-way) permutation(TDP)
OWP that is easy to invert given “trapdoor” informationCandidates

RSA TDP
Rabin TDP

Efficient digital signatures in “random-oracle model”
(RSA) Full-domain hash

16 / 16



Next Lecture

New cryptographic primitive: trap-door (one-way) permutation(TDP)
OWP that is easy to invert given “trapdoor” informationCandidates

RSA TDP
Rabin TDP

Efficient digital signatures in “random-oracle model”
(RSA) Full-domain hash

TDP → PKE
New constructions of PKE: RSA

16 / 16



References

1 As discussed in Lecture 7, hash functions were first studied in
[WC81], but they considered pairwise-independence/universal
hashing

2 Collision resistance, and other cryptographic properties of hash
functions were studied later [Dam88, Dam90, NY89, Mer90] a
thorough historical perspective can be found in [RS04]

16 / 16



Ivan Damgård.
Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, EUROCRYPT’87, volume 304 of
LNCS, pages 203–216. Springer, Heidelberg, April 1988.
Ivan Damgård.
A design principle for hash functions.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 416–427.
Springer, Heidelberg, August 1990.
Ralph C. Merkle.
One way hash functions and DES.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 428–446.
Springer, Heidelberg, August 1990.
Moni Naor and Moti Yung.
Universal one-way hash functions and their cryptographic applications.
In 21st ACM STOC, pages 33–43. ACM Press, May 1989.
Phillip Rogaway and Thomas Shrimpton.
Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and collision resistance.
In Bimal K. Roy and Willi Meier, editors, FSE 2004, volume 3017 of LNCS,
pages 371–388. Springer, Heidelberg, February 2004.

16 / 16



Mark N. Wegman and J.Lawrence Carter.
New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265–279, 1981.

16 / 16


	Hash Functions
	Compression Functions and Domain-Extension
	How to Construct Compression Functions?

