CS783: Theoretical Foundations of Cryptography

Lecture 13 (13/Sep/24)

Instructor: Chethan Kamath
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Recall from Last Lecture

m Sub-task 5.a: domain-extension of digital signature/MAC

m Reduces to constructing collision-resistant hash functions

m Generic attacks via pigeonhole principle and birthday paradox
m Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

m Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical/keyed: DLog- and SIS-based
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m New primitive: trap-door (one-way) permutation (TDP)

m Efficient digital signatures from TDP
m PKE from TDP
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Plan for Today's Lecture...

3 Public-Key Encryption from TDP o«,» @




2/13



Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if
1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i R,
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Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if

1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i ‘ R,
3 For all PPT inverters Inv, the following is negligible: O/—(O
25 b
p(n) = Pr  Inv(fi(x)) & 7 (fi(x)]
i«—Index(1")
x<D

m Recall examples:
1 Squaring modulo composite N = pq: fy(x) :== x> mod N
2 Exp. with generator g modulo prime p: f, g(x) := g* mod p

@ Describe Z, T} and R; above. How is i € Z sampled?
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OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — D}iezg{o,l}* is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm Index

éb;jcébi
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OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f; : D — D}iezg{o,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index
2 Eachf;, i € Z, is efficiently computable

3 For all PPT inverters Inv, the following is negligible:
i 5 Di
(

— . —L
plo) = Pr (i) € 67 ()

x<D

T wme
4 ffl can be efficiently computed given trapdoor t for i
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Candidate TDPs
m RSA TDP {f/\/,e Ly — Z,T,}N,e, defined as

fye(x) == x® mod N

, m fy e is permutation when GCD(e, (p —1)(g—1)) =1
N’m/ {O( m One-way by RSA assumption
pANEE PA g The trapdoor is d := e ' mod (p — 1)(g — 1)
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Candidate TDPs

m RSA TDP {f/\/,e Ly — Z,T,}N o defined as

fye(x) == x® mod N

, m fy . is permutation when GCD(e, (p —1)(g—1)) =1
szﬂ%gfz;\/ m One-way by RSA assumption
parhie m The trapdoor is d :== e ! mod (p — 1)(g — 1)
P quagratic residues ood N

m Rabin TDP {fy : Zy[+, +] = Zy[+, +]} . defined as

f(x) == x> mod N

m One-way by hardness of factoring
m The trapdoor is (p, q)

Exercise 1

How can we compute f,vl(y) given (p, q)?
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Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS
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Theorem 1 (Theorem 3, Lecture 12 (rephrased))

If Lamport's scheme is OTS and H is CRHF then ‘hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.
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m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS
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Theorem 1 (Theorem 3, Lecture 12 (rephrased))

If Lamport's scheme is OTS and H is CRHF then ‘hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

m How can a TDP be useful here? To replace Lamport's OTS

6/13



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D i

7113



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor

m ‘Full domain” hash function H: K x {0,1}" - D Di
n HU&J;@‘@‘

-~

BB CIONER)

7113



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

ke HGen(1") ¢ Inder L\")///‘
\\\\ O

BB (SICNER)

7113



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

i \
| fen()

ke HGen(1") ¢ Inder U‘)//‘
N PR Sk ’OOO

*

BB (SICNER)

7113



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

/ |
|

ke HGen(1") ¢ Inder U‘)//‘

N PR Sk ’OOO

mnEeson * .J.
BOB (IGNER)

7113



TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

[ gi= fi (h) where n=HO
“‘ \
ke HGen(1") ¢ Inder L‘")/»

S PR=(1k) shi=T ,/’QO

BB (SICNER)

7113



TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i

q _ f\ (h) where = H(m)

\ Oﬁﬂ({‘)
ke HGen(1") ()¢ mAuL\)
S PR=(k) skt O

me O\ﬁk -~

BB (SICNER)

7113



TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i

/‘,/,/V M\ — f\ (h) where = H(m)

\ Oﬁﬂ({‘)
ke HGen(1") ()¢ mAuL\)
S PR=(k) skt O

me O\ﬁk -~

BB (SICNER)

7113



TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i
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TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D Di
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m Efficiency, when using RSA TDP (i.e., RSA-FDH)

five(x) == x® mod N

m Public key: (N, e) and description of H
m Signatures: one element of Z,
m Signing/verification: one exponentiation + hash evaluation
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Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D HUWs@\\

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

m “Solution”: prove security in random-oracle model

) m |dealised model where H is a random function Ve
m All parties have oracle access to H Cj/

,m Reduction may “control” H (programming):

m Constructs H by on-the-fly/lazy sampling

m A “fresh” query m € {0,1}" replied with y « D _
m A ‘repeat” query m responded consistently vv'Lth y (in table)

m Warning:
m Only heuristic security guarantee
m Adversary could exploit specific implementation of H

8/13



Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.
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Theorem 2
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L et's Construct CPA-Secure PKE from TDP

m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)
A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}", if for every PPT predictor P, the following is
negligible

5(n) == XF?JI}H[P(f(x)) — he(x)] — 1/2

nc
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L et's Construct CPA-Secure PKE from TDP

m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)

A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}™, if for every PPT predictor P, the following is

negligible 7
5(n):= Pr [P{(x)) = he(x)] — 1/2 eia
x<{0,1}"

nc
Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))

For a OWP{, let f'(x, r) := (f(x), r). Then hc(x,r) = (x,r), isa
hard-core predicate for f’.
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m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)

A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}™, if for every PPT predictor P, the following is
negligible

5(n) == XH?JI}"[P(f(x)) — he(x)] — 1/2

h& \\%‘b
Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))
For a OWP{, let f'(x, r) := (f(x), r). Then hc(x,r) = (x,r), isa

hard-core predicate for f’.

Exercise 2
Extend Goldreich-Levin theorem for TDP { = {f; : D — D},
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Let's Construct CPA-Secure PKE from TDP..

m letf={f;: D — D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)
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(f;, 1) as the key pair

m Alice: set up

m Bob: to encrypt a bit m, sample x < T} such that hc(x) = m
and send y = f/(x) as “hint”

m Alice: to decrypt, compute x := f;i~X(y) and output hc(x)
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Let's Construct CPA-Secure PKE from TDP...
mletf={fi O — D,}I.eI be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)
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(f;, 1) as the key pair

m Alice: set up

m Bob: to encrypt a bit m, sample x < T} such that hc(x) = m
and send y = f/(x) as “hint”

m Alice: to decrypt, compute x := f;i~X(y) and output hc(x)

Theorem 4
Iff" is a TDP then I is IND-CPA secure.
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To Recap Today's Lecture

m Introduced a new primitive: trap-door permutation (TDP) 5
(

m Motivation: efficient signature schemes @l

m [wo candidate TDPs: RSA and Rabin TDP N _

—~ —

m Not many candidates known (Paillier TDP, TDP from iO) td

Efficient signature via "hash-then-invert” paradigm

m Proof in random-oracle model: plug and pray + programming
m RSA-PKCS#1 standard based on RSA-FDH

]
2

H
m PKE from TDP:
m New PKE based on RSA assumption
m Not same as (textbook) RSA encryption
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To Recap This Module

m We learnt: secure communication in the public-key setting

m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA
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To Recap This Module
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m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP

m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA
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Next Module

MODJLE 3
Cewre wmp)
m Zero-knowledge proofs Q\)bum\j of compufing
X X
m Private computation of functions (MPC) : ‘
m Private outsourcing: fully-homomorphic :
encryption : }
Y
m Verifiable outsourcing: SNARGs 5 - a4
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