

CS783: Theoretical Foundations of Cryptography

Lecture 12 (10/Sep/24)

Instructor: Chethan Kamath

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

■ Introduced digital signatures: public-key analogue of MAC

- Introduced digital signatures: public-key analogue of MACTheoretical construction
 - Lamport's one-time $\mathsf{DS} \leftarrow \mathsf{OWF}$

- Introduced digital signatures: public-key analogue of MACTheoretical construction
 - Lamport's one-time $DS \leftarrow OWF$

σ, ← SIGN⁽GK, M, IIPK₂) σ, ← SIGN⁽GK, M, IIPK₂) Φ PK₁, SK₁

• One-time $DS \rightarrow$ (many-time) *stateful* DS: "chain of signatures"

- Introduced digital signatures: public-key analogue of MACTheoretical construction

 - One-time DS → (many-time) stateful DS: "chain of signatures"
 One-time DS → compact stateful DS: "tree of signatures"

- Introduced digital signatures: public-key analogue of MACTheoretical construction
 - Lamport's one-time DS ← OWF $\forall v \in i0.1^k$, $(\leftarrow Si(N(Ch, v))$

- One-time DS \rightarrow compact *stateful* DS: "tree of signatures"
- Stateless DS via derandomisation using PRF

- Introduced digital signatures: public-key analogue of MACTheoretical construction
 - Lamport's one-time DS ← OWF

■ One-time DS → (many-time) stateful DS: "chain of signatures"

70690,11°; 5 € SIGN'SK

Phio Ship Phone

- One-time DS \rightarrow compact *stateful* DS: "tree of signatures"
- Stateless DS via derandomisation using PRF
- Efficient DS in "random-oracle model"

Tr ← SIGN (SK, M, IIPK

- Lectures 13: from *trapdoor* OWP via hash-then-invert
- Lecture 15(?): via Fiat-Shamir transform (e.g., Schnorr)

- Introduced digital signatures: public-key analogue of MACTheoretical construction
 - Lamport's one-time DS ← OWF

• One-time $DS \rightarrow$ (many-time) *stateful* DS: "chain of signatures"

Phio Shi Phon

- One-time DS \rightarrow compact *stateful* DS: "tree of signatures"
- Stateless DS via derandomisation using PRF
- Efficient DS in "random-oracle model"

∇, ←SIGN^I(Sk, M, IIPK

₩_SI(N'(Sk_,__IPK,)

- Lectures 13: from *trapdoor* OWP via hash-then-invert
- Lecture 15(?): via Fiat-Shamir transform (e.g., Schnorr)

Takeaways:

- Constructive: "bootstrapping" one-time_to_many-time_signatures
- Proof techniques: "plug and pray" $P_{h}^{*} = \frac{y_{0}}{y_{0}} \frac{y_{0}}{y_{$

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for fixed-length messages $\{0, 1\}^{\ell}$.

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for fixed-length messages $\{0,1\}^{\ell}$. $(p_{K}) = 2\ell n$

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for fixed-length messages $\{0,1\}^{\ell}$. $(p_{K}) = 2 \ln \ell$

Theorem 2 (PRF \rightarrow MAC: Theorem 2, Lecture 7) Tag(k,m):= F_K(m) If {F_k : {0,1}ⁿ \rightarrow {0,1}ⁿ}_{k∈{0,1}ⁿ} is a PRF then Construction 3 (Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}ⁿ.

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for fixed-length messages $\{0,1\}^{\ell}$. $(p_{\text{IM}} = 2\ell n)$

Theorem 2 (PRF \rightarrow MAC: Theorem 2, Lecture 7) Tag(k,m):= F_k(m) If {F_k : {0,1}ⁿ \rightarrow {0,1}ⁿ}_{k∈{0,1}ⁿ} is a PRF then Construction 3 (Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}ⁿ.

Exercise 1 (Exercise 3, Lecture 11 (Domain Extension)) → H →

Given a compressing function $H : \{0, 1\}^{2\ell} \to \{0, 1\}^{\ell}$, construct a one-time DS for arbitrary-length messages. What are the properties you need from H to ensure that the one-time DS is secure?

Theorem 1 (Theorem 1, Lecture 11)

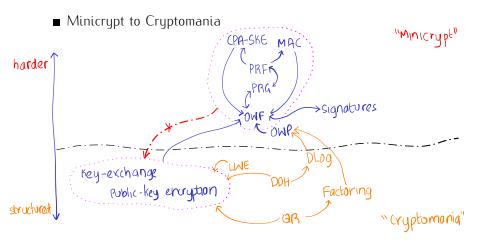
If f is a OWF then Lamport's scheme is a one-time DS for fixed-length messages $\{0,1\}^{\ell}$. $(p_{\text{IM}} = 2\ell n)$

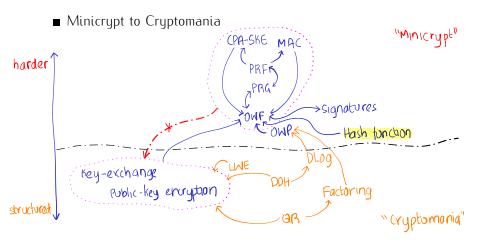
Theorem 2 (PRF \rightarrow MAC: Theorem 2, Lecture 7) Tag(k,m):= Fk(m) If {F_k : {0,1}ⁿ \rightarrow {0,1}ⁿ}_{k∈{0,1}ⁿ} is a PRF then Construction 3 (Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}ⁿ.

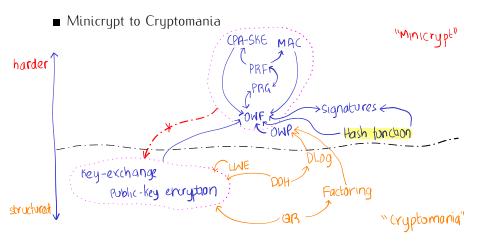
Exercise 1 (Exercise 3, Lecture 11 (Domain Extension)) → H →

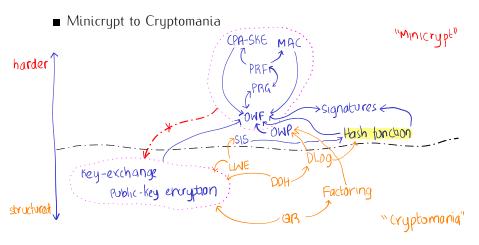
Given a compressing function $H : \{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, construct a one-time DS for arbitrary-length messages. What are the properties you need from H to ensure that the one-time DS is secure?

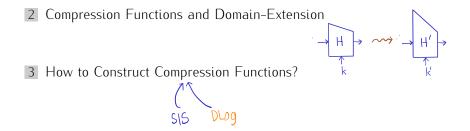
~"Hash function"

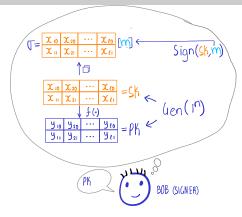


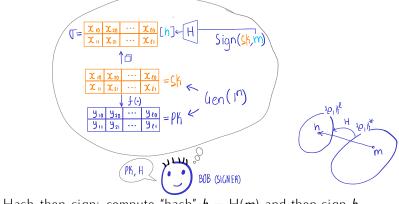




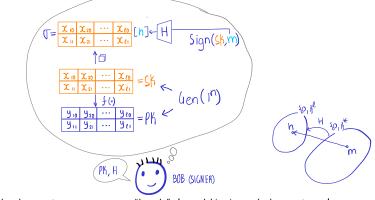




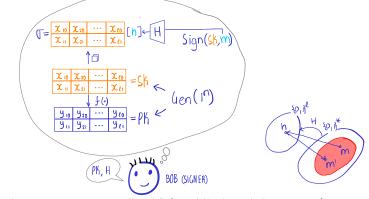




■ Hash-then-sign: compute "hash" h = H(m) and then sign h

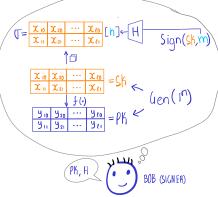


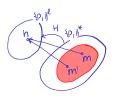
• Hash-then-sign: compute "hash" h = H(m) and then sign h ? What are the requirements from H?/When can Tam forge?



■ Hash-then-sign: compute "hash" h = H(m) and then sign h ? What are the requirements from H?/When can Tam forge?

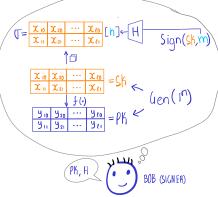
■ Must be one-way. Is one-wayness sufficient?





• Hash-then-sign: compute "hash" h = H(m) and then sign h ? What are the requirements from H?/When can Tam forge?

- Must be one-way. Is one-wayness sufficient?
- No, it must be hard to find inputs that "collide"
 - Collisions are guaranteed to exist (pigeonhole principle)
- Is "collision-resistance" sufficient?



10,1)^e H 10,1)^{*} mⁱ

■ Hash-then-sign: compute "hash" h = H(m) and then sign h② What are the requirements from H?/When can Tam forge?

- Must be one-way. Is one-wayness sufficient?
- No, it must be hard to find inputs that "collide"
 - Collisions are guaranteed to exist (pigeonhole principle)
- Is "collision-resistance" sufficient? Yes, as we'll see.

Definiton 1 (Keyless CRHF)

A function (family) $\{H : \{0,1\}^* \rightarrow \{0,1\}^n\}$ is a CRHF if for every PPT collision-finder F, the following is negligible.

 $\Pr_{(x_1,x_2)\leftarrow \mathsf{F}(1^n)}[\mathsf{H}(x_1)=\mathsf{H}(x_2)]$

Definiton 1 (Keyless CRHF)

A function (family) $\{H : \{0,1\}^* \rightarrow \{0,1\}^n\}$ is a CRHF if for every PPT collision-finder F, the following is negligible.

$$\Pr_{\substack{\mathbf{x_1}, \mathbf{x_2} \\ \mathcal{F}(1^n)}} [H(x_1) = H(x_2)]$$

Need not be some length 3

Definiton 1 (Keyless CRHF)

A function (family) $\{H : \{0,1\}^* \rightarrow \{0,1\}^n\}$ is a CRHF if for every PPT collision-finder F, the following is negligible.

$$\Pr_{\substack{\mathbf{x}_1,\mathbf{x}_2 \to \mathsf{F}(1^n)}}[\mathsf{H}(x_1) = \mathsf{H}(x_2)]$$

Need not be some length 3

■ **Problem**: trivial for *non-uniform* adversaries

Definiton 1 (Keyless CRHF)

A function (family) $\{H : \{0,1\}^* \rightarrow \{0,1\}^n\}$ is a CRHF if for every PPT collision-finder F, the following is negligible.

$$\Pr_{(x_1, x_2) \leftarrow \mathsf{F}(1^n)}[\mathsf{H}(x_1) = \mathsf{H}(x_2)]$$

Need not be some length 3

■ Problem: trivial for *non-uniform* adversaries

Defintion 2 (CRHF, with key generation algorithm Gen)

A keyed function (family) $\{H : \mathcal{K} \times \{0,1\}^* \rightarrow \{0,1\}^n\}$ is a CRHF if for every PPT collision-finder F, the following is negligible.

$$\Pr_{\substack{\mathbf{k} \leftarrow \mathsf{Gen}(1^n)\\(x_1, x_2) \leftarrow \mathsf{F}(\mathbf{k})}} [\mathsf{H}(\mathbf{k}, x_1) = \mathsf{H}(\mathbf{k}, x_2)]$$

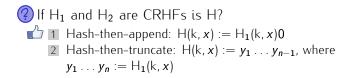
\bigcirc If H₁ and H₂ are CRHFs is H?

\bigcirc If H₁ and H₂ are CRHFs is H?

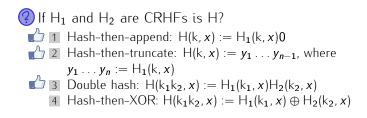
1 Hash-then-append: $H(k, x) := H_1(k, x)0$

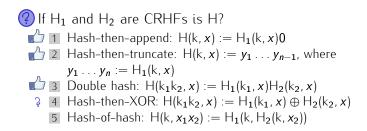
\bigcirc If H₁ and H₂ are CRHFs is H?

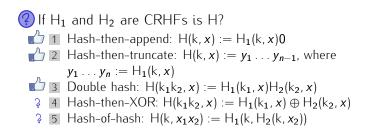
1 Hash-then-append: $H(k, x) := H_1(k, x)0$



(?) If H₁ and H₂ are CRHFs is H? ▲ 1 Hash-then-append: H(k, x) := H₁(k, x)0 ▲ 2 Hash-then-truncate: H(k, x) := y₁...y_{n-1}, where y₁...y_n := H₁(k, x) 3 Double hash: H(k₁k₂, x) := H₁(k₁, x)H₂(k₂, x)







Exercise 2

Prove formally the cases where H is a CRHF; describe counter-example otherwise.

Let's (Slowly) Find Collisions in H! $\searrow \{ K \times \{o_i, j\}^* \rightarrow \{o_i, j^n\} \}$

What about a deterministic $O(2^n)$ -time collision-finder?

Let's (Slowly) Find Collisions in H! $\searrow \{K \times \{o_i, i\}^n\}$

What about a deterministic $O(2^n)$ -time collision-finder? Exploit pigeonhole principle

Let's (Slowly) Find Collisions in H! $(\downarrow \ \{K \times \{a_i\}\}_{i=1}^{*} \in [0, i]^n \}$

What about a deterministic $O(2^n)$ -time collision-finder?

- Exploit pigeonhole principle
- Compute (e.g.) hash of inputs 00ⁿ, ..., 01ⁿ, 10ⁿ
 - There *must exist* colliding pair of inputs
- What is the amount of space required? Naïvely, $O(n2^n)$

Let's (Slowly) Find Collisions in H! $(\downarrow \ \{ K \times \{ \mathfrak{s}_{l} \mid l_{l}^{*} \rightarrow \{ \mathfrak{o}_{l} \mid l_{l}^{$

- What about a deterministic $O(2^n)$ -time collision-finder? Exploit pigeonhole principle
 - Compute (e.g.) hash of inputs 00ⁿ,...,01ⁿ,10ⁿ
 - There *must exist* colliding pair of inputs
 - What is the amount of space required? Naïvely, $O(n2^n)$
 - Randomised $O(2^{n/2})$ -time+ $O(n2^{n/2})$ -space collision-finder

Let's (Slowly) Find Collisions in H! $(\downarrow \ \{K \times \{a_i\}\}_{i=1}^{*} \in [0, i]^n \}$

- What about a deterministic $O(2^n)$ -time collision-finder?
 - Exploit pigeonhole principle
 - Compute (e.g.) hash of inputs $00^n, \ldots, 01^n, 10^n$
 - There *must exist* colliding pair of inputs
 - What is the amount of space required? Naïvely, $O(n2^n)$
 - Randomised $O(2^{n/2})$ -time+ $O(n2^{n/2})$ -space collision-finder Exploit birthday paradox

Let's (Slowly) Find Collisions in H! -> { Kx { > 1 + > 10,11 +

- \bigcirc What about a deterministic $O(2^n)$ -time collision-finder? Exploit pigeonhole principle

 - Compute (e.g.) hash of inputs $00^n, \ldots, 01^n, 10^n$
 - There *must exist* colliding pair of inputs
 - What is the amount of space required? Naïvely, $O(n2^n)$
 - Randomised $O(2^{n/2})$ -time+ $O(n2^{n/2})$ -space collision-finder
 - 🗑 Exploit birthday paradox
 - Compute hash of $N := O(2^{n/2})$ random inputs x_1, \ldots, x_N

■ With *noticeable probability*, there exist colliding pairs of inputs \triangle Consequence: key-size/output length must be 2× security level

Let's (Slowly) Find Collisions in H! -> { Kx { > 1 } + > 10,11 }

- What about a deterministic $O(2^n)$ -time collision-finder? Exploit pigeonhole principle

 - Compute (e.g.) hash of inputs $00^n, \ldots, 01^n, 10^n$
 - There *must exist* colliding pair of inputs
 - What is the amount of space required? Naïvely, $O(n2^n)$
 - Randomised $O(2^{n/2})$ -time+ $O(n2^{n/2})$ -space collision-finder
 - 🗑 Exploit birthday paradox
 - Compute hash of $N := O(2^{n/2})$ random inputs x_1, \ldots, x_N
 - With *noticeable probability*, there exist colliding pairs of inputs \triangle Consequence: key-size/output length must be 2× security level

Exercise 3

- 1 Is deterministic $O(2^{n/2})$ -time+ $O(n2^{n/2})$ -space collision-finder possible?
- 2 Is rand. $O(2^{n/2})$ -time+O(n)-space collision-finder possible?

Theorem 3

Theorem 3

If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

Proof sketch: $\exists Inv$ for f or $\exists F$ for $H \leftarrow \exists Tam$ for "hash-then-sign".

◆ Suppose Tam queries some me foilt and outputs forgery (m*, σ*)

Theorem 3

If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

Proof sketch: $\exists Inv$ for f or $\exists F$ for $H \leftarrow \exists Tam$ for "hash-then-sign".

• Suppose Tam queries some $m \in \{s_0, 1\}^*$ and $m \in \{s_0, 1\}^*$ and $m \in \{s_0, 1\}^*$ (ase (al.: $H(k, m) = H(k, m^*)$) = h^* (ase (al.: $H(k, m) \neq H(k, m^*) = h^*$

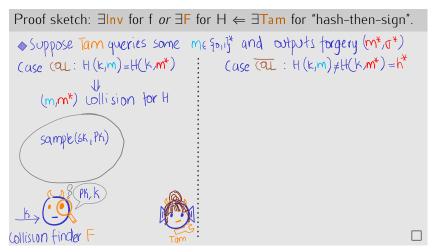
Theorem 3

If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

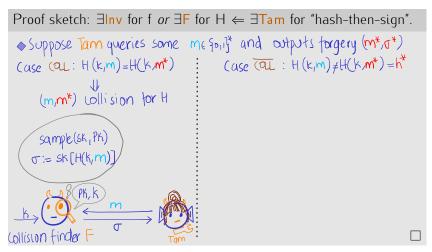
Theorem 3

If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

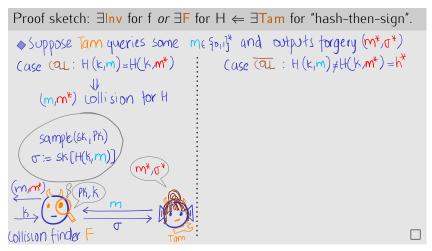
Theorem 3



Theorem 3



Theorem 3



Theorem 3

If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

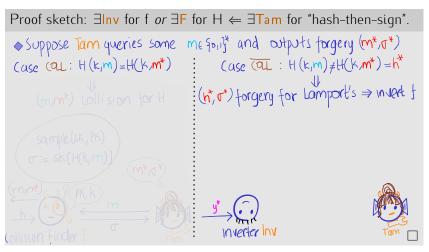
Proof sketch: $\exists Inv$ for f or $\exists F$ for $H \leftarrow \exists Tam$ for "hash-then-sign". ◆ Suppose Tam queries some me qo,13 and outputs forgery (m*, σ*) (ase $\overline{(aL)}$: $H(k,m) \neq H(k,m^*) = h^*$ $(ase (al: H(k,m)=H(k,m^*))$ (m,m*) collision for H (m, r*) forgery for Lamport's ⇒ invert f

Theorem 3

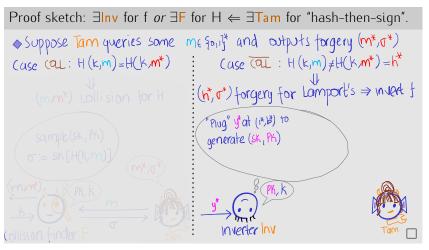
If f is a OWF and H is CRHF then the "hash-then-sign" scheme is a one-time DS for arbitrarily-long messages.

Proof sketch: $\exists Inv$ for f or $\exists F$ for $H \leftarrow \exists Tam$ for "hash-then-sign". • Suppose Tam queries some megoily and outputs forgery (m^*,σ^*) (ase (al: $H(k,m)=H(k,m^*)$) : (ase (al: $H(k,m)\neq H(k,m^*)=h^*$ (m,m*) collision for H (n, r) forgery for Lamport's ⇒ invert f

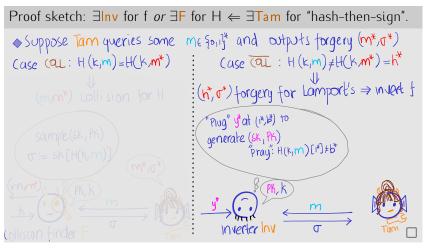
Theorem 3



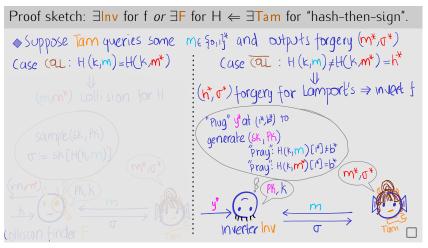
Theorem 3



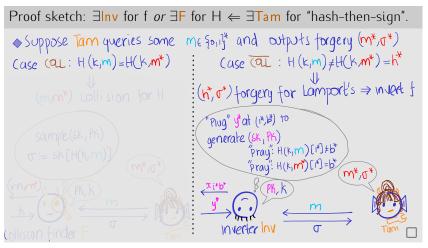
Theorem 3



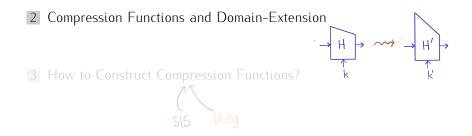
Theorem 3



Theorem 3



Plan for Today's Lecture



Compression Functions and Domain-Extension

- (Collision-resistant) compression function: CRHF for fixed input length $\ell(n) > n$
 - Easier to construct in practice: e.g., MD5, SHA2 (unkeyed) compression function of certain block-size

Compression Functions and Domain-Extension

- (Collision-resistant) compression function: CRHF for fixed $H \rightarrow h$ input length $\ell(n) > n$
 - Easier to construct in practice: e.g., MD5, SHA2 (unkeyed) compression function of certain block-size

Definition 3 ($\ell(n)$ -compression function)

A keyed function (family) $\{H : \mathcal{K} \times \{0, 1\}^{\ell(n)} \rightarrow \{0, 1\}^n\}$ is an $\ell(n)$ -compression function if for every PPT collision-finder F, the following is negligible.

 $\Pr_{\substack{\boldsymbol{k} \leftarrow \mathsf{Gen}(1'') \\ (x_1, x_2) \leftarrow \mathsf{F}(\boldsymbol{k}) \\ \mathsf{same} \text{ length } \mathcal{I}}} [\mathsf{H}(\boldsymbol{k}, x_1) = \mathsf{H}(\boldsymbol{k}, x_2)]$

Compression Functions and Domain-Extension

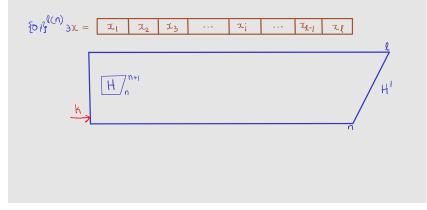
- (Collision-resistant) compression function: CRHF for fixed input length $\ell(n) > n$
 - Easier to construct in practice: e.g., MD5, SHA2 (unkeyed) compression function of certain block-size

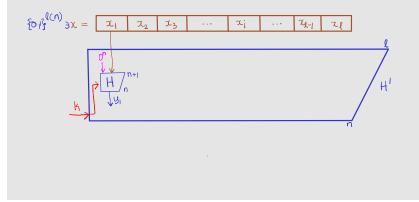
Definition 3 ($\ell(n)$ -compression function)

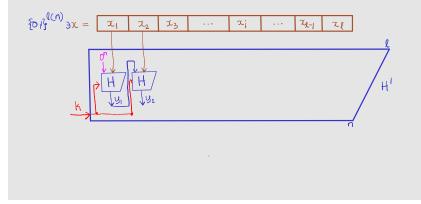
A keyed function (family) $\{H : \mathcal{K} \times \{0, 1\}^{\ell(n)} \rightarrow \{0, 1\}^n\}$ is an $\ell(n)$ -compression function if for every PPT collision-finder F, the following is negligible.

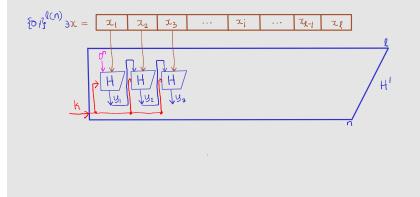
 $\Pr_{\substack{k \leftarrow \operatorname{Gen}(1^n) \\ (x_1, x_2) \leftarrow \operatorname{F}(k)}} [\operatorname{H}(k, x_1) = \operatorname{H}(k, x_2)]$ some length \mathcal{I}

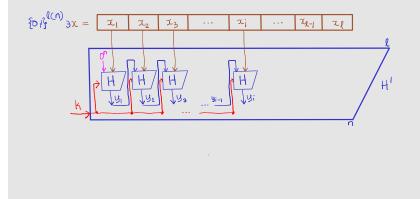
■ Domain extension: $\ell(n)$ -compression function \Rightarrow L(n)-compression function for $L(n) > \ell(n)$







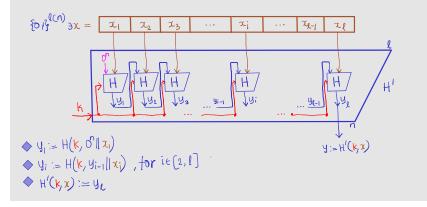




Construction 1 ((n + 1)-compression function H $\Rightarrow \ell(n)$ -compression function H', for any polynomial $\ell(n)$)



Construction 1 ((n + 1)-compression function H $\Rightarrow \ell(n)$ -compression function H', for any polynomial $\ell(n)$)



Theorem 4

Theorem 4

If H is a compression function then so is H'

Proof sketch: \exists collision finder **F** for $H \leftarrow \exists$ coll. finder **F**' for H'.

Theorem 4

If H is a compression function then so is H^\prime

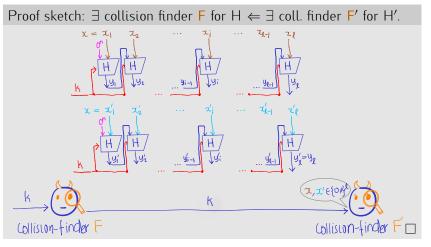
Proof sketch: \exists collision finder **F** for $H \leftarrow \exists$ coll. finder **F**' for H'.

Theorem 4

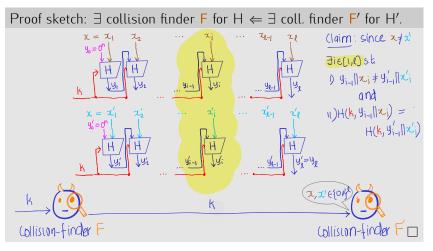
If H is a compression function then so is H^\prime

Proof sketch: \exists collision finder **F** for $H \leftarrow \exists$ coll. finder **F**' for H'.

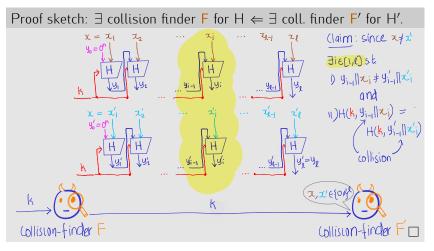
Theorem 4



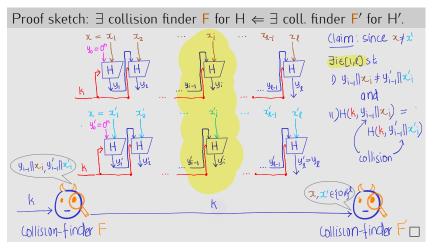
Theorem 4



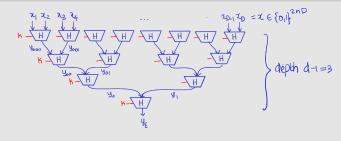
Theorem 4



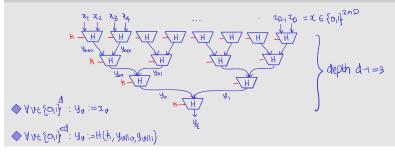
Theorem 4



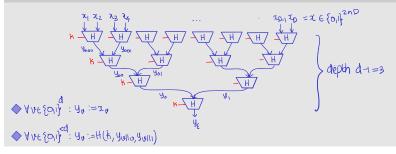
Construction 2 (2*n*-compression function $H \Rightarrow 2^{d} 2^{n}$ -compression function H', for any $d \in \mathbb{N}$)



Construction 2 (2*n*-compression function $H \Rightarrow 2^{d} 2^{n}$ -compression function H', for any $d \in \mathbb{N}$)



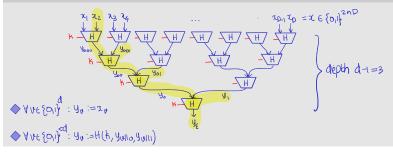
Construction 2 (2*n*-compression function $H \Rightarrow 2^{d} 2^{n}$ -compression function H', for any $d \in \mathbb{N}$)



Exercise 4

Show that if H is a compression function then so is H'

Construction 2 (2*n*-compression function $H \Rightarrow 2^{d} 2^{n}$ -compression function H', for any $d \in \mathbb{N}$)



Exercise 4

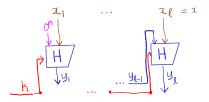
Show that if H is a compression function then so is H' $\!\!\!\!$

■ Has several interesting properties:

- 1 Parallelisable: computable in depth O(d)
- 2 Locally verifiable: parts of input can be verified

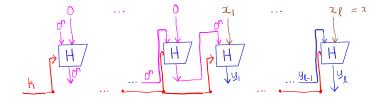
What If We Use Construction 1 for $\{0, 1\}^*$?

(?) Is it possible to find collisions of *different* length?



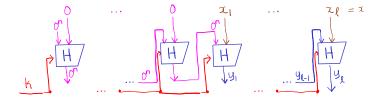
What If We Use Construction 1 for $\{0, 1\}^*$?

Is it possible to find collisions of *different* length?
 Yes, consider H for which H(k, 0ⁿ⁺¹) = 0ⁿ (for all k)
 For H' instantiated with above H: H'(k, 0ⁿx) = H'(k, x)



What If We Use Construction 1 for $\{0, 1\}^*$?

Is it possible to find collisions of *different* length?
 ▲ Yes, consider H for which H(k, 0ⁿ⁺¹) = 0ⁿ (for all k)
 ■ For H' instantiated with above H: H'(k, 0ⁿx) = H'(k, x)



Exercise 5

- 1 Find similar "length-extension" attack for Construction 2
- 2 Tweak Constructions 1 and 2 to obtain CRHF (i.e., for domain $\{0,1\}^*)$
 - Hint: add appropriate padding in the end

Plan for Today's Lecture

1 Hash Functions

2 Compression Functions and Domain-Extension

3 How to Construct Compression Functions?

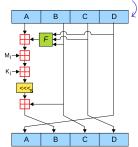
 Unkeyed compression function for fixed input (block) length/output length

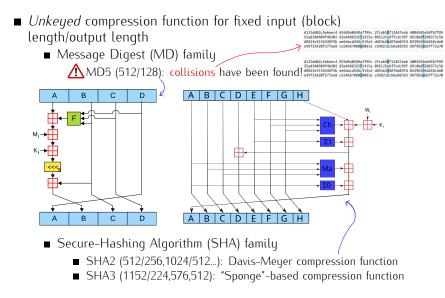
 Unkeyed compression function for fixed input (block) length/output length

- Unkeyed compression function for fixed input (block)
 length/output length
 - Message Digest (MD) family

Saalakee9rilase2 18-48832571415a 885125-877-65-997 e91ded7288375-25 8822315543455 aedda-d45051915c 6455-28877-88794 e91d928481-56 e997342847577ee8 ce54b678868841e c69821b:c66a8393 9679652b6f72a70 d131d98255e6eec4 693d9a8698aff95c 2fcab58712467eab 4004581eb8fb7f85

MD5 (512/128): collisions have been found!





■ Discrete-logarithm-based compression function $\{H : (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}:$

 $H((g, h), (a, b)) := g^a h^b \mod p$

■ Discrete-logarithm-based compression function $\{H : (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}$:

$$H((g, h), (a, b)) := g^a h^b \mod p$$

Phow to solve DLog given a collision ((a, b), (a', b'))?

■ Discrete-logarithm-based compression function $\{H : (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}$:

$$H((g, h), (a, b)) := g^a h^b \mod p$$

How to solve DLog given a collision ((a, b), (a', b'))?
Lattice-based compression function $\{H: \mathbb{Z}_p^{n \times m} \times \{0, 1\}^m \to \mathbb{Z}_p^n\} \text{ for } m \ge \lceil n \log(p) \rceil:$ $H(\bar{A}, \bar{x}) := \bar{A}\bar{x} \mod p$

■ Discrete-logarithm-based compression function $\{H : (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}$:

$$H((g, h), (a, b)) := g^a h^b \mod p$$

How to solve DLog given a collision ((a, b), (a', b'))?
Lattice-based compression function $\{H: \mathbb{Z}_p^{n \times m} \times \{0, 1\}^m \to \mathbb{Z}_p^n\} \text{ for } m \ge \lceil n \log(p) \rceil:$ $H(\bar{A}, \bar{x}) := \bar{A}\bar{x} \mod p$

- Based on short integer solution (SIS) problem:
 - Input: $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, with $m \ge \lceil n \log(p) \rceil$
 - Solution: non-zero vector $\bar{x} \in \{0, \pm 1\}^m$ in \bar{A} 's kernel, i.e., $\bar{A}\bar{x} = \bar{0} \mod p$

■ Discrete-logarithm-based compression function $\{H : (\mathbb{Z}_p^{\times})^2 \times \mathbb{Z}_p^2 \to \mathbb{Z}_p^{\times}\}$:

$$H((g, h), (a, b)) := g^a h^b \mod p$$

We have to solve DLog given a collision ((a, b), (a', b'))?
Lattice-based compression function $\{H: \mathbb{Z}_p^{n \times m} \times \{0, 1\}^m \to \mathbb{Z}_p^n\} \text{ for } m \ge \lceil n \log(p) \rceil:$ $H(\bar{A}, \bar{x}) := \bar{A}\bar{x} \mod p$

- Based on short integer solution (SIS) problem:
 - Input: $\bar{A} \leftarrow \mathbb{Z}_p^{n \times m}$, with $m \ge \lceil n \log(p) \rceil$
 - Solution: non-zero vector $\bar{x} \in \{0, \pm 1\}^m$ in \bar{A} 's kernel, i.e., $\bar{A}\bar{x} = \bar{0} \mod p$

Phow to solve SIS given a collision (\bar{x}, \bar{x}') ?

 \blacksquare Introduced a new primitive: collision-resistant hash function

Motivation: domain-extension for MAC/DS

Introduced a new primitive: collision-resistant hash function
 Motivation: domain-extension for MAC/DS

Generic attack via birthday bound

■ Introduced a new primitive: collision-resistant hash function

- Motivation: domain-extension for MAC/DS
- Generic attack via birthday bound
- Domain extension for compression functions
 - Merkle-Damgård transform
 - Merkle trees

■ Introduced a new primitive: collision-resistant hash function

- Motivation: domain-extension for MAC/DS
- Generic attack via birthday bound
- Domain extension for compression functions
 - Merkle-Damgård transform
 - Merkle trees
- Some constructions:
 - Practical/unkeyed: SHA2, MD5
 - Theoretical/keyed: DLog- and SIS-based

■ New cryptographic primitive: *trap-door (one-way) permutation* (TDP)

- New cryptographic primitive: *trap-door (one-way) permutation* (TDP)
 - OWP that is easy to invert given "trapdoor" information
 - Candidates
 - RSA TDP
 - Rabin TDP

- New cryptographic primitive: trap-door (one-way) permutation (TDP)
 - OWP that is easy to invert given "trapdoor" information
 - Candidates
 - RSA TDP
 - Rabin TDP
- Efficient digital signatures in "random-oracle model"
 - (RSA) Full-domain hash

- New cryptographic primitive: trap-door (one-way) permutation (TDP)
 - OWP that is easy to invert given "trapdoor" information
 - Candidates
 - RSA TDP
 - Rabin TDP
- Efficient digital signatures in "random-oracle model"
 - (RSA) Full-domain hash
- $\blacksquare \mathsf{TDP} \to \mathsf{PKE}$
 - New constructions of PKE: RSA

References

- As discussed in Lecture 7, hash functions were first studied in [WC81], but they considered pairwise-independence/universal hashing
- Collision resistance, and other cryptographic properties of hash functions were studied later [Dam88, Dam90, NY89, Mer90] a thorough historical perspective can be found in [RS04]

lvan Damgård.

Collision free hash functions and public key signature schemes.

In David Chaum and Wyn L. Price, editors, *EUROCRYPT'87*, volume 304 of *LNCS*, pages 203–216. Springer, Heidelberg, April 1988.

lvan Damgård.

A design principle for hash functions.

In Gilles Brassard, editor, *CRYPTO'89*, volume 435 of *LNCS*, pages 416–427. Springer, Heidelberg, August 1990.

🔋 Ralph C. Merkle.

One way hash functions and DES.

In Gilles Brassard, editor, *CRYPTO'89*, volume 435 of *LNCS*, pages 428–446. Springer, Heidelberg, August 1990.

Moni Naor and Moti Yung.

Universal one-way hash functions and their cryptographic applications. In *21st ACM STOC*, pages 33–43. ACM Press, May 1989.

Phillip Rogaway and Thomas Shrimpton.

Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In Bimal K. Roy and Willi Meier, editors, *FSE 2004*, volume 3017 of *LNCS*, pages 371–388. Springer, Heidelberg, February 2004.

Mark N. Wegman and J.Lawrence Carter.

New hash functions and their use in authentication and set equality. *Journal of Computer and System Sciences*, 22(3):265–279, 1981.