
CS783: Theoretical Foundations of Cryptography
Lecture 12 (10/Sep/24)

Instructor: Chethan Kamath
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Recall from Last Lecture
Introduced digital signatures: public-key analogue of MAC
Theoretical construction

Lamport’s one-time DS ← OWF

One-time DS → (many-time) stateful DS: “chain of signatures”
One-time DS → compact stateful DS: “tree of signatures”
Stateless DS via derandomisation using PRF

Efficient DS in “random-oracle model”
Lectures 13: from trapdoor OWP via hash-then-invert
Lecture 15(?): via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:
Constructive: “bootstrapping” one-time to many-time signatures
Proof techniques: “plug and pray”
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What are the requirements from H?/When can ��� forge?
Must be one-way. Is one-wayness sufficient?No, it must be hard to find inputs that “collide”

Collisions are guaranteed to exist (pigeonhole principle)
Is “collision-resistance” sufficient? Yes, as we’ll see.

3 / 16



Collision-Resistant Hash Function (CRHF)...

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

Problem: trivial for non-uniform adversaries

4 / 16



Collision-Resistant Hash Function (CRHF)...
Defintion 1 (Keyless CRHF)
A function (family) �H : {�, �}∗ → {�, �}�	 is a CRHF if for every
PPT collision-finder �, the following is negligible.

Pr(��,��)←�(��)[H(��) = H(��)]

Problem: trivial for non-uniform adversaries
Defintion 2 (CRHF, with key generation algorithm ���)
A keyed function (family) �H : K × {�, �}∗ → {�, �}�	 is a CRHF if
for every PPT collision-finder �, the following is negligible.

Prk←���(��)(��,��)←�(k)
[H(k, ��) = H(k, ��)]
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Collision-Resistant Hash Function (CRHF)...

If H� and H� are CRHFs is H?
1 Hash-then-append: H(k, �) := H�(k, �)�
2 Hash-then-truncate: H(k, �) := �� . . . ��−�, where

�� . . . �� := H�(k, �)
3 Double hash: H(k�k�, �) := H�(k�, �)H�(k�, �)
4 Hash-then-XOR: H(k�k�, �) := H�(k�, �) ⊕ H�(k�, �)
5 Hash-of-hash: H(k, ����) := H�(k, H�(k, ��))

Exercise 2
Prove formally the cases where H is a CRHF; describe
counter-example otherwise.

5 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principle

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradox

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradoxCompute hash of � := � (��/�) random inputs ��, . . . , ��

With noticeable probability, there exist colliding pairs of inputs
Consequence: key-size/output length must be �× security level

6 / 16



Let’s (Slowly) Find Collisions in H!
What about a deterministic �(�� )-time collision-finder?

Exploit pigeonhole principleCompute (e.g.) hash of inputs ��
�, . . . , ���, ���

There must exist colliding pair of inputs
What is the amount of space required? Naïvely, � (���)

Randomised �(��/�)-time+�(���/�)-space collision-finder
Exploit birthday paradoxCompute hash of � := � (��/�) random inputs ��, . . . , ��

With noticeable probability, there exist colliding pairs of inputs
Consequence: key-size/output length must be �× security level

Exercise 3
1 Is deterministic �(��/�)-time+�(���/�)-space collision-finder

possible?
2 Is rand. �(��/�)-time+�(�)-space collision-finder possible?
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Defintion 3 (ℓ(�)-compression function)
A keyed function (family) {H : K × {�, �}ℓ(�) → {�, �}�} is an
ℓ(�)-compression function if for every PPT collision-finder �, the
following is negligible.

Prk←���(��)(��,��)←�(k)
[H(k, ��) = H(k, ��)]

Domain extension: ℓ(�)-compression function ⇒
�(�)-compression function for �(�) > ℓ(�)
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Merkle Trees
Construction 2 (��-compression function H ⇒ �� ��-compression
function H′, for any � ∈ N)

Exercise 4
Show that if H is a compression function then so is H′

Has several interesting properties:
1 Parallelisable: computable in depth � (� )
2 Locally verifiable: parts of input can be verified
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What If We Use Construction � for {�, �}∗?
Is it possible to find collisions of different length?

Yes, consider H for which H(k, ��+�) = �
� (for all k)

For H′ instantiated with above H: H′(k, ���) = H′(k, �)

Exercise 5
1 Find similar “length-extension” attack for Construction �

2 Tweak Constructions � and � to obtain CRHF (i.e., for domain{�, �}∗)
Hint: add appropriate padding in the end
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How to Construct Compression Functions in Practice?
Unkeyed compression function for fixed input (block)length/output length

Message Digest (MD) family
MD5 (512/128): collisions have been found!

Secure-Hashing Algorithm (SHA) family
SHA2 (512/256,1024/512...): Davis-Meyer compression function
SHA3 (1152/224,576,512): “Sponge”-based compression function
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Based on short integer solution (SIS) problem:
Input: �̄ ← Z�×�

�
, with � ≥ ⌈� log(�)⌉

Solution: non-zero vector �̄ ∈ {�, ±�}� in �̄’s kernel, i.e.,
�̄�̄ = �̄ mod �

How to solve SIS given a collision (�̄, �̄′)?
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To Recap Today’s Lecture

Introduced a new primitive: collision-resistant hash function
Motivation: domain-extension for MAC/DS

Generic attack via birthday bound
Domain extension for compression functions

Merkle-Damgård transform
Merkle trees

Some constructions:
Practical/unkeyed: SHA2, MD5
Theoretical/keyed: DLog- and SIS-based
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New cryptographic primitive: trap-door (one-way) permutation(TDP)
OWP that is easy to invert given “trapdoor” informationCandidates

RSA TDP
Rabin TDP

Efficient digital signatures in “random-oracle model”
(RSA) Full-domain hash

TDP → PKE
New constructions of PKE: RSA
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[WC81], but they considered pairwise-independence/universal
hashing

2 Collision resistance, and other cryptographic properties of hash
functions were studied later [Dam88, Dam90, NY89, Mer90] a
thorough historical perspective can be found in [RS04]
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