CS783: Theoretical Foundations of Cryptography

Lecture 12 (10/Sep/24)

[nstructor: Chethan Kamath

1 Hash Functions
2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

2/16

m Introduced digital signatures: public-key analogue of MAC

1/16

Recall from Last Lecture
m Introduced digital signatures: public-key analogue of MAC

m [heoretical construction
m Lamport’s one-time DS «— OWF

1/16

Recall from Last Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical construction
m Lamport’s one—tlm'eﬂDrS”ed OWF

"G SINEEMIPK)

2

1/16

Recall from Last Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical construction
[Lamports one- the DS — O\/\/F el

~Yoed oﬂr q, &SIONEs, 9 :

S Fiogs i !

. Pl‘m., © Phy, R

N y \r/ """"
M Pofho

9

m One-time DS - (mang time) stateful DS: chaLn of signatures”

m One-time DS — compact stateful DS: “tree of signatures”

1/16

Recall from Last Lecture
m Introduced digital signatures: public-key analogue of MAC

m [heoretical construction
L] Lamports one- the DS — O\/\/F ___________ .
: V\% 0\} WeSlCN()

'P :

hs N Pho PH% :
S m_, o Ph Sl

oo LN y \r/ """
D Mok

"'wsm(ek

2

9

m One-time DS - (mang time) stateful DS: chaLn of signatures”
m One-time DS — compact stateful DS: “tree of signatures”
m Stateless DS via derandomisation using PRF

1/16

Recall from Last Lecture

m Introduced digital signatures: public-key analogue of MAC
m Theoretical construction
L] Lamports one- the DS — O\/\/F ___________ .
: V\% Oﬂr WeSlCN()

'P .

hs N Pho PH% :
P Pl‘m., o Ph Sl

ot N y \r/ “““
D Mok

.W.lee
m One-time DS S'(mang -time) stateful DS: “chain of signatures”
m One-time DS — compact stateful DS: “tree of signatures”
m Stateless DS via derandomisation using PRF
m Efficient DS in “random-oracle model”
m Lectures 13: from trapdoor OWP via hash-then-invert
m Lecture 15(7): via Fiat-Shamir transform (e.g., Schnorr)

"'wsmw(ek

2

9

. %é—smN‘(ylPh)

1/16

Recall from Last Lecture
m Introduced digital signatures: public-key analogue of MAC

m [heoretical construction
L] Lamports one- the DS — O\/\/F ___________ .
V\% Oﬂr WeSICN()

'P :

hs N Pho PH% :
P Pl‘m., o Ph Sl

oo LN y \r/ """
D Mok

"'wsw ek

2

9

m One-time DS - (mang time) stateful DS: chaLn of signatures”
m One-time DS — compact stateful DS: “tree of signatures”
m Stateless DS via derandomisation using PRF

m Efficient DS in “random-oracle model”

m Lectures 13: from trapdoor OWP via hash-then-invert
m Lecture 15(7): via Fiat-Shamir transform (e.g., Schnorr)
m Takeaways:
m Constructive: "bootstrapping” one-time to many-time signatures
m Proof techniques: “plug and pray” ph= S o

(1) 1/16

If f is a OWF then Lamport's scheme is a one-time DS

2/16

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0, 1},

2/16

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0, 1}, C (PKl=2tn

2/16

Plan for Today's Lecture

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0,1}°. T (PKl=2tn

Theorem 2 (PRF— MAC: Theorem 2, Lecture 7) 1dg(t,m):= Fu(m)

I {F:{0,1}" — {0,1}"}cqo 1y is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}".

2/16

Plan for Today's Lecture

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0,1}°. T (PKl=2tn

Theorem 2 (PRF— MAC: Theorem 2, Lecture 7) 1dg(t,m):= Fu(m)

I {F:{0,1}" — {0,1}"}cqo 1y is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}".

Exercise 1 (Exercise 3, Lecture 11 (Domain Extension))

Given a compressing function H : {0,1}?* — {0, 1}, construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

2/16

Plan for Today's Lecture

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0,1}°. T (PKl=2tn

Theorem 2 (PRF— MAC: Theorem 2, Lecture 7) 1dg(t,m):= Fu(m)

I {F:{0,1}" — {0,1}"}cqo 1y is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}".

Exercise 1 (Exercise 3, Lecture 11 (Domain Extension))

Given a compressing function H : {0,1}?* — {0, 1}, construct a
one-time DS for arbitrary-length messages. What are the properties
you need from H to ensure that the one-time DS is secure?

Q“Hagh fohon'

2/16

Plan for Today's Lecture

m Minicrypt to Cryptomania

CPH' SKE 1 MAC “Mmcrypt!

hacder :
ﬁﬁﬁﬁﬁ ./. N\ ——_.— T

- T T \)Log
l’cg —oxchong “"""\fﬂ_\wwf
. bobhe- keg W\j\mﬂ Factor\ﬂg

&y Q&k ' ,
o & @R © myko MO

m Sub-task 5.a: domain-extension of digital signature/MAC
m Sufficient to construct hash functions with certain properties

2/16

Plan for Today's Lecture

m Minicrypt to Cryptomania

CPHV é\‘\C M Q(_ “Minyc y ?L’»
hacder _ § .
‘ I
e agnatves
m Has\n_ {un(.hon
- ESEa R
l’cg ex(c\r\ange mf%@%* Y
L Pubhee keg amyaon Factor\ﬂg
sl & @(’\ » mjpko nong’

m Sub-task 5.a: domain-extension of digital signature/MAC
m Sufficient to construct hash functions with certain properties

2/16

Plan for Today's Lecture

m Minicrypt to Cryptomania

CPHV é\‘\C M Q(_ “Minyc y ?L’»
hacder _ § .
‘ I
e agnatvces é—w
m Has\n_ {un(.hon
- ESEa R
l’cg ex(c\r\ange ' ‘fﬂ&_\ww Y
L Pubhee keg amyaon Factor\ﬂg
fﬂ{Y‘Jd\]r@j & @(3\ N L{LJPYOMO (“qw

m Sub-task 5.a: domain-extension of digital signature/MAC
m Sufficient to construct hash functions with certain properties

2/16

Plan for Today's Lecture

m Minicrypt to Cryptomania

ORSHE mac. nicrypd
hacder vaj -
| pect /)
e L ——>Ggnacves é—w
; mm\n {on(.hon
) ST """m“g, 7
l’cg ex(c\r\ange M\\“K-\DDH/]
. bobhe- keg WWH Factor\ﬂg
oy Q&k ' .,

m Sub-task 5.a: domain-extension of digital signature/MAC
m Sufficient to construct hash functions with certain properties

2/16

Plan for Today's Lecture...

1 Hash Functions * Y

2 Compression Functions and Domain-Extension

Ty -

3 How to Construct Compression Functions? k

"\,

S5

1 Hash Functions * Y

2 Compression Functions and Domain-Extension

Ty~

3 How to Construct Compression Functions? K K

(\.

S5

2/16

3/16

Y0

$
{ ') s e

3/16

Extending Lamport’'s One-Time DS for Longer Messages

S X Xan| | Xeolfy
Vs S raenEn injﬁmﬂ

“‘ Xw|Xao| | X :C%
\ Lo|Xa| --- [XL -

«~

0"
: 0 lea(17)
\\ 310 310 310 — K
R ENEN B ER =fh

ﬁl '_J' BB GioNER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h

3/16

Extending Lamport’'s One-Time DS for Longer Messages

S [X Xa| - [Xeolry
0= Xo|Xa| [Xa [n]ﬁW@
[Iz

“‘ Xw|Xao| | X :C%
\ Lo|Xa| --- [XL -

£ = Gen(1)

\ Y| Ya| [Yo = &«
R ENEN B ER Ph

(PhR) (j
ﬁ =’ _,. BOB SICHER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h
@What are the requirements from H?/When can Tam forge?

O\

3/16

Extending Lamport’'s One-Time DS for Longer Messages

,,///:X\o Az - | Leo|fy
0= Xo|Xa| [Xa U‘]‘*@Wm)

| 1o
\ Xio|Xao| - [X :(%
\ Xo|Xa| - | X LR
g\
£ lea(17))
\ Yol Y| - | Yeo :PH &« o
\\\ Yol Yol - [Y0

N — n d %DJ‘\;‘-
\\\\ -

. (j
\fyj =’ _,. BOB SICHER)

m Hash-then-sign: compute “hash” h = H(m) and then sign h
@What are the requirements from H?/When can Tam forge?
m Must be one-way. Is one-wayness sufficient?

O

3/16

Extending Lamport’'s One-Time DS for Longer Messages

/, XwofXanf - |Im |
YA Nirmcaps [xa U‘%@Wm)

| 15
0) " 4] 0
[0 (J@ﬂ(l) ¢
\ Yo Yaof - [Yo :PH &« o v
\ YulYa| - [0 _ ! !)
(0
WS (') ws onen

m Hash-then-sign: compute “hash” h = H(m) and then sign h
@What are the requirements from H?/When can Tam forge?

m Must be one-way. Is one-wayness sufficient?
m No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)
m Is “collision-resistance” sufficient?

3/16

Extending Lamport’'s One-Time DS for Longer Messages

/, XwofXanf - |Im |
YA Nirmcaps [xa U‘%@Wm)

| 15
0) " 4] 0
[0 (J@ﬂ(l) ¢
\ Yo Yaof - [Yo :PH &« o v
\ YulYa| - [0 _ ! !)
(0
WS (') ws onen

m Hash-then-sign: compute “hash” h = H(m) and then sign h
@What are the requirements from H?/When can Tam forge?

m Must be one-way. Is one-wayness sufficient?
m No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)
m Is “collision-resistance” sufficient? Yes, as we'll see.

3/16

4/16

Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

Pr [H(x1) = H(x2)]

(x1,%2)F(1")

4/16

Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

P H =H
(xﬁxZ)iF(ln)[(x1) = H(x2)]

Nepd nek be sane lengén 2

4/16

Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

P H =i
ol a0 = Hieo)

Nepd nek be sane lengén 2

m Problem: trivial for non-uniform adversaries

4/16

Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

Pr [H(x1) = H(x2)]

(xax2)—F (1)

Nepd ok be sonfelengdh

m Problem: trivial for non-uniform adversaries

Defintion 2 (CRHF, with key generation algorithm Gen)

A keyed function (family) {H : K x {0,1}" — {0,1}"} is a CRHF if
for every PPT collision-finder F, the following is negligible.

P Hik, x1) = H(k
k%Ge;(l")[(k. xa) (k. x2)]
(x1.x2)—F(k)

4116

@ It Hy and Hy are CRHFs is H?

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
1 Hash-then-append: H(k, x) := Hj(k, x)0

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
1 Hash-then-append: H(k, x) := Hj(k, x)0

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
2 Hash-then-truncate: H(k, x) :== y1 ... yn—1, where
Yi...Yn = Hl(er)

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
w7 12 Hash-then-truncate: H(k, x) '=y1...¥n—1, where
Yi...Yn = Hl(er)
3 Double hash: H(kika, x) := Hy(k1, x)Ha(ka, x)

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
w7 12 Hash-then-truncate: H(k, x) '=y1...¥n—1, where
Yi...Yn = Hl(er)
¥ 3 Double hash: H(kika, x) := Hy(ky, x)Ha(ks, X)
4 Hash-then-XOR: H(kqka, x) := Hy(kq, x) @& Ha(ka, x)

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
w7 12 Hash-then-truncate: H(k, x) '=y1...¥n—1, where
Yi...Yn = Hl(er)
3 Double hash: H(kika, x) := Hy(k1, x)Ha(ka, x)
4 Hash-then-XOR: H(kqka, x) := Hy(kq, x) @& Ha(ka, x)
5 Hash-of-hash: H(k, x1x2) := Hi(k, Ha(k, x2))

5/16

Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
w7 12 Hash-then-truncate: H(k, x) '=y1...¥n—1, where
Yi...Yn = Hl(er)
3 Double hash: H(kika, x) := Hy(k1, x)Ha(ka, x)
4 Hash-then-XOR: H(kika, x) := Hy(ky, x) & Ha(ka, x)
5 Hash-of-hash: H(k, xyx2) := Hy(k, Ha(k, x2))

Exercise 2

Prove formally the cases where H is a CRHF, describe
counter-example otherwise.

5/16

Kxgony—10/%h
'What about a deterministic O(2")-time collision-finder?

6/16

Let's (Slowly) Find Collisions in H!
&9 ﬂ\x‘ia,\}{aio‘\}n}
@V\/b@t about a deterministic O(2")-time collision-finder?
" Exploit pigeonhole principle

6/16

Let's (Slowly) Find Collisions in H!
&9 {(\x‘ia,\};‘wﬂo‘\}n}
@V\/b@t about a deterministic O(2")-time collision-finder?

9 Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"

m There must exist colliding pair of inputs

m What is the amount of space required? Naively, O(n2")

6/16

Let's (Slowly) Find Collisions in H!
&9 ﬂ\x‘ia,\};‘wﬂo‘\}n}
@V\/\b‘a’t about a deterministic O(2")-time collision-finder?
Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"
m There must exist colliding pair of inputs
m What is the amount of space required? Naively, O(n2")

m Randomised O(2"2)-time+O(n2"?)-space collision-finder

6/16

Let's (Slowly) Find Collisions in H!
&9 ﬂ\x‘ia,\};‘wﬂo‘\}n}
@V\/\b‘a’t about a deterministic O(2")-time collision-finder?
Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"
m There must exist colliding pair of inputs

m What is the amount of space required? Naively, O(n2")
m Randomised O(2"?)-time+O(n2"?)-space collision-finder
@ \9/ Exploit birthday paradox

A
2\

" 0
o

.
—

6/16

Let's (Slowly) Find Collisions in H!
&9 ﬂ\x‘ia,\};‘wﬂo‘\}n}
@V\/\b‘a’t about a deterministic O(2")-time collision-finder?
Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"
m There must exist colliding pair of inputs

m What is the amount of space required? Naively, O(n2")
m Randomised O(2"?)-time+O(n2"?)-space collision-finder
A \9/ Exploit birthday paradox
_i‘ m Compute hash of N := O(2"?) random inputs xi, . . ., XN

>, m With noticeable probability, there exist colliding pairs of inputs

AConsequence: key-size/output length must be 2x security level

6/16

Let's (Slowly) Find Collisions in H!
5 (Ko 10
@Wb@t about a deterministic O(2")-time collision-finder?
Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"
m There must exist colliding pair of inputs
m What is the amount of space required? Naively, O(n2")
m Randomised O(2"?)-time+O(n2"?)-space collision-finder
Z}? %) Exploit birthday paradox
-\ = Compute hash of N := 0(2"?) random inputs xy, . . ., XN
Q m With noticeable probability, there exist colliding pairs of inputs

AConsequence: key-size/output length must be 2x security level

Exercise 3

1 Is deterministic O(2"?)~time-+0(n2"2)-space collision-finder
possible?

2 Is rand. O(2"?)-time+O(n)-space collision-finder possible?

6/16

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
© Suppose 1am quenes some e Y and ouhpots forgeny o'e)

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

& Suppose quenes some Mol and - ootpats forgeny (enta)
Cage OL: H(gm)=H(km) | Cage @L : H(gm)zH(km) =R’

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

& Suppose quenes some Mol and - ootpats forgeny (enta)
Cage OL: H(gm)=H(km) | Cage @L : H(gm)zH(km) =R’

U
(%) ollision Yor H

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

U
(%) ollision Yor H

—_—

)

(olliswn finder

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

©5uppose 1am quenes some e Y and ouhpots forgery o'e)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

U
(%) ollision Yor H

“(PH k)

HC/

(olliswn finder

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
& Suppose quenes some Mol and ootpots forgery (entg*)
Cage @L: H(gm)=H(am") Case @L : H (gm)£H(km*) = W

U
(%) ollision Yor H

ngb(%l?@
g = sk[H(km)

“(PH k)

L (===
—_—)
,; G

(olliswn finder

7116

Extending Lamport's One-Time DS for Longer Messages...
Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

©5uppose 1am quenes some e Y and ouhpots forgery o'e)
Case @L: H(gm)=H{am") Cage L - H (k) gH(km') =R

U
(%) ollision Yor H

ngb(%l?@
g = sk[H(km)

or 30w,k
@C—) =

(olliswn finder

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

: o,
§(h*, T) Yorgery for mmrofks = nod |

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

: o,
§(h*, T) Yorgery for mm]:orks = nod |

/L D e

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

: o,
§(h*, T) Yorgery for mm]:orks = nod |

Y S O
(P Nvetter

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3
Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.
Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

: \

(i, ") Yorgery for lﬂm]DfVS =7 ek |

V. \?\ug” \3¥Oﬁ (~8) 1 h
Hgenente (¢, 7) N\

Y S o o)
(P Nvetter

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Cage @L: H{Gm)=Hkm) § Cage QL © H(kjen) (o) =K

s v
0 Yorgery for Lom]):)fks = ndodk §

r ?\ug” ot (58) T \
H\generte sk,) .
AN pray: H(m) B)

N\

SE)
: 3* c/‘o “ 48]
= P—
(: \n\etker a

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.
o Suppose 1am queries some M fof and ookpAs forgery (ontg)
Case L Hm)HChat) - § - Coe L 0) o) =

Qn T)J(orgdg jior LOMFO&S = nlod §

Ly da e
;‘\ generte (6, ?ﬁ)
AN Nk, m)[ﬂ#b

< \Dmg
\ \;m9 (K,m‘))[ﬂ b / .

O(PH K)

:___%co <« ™

(D \netter a

¥

7116

Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

©5uppose 1am quenes some e Y and ouhpots forgery o'e)
Case @L: H (k) =H(km") § Case L tw&wﬂfua M) =i

Qn T)J(orgdg jior LOMFO&S = nlod §

g a0
A\ %nume@K?M
AN Nk, m)[ﬂ#b

Proy:
P MB)2 b -
Zub O<Ph K)

*‘

b

:___%co <« ™

(D \netter a

7116

1 Hash Functions * Y

2 Compression Functions and Domain-Extension

mw

3 How to Construct Compression Functions? [K

.

7116

Compression Functions and Domain-Extension

(Colliston-resistant) compression function. CRHF for fixed
input length 2 H
put length &(n) > n) X
m Easier to construct in practice: e.g, MD5, SHAZ (unkeyed)
compression function of certain block-size

3

8/16

Compression Functions and Domain-Extension

input length ¢(n) > n
m Fasier to construct in practice: e.g, MD5, SHAZ (unkeyed) |
compression function of certain block-size

m (Collision-resistant) compression function: CRHF for fixed
q 0

Defintion 3 (¢(n)-compression function)

A keyed function (family) {H : KC x {0,1}*™ = {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

P H(k, x1) = H(k
kHGeEa")[(k.xa) (k. x2)]
(x1,%2)—F(k)

sanme lengbh 7

8/16

Compression Functions and Domain-Extension

input length ¢(n) > n
m Easier to construct in practice: e.g, MD5, SHAZ (unkeyed) 1
compression function of certain block-size

m (Collision-resistant) compression function: CRHF for fixed
q 0

Defintion 3 (¢(n)-compression function)

A keyed function (family) {H : KC x {0,1}*™ = {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

Pr [H(k x1) = H(k, x2)]
keGen(1")
(x1,%2)—F(k)
sanme lengbh 7
m Domain extension: ¢(n)-compression function =
L(n)-compression function for L(n) > #(n) (0 =] ;

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

{D\\}Qm)ﬂi EIEYEY I T ET
{
N+
(%, B!
K
—
N

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

ln
) 3

oIt

o T I I B T I P T

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

{D\\}Qm)ﬂi EIEYEY I T ET
3
o
!
i
K o)
—

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

{D\\}Qm)ﬂi EIEYEY I T ET
|)
o
L
B/ / !
" u | 4l Qs
—

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

ot V= [m (G [[- [= [[wa] =]
| L
o
b
P{'
K 2
—

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

ot V= [m (G [[- [= [[wa]]
¢
T
b
[H /i / W
" g) by w

9/16

Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

)

g sx= o [e | o =] o Ju | |
{
o
b
[H /i / W
K Y \\,91 l‘;‘: -

@ 4= H(0ln)
‘ Qi = H(\(/ g‘t

q“"J(Q /]Lbf ez, ﬂ

’ H(kﬂ() = QL

9/16

If H is a compression function then so is H’

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

& ®
(llistn-Findler (llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

+.(9 ® @
(llistn-Findler (llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

- T cw‘
(9 5 —
(llistn-Findler (llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

x=24 X M xg

LJ}?J@—?

X = k\

o
]
K] / . iny w/(e i L\AJL \52
N 1 P4 ({O\‘E(l
(9 ' [
(lliston-Findler (llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H < 3 coll. finder F/ for H’.
x= 1! E 1 X daim eince xfx

e st
D Uil # Yl

ik, 910

TN 1 x ({O\‘E(l
RGO K)

(lliston-Findler llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

x :d}; X o o I U R ¥ (aim* ¢ince xFx
Y=
e st
D gl # Yl
L and
X = X gl L2)HO‘\) LAHHLQ/ - ‘
%=0 Hs, Yia 1)
. Lu;; Y wlligion
l =N 1 x ({O\kl
RGO K o
(lliston-Findler llson-inder &0

9/16

Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.

x Jd}; X - %X e g 1y (ai Claim cince x4 x
Lﬂﬂ
L e st
! 9 Uy) 9'\,A\L'x 7 Lj\,,‘[\v’ll
LS and
L= X X Yy xy)HO‘\) LAHHLQ =
. / /
6 \ (K, Y1)
W g | 19 Lu;;gz olligion
1 ({O\kl
K 2L @)
(llistn- % nCler Gllsan-inder &0

9/16

Merkle Trees

Construction 2 (2n-compression function H = 2d2n compression
function H’, for any d € N) b

19,% 2L e {of

depth 4=3

10/16

Merkle Trees

Construction 2 (2n-compression function H = 2d2n -compression
function H’, for any d € N) b

19,% 2L e {of

depth 4=3

A Y, 3,
@ Vueion « Uy =1y §

d
’V\}timf Yy =i, 9\9\\0}3\9\\\)

10/16

Merkle Trees

Construction 2 (2n-compression function H = 2d2n compression
function H’, for any d € N) ;

A A A T Lp =X E{D,U;MD

depth 4=3

4
QVefonf Yy =Ty

d
<>\i\}tiw]‘< Yy =H, E\s\\o}!ml\)

Exercise 4
Show that if H is a compression function then so is H’

10/16

Merkle Trees

Construction 2 (2n-compression function H = 2d2n compression
function H’, for any d € N) ;

I Ly =L € {D,H;U\D

depth 4=3

4
QVefonf Yy =Ty
4
@ VeSO - Ys =K, Yoo o)

Exercise 4
Show that if H is a compression function then so is H’

m Has several interesting properties:
1 Parallelisable: computable in depth O(d)
2 Locally verifiable: parts of input can be verified

10/16

What If We Use Construction 1 for {0,1}7?

@Is it possible to find collisions of different length?

11/16

What If We Use Construction 1 for {0,1}"?

@Is it possible to find collisions of different length?
/\ Yes, consider H for which H(k,0"*1) = 0" (for all k)
m For H’ instantiated with above H: H'(k,0"x) = H’(k, x)

11/16

What If We Use Construction 1 for {0,1}7?

@Is it possible to find collisions of different length?
/\ Yes, consider H for which H(k,0"*1) = 0" (for all k)
m For H’ instantiated with above H: H'(k,0"x) = H’(k, x)

Exercise b

1 Find similar ‘length-extension” attack for Construction 2
2 Tweak Constructions 1 and 2 to obtain CRHF (i.e,, for domain

{0.1}")

m Hint: add appropriate padding in the end

11/16

1 Hash Functions
2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

12/16

How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

13/16

How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

Image credit: Wikipedia (Surachit kockmeyer) 13/16

How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

m Message Digest (MD) family /—/

AMDS (512/128): collisions have been found!

[a]B8]c]o]
M {F I

m-E]

k>EH
a8 [clo]

Image credit: Wikipedia (Surachit kockmeyer) 13/16

How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

m Message Digest (MD) family
AMDS (512/128): collisions have been found!

[ale]ec]po ¥ [ATBICIDIE[FIGTH]
E .\?ﬁ B‘}K
mi~EH I—

Bl -
] i

-
[Als[c[o] [AlBICIDIEIFTGTH]

m Secure-Hashing Algorithm (SHA) family

m SHA2 (512/256,1024/512..): Davis-Meyer compression function
m SHA3 (1152/224,576,512): "Sponge’-based compression function

Image credit: Wikipedia (Surachit kockmeyer) 13/16

How to Construct Compression Functions in Theory?

m Discrete-logarithm-based compression function
. x\2 2 .
{(H:(Zp)" xZy — Zp }:

H((g, h), (a, b)) := g?h? mod p

14/16

How to Construct Compression Functions in Theory?

m Discrete-logarithm-based compression function
. x\2 2 .
{(H:(Zp)" xZy — Zp }:

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

14/16

How to Construct Compression Functions in Theory?

(] D'Lscrete logarlthm based compression function
{H:(ZX)? x Zz — ZX}

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

m Lattice-based compression function
{H:zpm x {0,1}" — Z3} for m > [nlog(p)]:

H(A, x) := Ax mod p

14/16

How to Construct Compression Functions in Theory?

(] D'Lscrete logarlthm based compression function
{H:(ZX)? x Zz — ZX}

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

m Lattice-based compression function
{H:zpm x {0,1}" — Z3} for m > [nlog(p)]:

H(A, x) := Ax mod p
m Based on short integer solution (SIS) problem
m Input: A« Z2*™, with m > [nlog(p)]
m Solution: non-zero vector x € {0, £1}™ in A's kernel, ie,

Ax =0 mod p

14/16

How to Construct Compression Functions in Theory?

(] D'Lscrete logarlthm based compression function
{H:(ZX)? x Zz — ZX}

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

m Lattice-based compression function
{H:zpm x {0,1}" — Z3} for m > [nlog(p)]:

H(A, x) := Ax mod p

m Based on short integer solution (SIS) problem
m Input: A« Z2*™, with m > [nlog(p)]
m Solution: non-zero vector x € {0, £1}™ in A's kernel, ie,
Ax =0mod p
@ How to solve SIS given a collision (x, X’)?

14/16

To Recap Today's Lecture

m Introduced a new primitive: collision-resistant hash function
m Motivation: domain-extension for MAC/DS

15/16

To Recap Today's Lecture

m Introduced a new primitive: collision-resistant hash function
m Motivation: domain-extension for MAC/DS

m Generic attack via birthday bound

15/16

To Recap Today's Lecture

m Introduced a new primitive: collision-resistant hash function
m Motivation: domain-extension for MAC/DS

m Generic attack via birthday bound
m Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

15/16

To Recap Today's Lecture

Introduced a new primitive: collision-resistant hash function
m Motivation: domain-extension for MAC/DS

Generic attack via birthday bound
Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical/keyed: DLog- and SIS-based

15/16

m New cryptographic primitive: trap-door (one-way) permutation
(TDP)

16/16

Next Lecture

m New cryptographic primitive: trap-door (one-way) permutation
(TDP)
m OWP that is easy to invert given "trapdoor” information
m Candidates

m RSA TDP
m Rabin TDP

16/16

Next Lecture

m New cryptographic primitive: trap-door (one-way) permutation
(TDP)

m OWP that is easy to invert given "trapdoor” information
m Candidates

m RSA TDP
m Rabin TDP

m Efficient digital signatures in “random-oracle model”
m (RSA) Full-domain hash

16/16

Next Lecture

m New cryptographic primitive: trap-door (one-way) permutation
(TDP)

m OWP that is easy to invert given "trapdoor” information
m Candidates

m RSA TDP
m Rabin TDP

m Efficient digital signatures in “random-oracle model”
m (RSA) Full-domain hash

m [DP — PKE
m New constructions of PKE: RSA

16/16

References

1 As discussed in Lecture 7, hash functions were first studied in
[WC81], but they considered pairwise-independence/universal
hashing

2 Collision resistance, and other cryptographic properties of hash
functions were studied later [Dam88, Dam90, NY89, Mer90] a
thorough historical perspective can be found in [RS04]

16/16

lvan Damgard.

Collision free hash functions and public key signature schemes.

In David Chaum and Wyn L. Price, editors, EUROCRYPT'87, volume 304 of
LNCS, pages 203-216. Springer, Heidelberg, April 1988.

lvan Damgard.

A design principle for hash functions.

In Gilles Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages 416-427.
Springer, Heidelberg, August 1990.

Ralph C. Merkle.

One way hash functions and DES.

In Gilles Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages 428-446.
Springer, Heidelberg, August 1990.

Moni Naor and Moti Yung.
Universal one-way hash functions and their cryptographic applications.
In 21st ACM STOC, pages 33-43. ACM Press, May 1989.

Phillip Rogaway and Thomas Shrimpton.

Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, and collision resistance.
In Bimal K. Roy and Willi Meter, editors, FSE 2004, volume 3017 of LNCS,

pages 371-388. Springer, Heidelberg, February 2004.
16/16

@ Mark N. Wegman and J.Lawrence Carter.
New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22(3):265-279, 1981.

16/16

	Hash Functions
	Compression Functions and Domain-Extension
	How to Construct Compression Functions?

