CS783: Theoretical Foundations of Cryptography

Lecture 12 (10/Sep/24)

[nstructor: Chethan Kamath
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m One-time DS - (mang time) stateful DS: chaLn of signatures”
m One-time DS — compact stateful DS: “tree of signatures”
m Stateless DS via derandomisation using PRF

m Efficient DS in “random-oracle model”

m Lectures 13: from trapdoor OWP via hash-then-invert
m Lecture 15(7): via Fiat-Shamir transform (e.g., Schnorr)
m Takeaways:
m Constructive: "bootstrapping” one-time to many-time signatures
m Proof techniques: “plug and pray” ph= S o
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Plan for Today's Lecture

Theorem 1 (Theorem 1, Lecture 11)

If f is a OWF then Lamport's scheme is a one-time DS for
fixed-length messages {0,1}°. T (PKl=2tn

Theorem 2 (PRF— MAC: Theorem 2, Lecture 7) 1dg(t,m):= Fu(m)

I {F:{0,1}" — {0,1}"}cqo 1y is a PRF then Construction 3
(Lecture 7) is EU-CMA-secure for fixed-length messages {0,1}".
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Extending Lamport’'s One-Time DS for Longer Messages
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m Hash-then-sign: compute “hash” h = H(m) and then sign h
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m Hash-then-sign: compute “hash” h = H(m) and then sign h
@What are the requirements from H?/When can Tam forge?

m Must be one-way. Is one-wayness sufficient?
m No, it must be hard to find inputs that “collide”

m Collisions are guaranteed to exist (pigeonhole principle)
m Is “collision-resistance” sufficient? Yes, as we'll see.
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Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

Pr [H(x1) = H(x2)]

(x1,%2)F(1")
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Collision-Resistant Hash Function (CRHF)

Defintion 1 (Keyless CRHF)

A function (family) {H : {0,1}" — {0,1}"} is a CRHF if for every
PPT collision-finder F, the following is negligible. o

Pr [H(x1) = H(x2)]

(xax2)—F (1)

Nepd ok be sonfelengdh

m Problem: trivial for non-uniform adversaries

Defintion 2 (CRHF, with key generation algorithm Gen)

A keyed function (family) {H : K x {0,1}" — {0,1}"} is a CRHF if
for every PPT collision-finder F, the following is negligible.

P Hik, x1) = H(k
k%Ge;(l")[ (k. xa) (k. x2)]
(x1.x2)—F(k)
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Collision-Resistant Hash Function (CRHF)...

@ If Hy and Hy are CRHFs is H?
¥7 1 Hash-then-append: H(k, x) := Hy(k, x)0
w7 12 Hash-then-truncate: H(k, x) '=y1...¥n—1, where
Yi...Yn = Hl(er)
3 Double hash: H(kika, x) := Hy(k1, x)Ha(ka, x)
4 Hash-then-XOR: H(kika, x) := Hy(ky, x) & Ha(ka, x)
5 Hash-of-hash: H(k, xyx2) := Hy(k, Ha(k, x2))

Exercise 2

Prove formally the cases where H is a CRHF, describe
counter-example otherwise.
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Let's (Slowly) Find Collisions in H!
5 (Ko 10
@Wb@t about a deterministic O(2")-time collision-finder?
Exploit pigeonhole principle
m Compute (e.g.) hash of inputs 007, ..., 01", 10"
m There must exist colliding pair of inputs
m What is the amount of space required? Naively, O(n2")
m Randomised O(2"?)-time+O(n2"?)-space collision-finder
Z}? %) Exploit birthday paradox
-\ = Compute hash of N := 0(2"?) random inputs xy, . . ., XN
Q m With noticeable probability, there exist colliding pairs of inputs

AConsequence: key-size/output length must be 2x security level

Exercise 3

1 Is deterministic O(2"?)~time-+0(n2"2)-space collision-finder
possible?

2 Is rand. O(2"?)-time+O(n)-space collision-finder possible?
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Extending Lamport's One-Time DS for Longer Messages...

Theorem 3

Iff is a OWF and H is CRHF then the "hash-then-sign” scheme is
a one-time DS for arbitrarily-long messages.

Proof sketch: JInv for f or 3F for H < 3Tam for “hash-then-sign”.

©5uppose 1am quenes some e Y and ouhpots forgery o'e)
Case @L: H (k) =H(km") § Case L tw&wﬂfua M) =i

Qn T )J(orgdg jior LOMFO&S = nlod §
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AN Nk, m)[ﬂ#b

Proy:
P MB )2 b -
Zub O<Ph K)

*‘

b

:___%co <« ™

( D \netter a

7116



1 Hash Functions * Y

2 Compression Functions and Domain-Extension

mw

3 How to Construct Compression Functions? [ K

.

7116



Compression Functions and Domain-Extension

(Colliston-resistant) compression function. CRHF for fixed
input length 2 H
put length &(n) > n ) X
m Easier to construct in practice: e.g, MD5, SHAZ (unkeyed)
compression function of certain block-size
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input length ¢(n) > n
m Fasier to construct in practice: e.g, MD5, SHAZ (unkeyed) |
compression function of certain block-size

m (Collision-resistant) compression function: CRHF for fixed
q 0

Defintion 3 (¢(n)-compression function)

A keyed function (family) {H : KC x {0,1}*™ = {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.
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Compression Functions and Domain-Extension

input length ¢(n) > n
m Easier to construct in practice: e.g, MD5, SHAZ (unkeyed) 1
compression function of certain block-size

m (Collision-resistant) compression function: CRHF for fixed
q 0

Defintion 3 (¢(n)-compression function)

A keyed function (family) {H : KC x {0,1}*™ = {0,1}"} is an
¢(n)-compression function if for every PPT collision-finder F, the
following is negligible.

Pr [H(k x1) = H(k, x2)]
keGen(1")
(x1,%2)—F(k)
sanme lengbh 7
m Domain extension: ¢(n)-compression function =
L(n)-compression function for L(n) > #(n) (0 = ] ;



Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))
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Merkle-Damgard Transform (Chaining)
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function H’, for any polynomial #(n))
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Merkle-Damgard Transform (Chaining)

Construction 1 ((n + 1)-compression function H = #(n)-compression
function H’, for any polynomial #(n))

)
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{
o
b
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@ 4= H( 0ln)
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If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.
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Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H < 3 coll. finder F/ for H’.
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Merkle-Damgard Transform (Chaining)...

Theorem 4

If H is a compression function then so is H’

Proof sketch: 3 collision finder F for H « 3 coll. finder F’ for H’.
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Merkle Trees

Construction 2 (2n-compression function H = 2d2n compression
function H’, for any d € N) ;

A A A T Lp =X E{D,U;MD

depth 4=3

4
QVefonf Yy =Ty

d
<>\i\}tiw]‘< Yy =H, E\s\\o}!ml\)

Exercise 4
Show that if H is a compression function then so is H’
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Merkle Trees

Construction 2 (2n-compression function H = 2d2n compression
function H’, for any d € N) ;

I Ly =L € {D,H;U\D

depth 4=3

4
QVefonf Yy =Ty
4
@ VeSO - Ys =K, Yoo o)

Exercise 4
Show that if H is a compression function then so is H’

m Has several interesting properties:
1 Parallelisable: computable in depth O(d)
2 Locally verifiable: parts of input can be verified
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What If We Use Construction 1 for {0,1}7?

@Is it possible to find collisions of different length?
/\ Yes, consider H for which H(k,0"*1) = 0" (for all k)
m For H’ instantiated with above H: H'(k,0"x) = H’(k, x)

Exercise b

1 Find similar ‘length-extension” attack for Construction 2
2 Tweak Constructions 1 and 2 to obtain CRHF (i.e,, for domain

{0.1}")

m Hint: add appropriate padding in the end
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m Unkeyed compression function for fixed input (block)
length/output length
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How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

m Message Digest (MD) family /—/

AMDS (512/128): collisions have been found!
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How to Construct Compression Functions in Practice?

m Unkeyed compression function for fixed input (block)
length/output length

m Message Digest (MD) family
AMDS (512/128): collisions have been found!

[ale]ec]po ¥ [ATBICIDIE[FIGTH]
E .\?ﬁ B‘}K
mi~EH I—

Bl -
] i

-
[Als[c[o] [AlBICIDIEIFTGTH]

m Secure-Hashing Algorithm (SHA) family

m SHA2 (512/256,1024/512..): Davis-Meyer compression function
m SHA3 (1152/224,576,512): "Sponge’-based compression function

Image credit: Wikipedia (Surachit kockmeyer) 13/16



How to Construct Compression Functions in Theory?

m Discrete-logarithm-based compression function
. x\2 2 .
{(H:(Zp)" xZy — Zp }:

H((g, h), (a, b)) := g?h? mod p

14/16



How to Construct Compression Functions in Theory?

m Discrete-logarithm-based compression function
. x\2 2 .
{(H:(Zp)" xZy — Zp }:

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

14/16



How to Construct Compression Functions in Theory?

(] D'Lscrete logarlthm based compression function
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m Lattice-based compression function
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@ How to solve DLog given a collision ((a, b), (&, b'))?

m Lattice-based compression function
{H:zpm x {0,1}" — Z3} for m > [nlog(p)]:

H(A, x) := Ax mod p
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m Input: A« Z2*™, with m > [nlog(p)]
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How to Construct Compression Functions in Theory?

(] D'Lscrete logarlthm based compression function
{H:(ZX)? x Zz — ZX}

H((g, h), (a, b)) := g?h? mod p

@ How to solve DLog given a collision ((a, b), (&, b'))?

m Lattice-based compression function
{H:zpm x {0,1}" — Z3} for m > [nlog(p)]:

H(A, x) := Ax mod p

m Based on short integer solution (SIS) problem
m Input: A« Z2*™, with m > [nlog(p)]
m Solution: non-zero vector x € {0, £1}™ in A's kernel, ie,
Ax =0mod p
@ How to solve SIS given a collision (x, X’)?
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m Motivation: domain-extension for MAC/DS
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To Recap Today's Lecture

Introduced a new primitive: collision-resistant hash function
m Motivation: domain-extension for MAC/DS

Generic attack via birthday bound
Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical/keyed: DLog- and SIS-based

15/16



m New cryptographic primitive: trap-door (one-way) permutation
(TDP)
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Next Lecture

m New cryptographic primitive: trap-door (one-way) permutation
(TDP)

m OWP that is easy to invert given "trapdoor” information
m Candidates

m RSA TDP
m Rabin TDP

m Efficient digital signatures in “random-oracle model”
m (RSA) Full-domain hash

m [DP — PKE
m New constructions of PKE: RSA
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