CS783: Theoretical Foundations of Cryptography

Lecture 13 (13/Sep/24)

Instructor: Chethan Kamath

Recall from Last Lecture

m Sub-task 5.a: domain-extension of digital signature/MAC

m Reduces to constructing collision-resistant hash functions

113

Recall from Last Lecture

m Sub-task 5.a: domain-extension of digital signature/MAC

m Reduces to constructing collision-resistant hash functions
m Generic attacks via pigeonhole principle and birthday paradox

113

Recall from Last Lecture

m Sub-task 5.a: domain-extension of digital signature/MAC

m Reduces to constructing collision-resistant hash functions

m Generic attacks via pigeonhole principle and birthday paradox
m Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

113

Recall from Last Lecture

m Sub-task 5.a: domain-extension of digital signature/MAC

m Reduces to constructing collision-resistant hash functions

m Generic attacks via pigeonhole principle and birthday paradox
m Domain extension for compression functions

m Merkle-Damgard transform
m Merkle trees

m Some constructions:

m Practical/unkeyed: SHA2, MD5
m Theoretical/keyed: DLog- and SIS-based

113

m Motivation: construct efficient signatures

2/13

Plan for Today's Lecture

m Motivation: construct efficient signatures

CORSKE mpc Wi ey gt
hacder :
o Signaku ces
o '/' mws\nﬂném -
_ B "'_'ﬁbygu
(’\atj e%change o 7
| k n R cadrng
- ‘ PUb\C es €¥K13930 F\\\\¥44(3(K E J
rudvied

m New primitive: trap-door (one-way) permutation (TDP)
m Efficient digital signatures from TDP

TDP o C(%tomomq”

2/13

Plan for Today's Lecture

m Motivation: construct efficient signatures

CORSKE mpc Wi ey gt
hacder :
o Signaku ces
o '/' mws\nﬂném -
_ B "'_'ﬁbygu
(’\atj e%change o 7
| k n R cadrng
- ‘ PUb\C es €¥K13930 F\\\\¥44(3(K E J
rudvied

m New primitive: trap-door (one-way) permutation (TDP)
m Efficient digital signatures from TDP

TDP o C(%tomomq”

2/13

Plan for Today's Lecture

m Motivation: construct efficient slgnatures

“V\\'\\C rH ?U)
hacder
o Qugnakues
o a m%s\n_ﬂngpﬂ _
ﬁag e(change T oon Vi
C fuphe keg WWH v\; an - _aFactoring
drudvred ‘ |
’ T——TDP » C{%tomomq

m New primitive: trap-door (one-way) permutation (TDP)

m Efficient digital signatures from TDP
m PKE from TDP

2/13

Plan for Today's Lecture...

3 Public-Key Encryption from TDP o«,» @

2/13

Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if
1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i R,

3/13

Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if

1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i ‘ R,
3 For all PPT inverters Inv, the following is negligible: O/—(O
25 b
p(n) = Pr Inv(fi(x)) & 7 (fi(x)]
i«—Index(1")
x<D

3/13

Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if

1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i ‘ R,
3 For all PPT inverters Inv, the following is negligible: O/—(O
25 b
p(n) = Pr Inv(fi(x)) & 7 (fi(x)]
i«—Index(1")
x<D

m Recall examples:
1 Squaring modulo composite N = pq: fy(x) :== x> mod N
2 Exp. with generator g modulo prime p: f, g(x) := g* mod p

3/13

Recall from Lecture 6: Collection of OWFs

Defintion 1 (One-way function (OWF) collection)
A collection of functions f .= {f; : D — Ri}ieIg{o,l}* is one-way if

1 There is an efficient index-sampling algorithm Index

2 Each f; in collection is efficiently computable i ‘ R,
3 For all PPT inverters Inv, the following is negligible: O/—(O
25 b
p(n) = Pr Inv(fi(x)) & 7 (fi(x)]
i«—Index(1")
x<D

m Recall examples:
1 Squaring modulo composite N = pq: fy(x) :== x> mod N
2 Exp. with generator g modulo prime p: f, g(x) := g* mod p

@ Describe Z, T} and R; above. How is i € Z sampled?

3/13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — D}iezg{o,l}* is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm Index

éb;jcébi

4/13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — D}iezg{o,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index
2 Eachf;, i € Z, is efficiently computable

3 For all PPT inverters Inv, the following is negligible:
i 5 Di
(

. : —1.
@—(@ pln) = <’Vf)§E§; i) € (GG

4/13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f; : D — D}iezg{o,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index
2 Eachf;, i € Z, is efficiently computable

3 For all PPT inverters Inv, the following is negligible:
i 5 Di
(

— . —L
plo) = Pr (i) € 67 ()

x<D

T wme
4 ffl can be efficiently computed given trapdoor t for i

4/13

Candidate TDPs
m RSA TDP {f/\/,e Ly — Z,T,}N,e, defined as

fye(x) == x® mod N

, m fy e is permutation when GCD(e, (p —1)(g—1)) =1
N’m/ {O(m One-way by RSA assumption
pANEE PA g The trapdoor is d := e ' mod (p — 1)(g — 1)

5/13

Candidate TDPs

m RSA TDP {f/\/,e Ly — Z,T,}N o defined as
fye(x) == x® mod N
, m fy . is permutation when GCD(e, (p —1)(g—1)) =1
N’m/ (O(m One-way by RSA assumption
pAme PA- o The trapdoor is d ;== e ! mod (p — 1)(q — 1)) '
-~ quadratic residves i N
m Rabin TDP {fy : Zy[+, +] = Zy[+, +]} . defined as
f(x) == x> mod N

m One-way by hardness of factoring
m The trapdoor is (p, q)

5/13

Candidate TDPs

m RSA TDP {f/\/,e Ly — Z,T,}N o defined as

fye(x) == x® mod N

, m fy . is permutation when GCD(e, (p —1)(g—1)) =1
szﬂ%gfz;\/ m One-way by RSA assumption
parhie m The trapdoor is d :== e ! mod (p — 1)(g — 1)
P quagratic residues ood N

m Rabin TDP {fy : Zy[+, +] = Zy[+, +]} . defined as

f(x) == x> mod N

m One-way by hardness of factoring
m The trapdoor is (p, q)

Exercise 1

How can we compute f,vl(y) given (p, q)?

5/13

5/13

Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS

6/13

Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS

- [X[Xaw| - | Lo
% L |Xa| -+ | X

=

“ Xo|Xa| | Xeo
\ xH xl\ Xi\
/ \ £0
N R ° Y| Jaof -+ | Jto) _
Yu|Ya| - [0

6/13

Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS

; fo 0
\ n &6
k) O V50
(P?/h / . ° . Yio| Yaof = | Yo =
’ - AN Yu|Ya| - [0

BB IR

Theorem 1 (Theorem 3, Lecture 12 (rephrased))

If Lamport's scheme is OTS and H is CRHF then ‘hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

6/13

Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS

; fo 0
‘\ n HUW{O i
e o 150
) o
(P?/k . 0 ° . Yio| Yaof = | Yo =
- AN Yu|Ya| - [0

BB IR

Theorem 1 (Theorem 3, Lecture 12 (rephrased))

If Lamport's scheme is OTS and H is CRHF then ‘hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

m How can a TDP be useful here?

6/13

Recall: “Hash-Then-Sign” One-Time Signature

m 1) Compute "hash” h = H(k, m) 2) sign h using Lamport's OTS

; fo 0
‘\ n HUW{O i
e o 150
) o
(P?/h . 0 ° . Yio| Yaof = | Yo =
- AN Yu|Ya| - [0

BB IR

Theorem 1 (Theorem 3, Lecture 12 (rephrased))

If Lamport's scheme is OTS and H is CRHF then ‘hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

m How can a TDP be useful here? To replace Lamport's OTS

6/13

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D i

7113

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor

m ‘Full domain” hash function H: K x {0,1}" - D Di
n HU&J;@‘@‘

-~

BB CIONER)

7113

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

ke HGen(1") ¢ Inder L\")///‘
\\\\ O

BB (SICNER)

7113

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

i \
| fen()

ke HGen(1") ¢ Inder U‘)//‘
N PR Sk ’OOO

*

BB (SICNER)

7113

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

/ g

/ |
|

ke HGen(1") ¢ Inder U‘)//‘

N PR Sk ’OOO

mnEeson * .J.
BOB (IGNER)

7113

TDP-based Signature: “Hash-then-Invert”

m 1) Compute "hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H: K x {0,1}" - D Di

[gi= fi (h) where n=HO
“‘ \
ke HGen(1") ¢ Inder L‘")/»

S PR=(1k) shi=T ,/’QO

BB (SICNER)

7113

TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i

q _ f\ (h) where = H(m)

\ Oﬁﬂ({‘)
ke HGen(1") ()¢ mAuL\)
S PR=(k) skt O

me O\ﬁk -~

BB (SICNER)

7113

TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i

/‘,/,/V M\ — f\ (h) where = H(m)

\ Oﬁﬂ({‘)
ke HGen(1") ()¢ mAuL\)
S PR=(k) skt O

me O\ﬁk -~

BB (SICNER)

7113

TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D i

7 Ner (P ¢ie () here = e

| h=Hm) | fen ()
(PUER G bi0)h “ /e Hen) @ ndes)]
’ e A
me O\1¥ (..".j
B0B GIONER)

7113

TDP-based Signature: “Hash-then-Invert”

1) Compute “hash” h = H(k, m) 2) invert h using trapdoor
m ‘Full domain” hash function H : IC X {0 1}* - D Di

) o) shase =
\“ hi=H(m) \ // Oem(n) }
\\j&(((flr\ ‘QQ %\(@) b H(J(’ﬂ('ﬂ) (@e mAUL\)
oA PRy skt ’OO
O
B0B GIONER)
m Efficiency, when using RSA TDP (i.e., RSA-FDH)

five(x) == x® mod N

m Public key: (N, e) and description of H
m Signatures: one element of Z,
m Signing/verification: one exponentiation + hash evaluation

7113

m |s H being CRHF sufficient to prove security?

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D M) ;p‘ﬁ

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? 1?eems not
U)o

m Problem:

1 Need to invert a particular challenge y* | «
2 Forger could forger any message m*

m Want: exploit H to “link” forgery (0*, m*) and challenge y*

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D M) ;p‘ﬁ

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D M) ;p‘ﬁ

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

m “Solution”: prove security in random-oracle model
m |dealised model where H is a random function
m All parties have oracle access to H

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D M) ;p‘ﬁ

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

m “Solution”: prove security in random-oracle model
m |dealised model where H is a random function
m All parties have oracle access to H

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D HUWs@\\

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

m “Solution”: prove security in random-oracle model

9 m |dealised model where H is a random function Ve
m All parties have oracle access to H Cj/

,m Reduction may “control” H (programming):

m Constructs H by on-the-fly/lazy sampling

m A “fresh” query m € {0,1}" replied with y « D _
m A ‘repeat” query m responded consistently vv'Lth y (in table)

8/13

Let's Prove Security of “Hash-then-Invert”

m Is H being CRHF sufficient to prove security? Seems not
D HUWs@\\

m Problem:

1 Need to invert a particular challenge y*
2 Forger could forger any message m*

m “Solution”: prove security in random-oracle model

) m |dealised model where H is a random function Ve
m All parties have oracle access to H Cj/

,m Reduction may “control” H (programming):

m Constructs H by on-the-fly/lazy sampling

m A “fresh” query m € {0,1}" replied with y « D _
m A ‘repeat” query m responded consistently vv'Lth y (in table)

m Warning:
m Only heuristic security guarantee
m Adversary could exploit specific implementation of H

8/13

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

N
N

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

S (Hem)
1)

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2
Iff is a TDP and H is a random oracle then ‘hash-then-invert” is

EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

| “Progracy
rrogact
‘ 0D

‘ hefine Hm)=fi@ .

S (Hem)
1)

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2
Iff is a TDP and H is a random oracle then ‘hash-then-invert” is

EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

| “Progracy
‘ 0D

‘ hefine Hm)=fi@ .

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2
Iff is a TDP and H is a random oracle then ‘hash-then-invert” is

EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

| “Progracy
‘ 0D

‘ hefine Hm)=fi@ .

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

/7 dnald hive 5€8 HimI= Y
= @ §' ()
‘ 0D

| pefine Hm)=f(/x/V/

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

/7 dnald hive 5€8 HimI= Y
= @ §' ()
‘ 0D

| pefine Hm)=f(/x/V/

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

~) Pela) g e raow fgpents by Tam
/ 71

:Sign(2,):
=
O
—>\e o
iy* Q

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

1 TeUA) g owigents by Tam,
g e S ey 4
ol B R R G e |
i gn SR EREE R e un i ‘;
| el R for e ,

Sagn(z,-)i
QOQ
—>\e o
i

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.
) Reducaon cialeg

Tl g raow fpents by T,

ey J \ y
1 pa | @ Plg: emba) d\a\\mgc g as
ban ﬂ-m-n-m @ | | noch o Tami's by Requery
[o3 B D B RS R /{& ;
| vjetandrYy: =Fe) fr G m
ESlgn(?,-)i
o
£
—>\e ¢
iy* Q

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.
) Reducaon cialeg

Tl g raow fpents by T,

P | |
STt AL | e oo sn ey
ey e e e RkS) o Poome Tam duiys queies

o3\ B =7{; Y] [/ e 2 (v
| "l“%\@;ﬁ - W/ R e SgiG)
ESlgn(?,-)i
O
—>\e o
iy* Q

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

T et 40 mo\quuancsbg M@

ﬂ-—ﬁ 4 | Plug: embed dﬂ\\ar\gc g as
9“9“ E-lﬂ-'i-m ﬂ{& | tathof ‘3\ (b h-query
‘ 5o o= | e boome WIS gueries
Ve Qo =) for G 2 /, ? .
‘ "plug' =y H (M) Yefore SgnC,™M)

* Dnuoer J-th fresa Hoqueny

.......... \\\ ukﬁhj
B3 \\

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is

EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

i TeUA) g wonTpents by Tam,

g e LY e R 4 |

o a-m=ll-m Al]

i re En e S Ry pn kw5 /{& ;

‘ Vielongry: b =) fr G //‘

\ \'?\Ugv\ Y\ﬁ =y* /_/W_H//,/
1Sign(2,-):
QQ E

—> oﬁv
i ;':

Reducon srakegy
& Plog: embed dn\\mgc g as
hath of Tamis -t H-query
* Bgome always gueries
(o) Y)@’*Ofé S g @, m)
* Dnuoer J-th fresa Hoqueny
y (5kh \ﬂl
*ray . Aoswar Sign query dor
o) 40 wikh @, (| gt H0RTL

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

— % 4 o~ a
A] T g mow figuents by Tdm w
]] [V ™) 1 pa | o Plug: embe d\a\\mgc gy as
5 a-%=a-m @ | nash of Tams [t hoquery
Fonn] R Vian Y /\ \
| . P ® hgome aluwags queries
‘ Vje[\\%}y\??']jylk;ijg’(ji) for e P m // B Y)@’*O\'G Slgﬂ@/(’”)
=y p
“‘ ? /\/V/ * Dnuoer J-th fresa Hoqueny
\ Yy Lk by
Sian(2 O
\ :%.l n(’) NJ Py I Answaer Sign query o
. - ‘ v O M i @ | g RORT,
LT QQ *Py2 | WM fwml,
(-) g op
—>\e ¢ 1%
9"

9/13

Let's Prove Security of “Hash-then-Invert”..

Theorem 2

Iff is a TDP and H is a random oracle then ‘hash-then-invert” is
EU-CMA for arbitrarily-long messages.

Proof sketch: plug and pray via random oracle programming.

T g g by i, M@t‘%\\
[™)« A | @ Plug: embed ene y° as
A S e AR g

T Tn L1

SN)k e \ hath of Tamis -t H-query
| a2 = _ @ [o BHme AudmS queries
Welal Uy v I G 7Y /R vl SghG,m)

‘ "plg e =y %
| /\/V/ * Dnuoer J-th fresa Hoqueny
Yy Lk by
\ L
Sl n(/) NJ *Pray . Answer Sign query o
N T o) 4 wih 6. | <+ #B0RT,

Py} MM BT,
e olp T

W\a\g&’\s Sromlard fVWD%’s

9/13

N ~

1 Trap-Door (One-Way) Permutation (TDP) ~~

2 Efficient Digital Signatures from TDP (iﬂ fangom-Oracle MOO\ZD

3 Public-Key Encryption from TDP @oo (’:)

9/13

L et's Construct CPA-Secure PKE from TDP

m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)
A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}", if for every PPT predictor P, the following is
negligible

5(n) == XF?JI}H[P(f(x)) — he(x)] — 1/2

nc

10/13

L et's Construct CPA-Secure PKE from TDP

m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)

A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}™, if for every PPT predictor P, the following is

negligible 7
5(n):= Pr [P{(x)) = he(x)] — 1/2 eia
x<{0,1}"

nc
Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))

For a OWP{, let f'(x, r) := (f(x), r). Then hc(x,r) = (x,r), isa
hard-core predicate for f’.

10/13

L et's Construct CPA-Secure PKE from TDP

m Recall from Lecture 6:
Defintion 3 (Definition 2, Lecture 6)

A predicate hc : {0,1}" — {0, 1} is hard-core for a function family
fn:{0,1}" — {0,1}™, if for every PPT predictor P, the following is
negligible

5(n) == XH?JI}"[P(f(x)) — he(x)] — 1/2

h& \\%‘b
Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))
For a OWP{, let f'(x, r) := (f(x), r). Then hc(x,r) = (x,r), isa

hard-core predicate for f’.

Exercise 2
Extend Goldreich-Levin theorem for TDP { = {f; : D — D},

10/13

Let's Construct CPA-Secure PKE from TDP..

m letf={f;: D - D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

10/13

Let's Construct CPA-Secure PKE from TDP..

m letf={f;: D — D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)

B0B

10/13

Let's Construct CPA-Secure PKE from TDP...

m letf={f;: D — D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)

(@ e nder L‘w
‘\

B0B

10/13

Let's Construct CPA-Secure PKE from TDP...

m letf={f;: D — D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)

(@ e nder L‘w
‘\

B0B

10/13

Let's Construct CPA-Secure PKE from TDP..

mletf={fi: D - D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen Enc, Dec) < TDP f; : D — D)

= « P
| e Inder v | K(x)m
N U= HK)
DOV.E = C\B Dom -

BB

10/13

Let's Construct CPA-Secure PKE from TDP..

mletf={fi: D - D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen Enc, Dec) < TDP f; : D — D)

Ay u Dy
| e Inder ? | K(x)m
\ y=f(g
DOVE“ - C\B DO(\7
!Illl| <:44444444<é%4_444,_.._ =

BB

10/13

Let's Construct CPA-Secure PKE from TDP..

mletf={fi: D - D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen Enc, Dec) < TDP f; : D — D)

= « P
| (¢)xe’\gndéé v | K(x)m
0 m: *M@) Y= 1CO<)

10/13

Let's Construct CPA-Secure PKE from TDP..

m letf={f;: D — D},.; be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)

‘i Ll)xi?‘-%é w | @=m)
\ qug)

S v) 0
)y _)
.

B

(f;, 1) as the key pair

m Alice: set up

m Bob: to encrypt a bit m, sample x < T} such that hc(x) = m
and send y = f/(x) as “hint”

m Alice: to decrypt, compute x := f;i~X(y) and output hc(x)

10/13

Let's Construct CPA-Secure PKE from TDP...
mletf={fi O — D,}I.eI be a TDP and hc be a HCP for f
@Hovv do you construct PKE?

Construction 1 (PKE I = (Gen, Enc, Dec) <~ TDP f; : D — D)

/ix L\" X;PL\
e @
O~ Yﬂ'.f‘\(‘m@) N quo() -

o0 e 0 gj
gy oy ()
.

B

(f;, 1) as the key pair

m Alice: set up

m Bob: to encrypt a bit m, sample x < T} such that hc(x) = m
and send y = f/(x) as “hint”

m Alice: to decrypt, compute x := f;i~X(y) and output hc(x)

Theorem 4
Iff" is a TDP then I is IND-CPA secure.

10/13

To Recap Today's Lecture

m Introduced a new primitive: trap-door permutation (TDP) 5
m Motivation: efficient signature schemes

/13

To Recap Today's Lecture

m Introduced a new primitive: trap-door permutation (TDP) 5
(

m Motivation: efficient signature schemes @l@

m [wo candidate TDPs: RSA and Rabin TDP N _

—~ —

m Not many candidates known (Paillier TDP, TDP from iO) td

/13

To Recap Today's Lecture

m Introduced a new primitive: trap-door permutation (TDP) 5
(

m Motivation: efficient signature schemes @l@

m [wo candidate TDPs: RSA and Rabin TDP N _

—~ —

m Not many candidates known (Paillier TDP, TDP from iO) td

Efficient signature via "hash-then-invert” paradigm

m Proof in random-oracle model: plug and pray + programming
m RSA-PKCS#1 standard based on RSA-FDH

]
2

/13

To Recap Today's Lecture

m Introduced a new primitive: trap-door permutation (TDP) 5
(

m Motivation: efficient signature schemes @l

m [wo candidate TDPs: RSA and Rabin TDP N _

—~ —

m Not many candidates known (Paillier TDP, TDP from iO) td

Efficient signature via "hash-then-invert” paradigm

m Proof in random-oracle model: plug and pray + programming
m RSA-PKCS#1 standard based on RSA-FDH

]
2

H
m PKE from TDP:
m New PKE based on RSA assumption
m Not same as (textbook) RSA encryption

/13

To Recap This Module

m We learnt: secure communication in the public-key setting

m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA

,*r\eg;exchangé\h“
o ouphcckey eruybon

12113

To Recap This Module

We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,

public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, OR, [WE, RSA

) D\LDLJ
lﬂeg Cexch ange Hf%DDH P

oo bl k@ Wﬁ\mn :\g ap —FIaN0g LN

(& ()
Key conceptual takeaway: structure vs. hardness
."‘ g/);\l,\ ‘bg@p
.) < te
0 i B

12113

To Recap This Module

m We learnt: secure communication in the public-key setting

m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP

m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA

) D\LOCJ
lﬂeg oxdn ange = %DDH 2

o Pu‘om keg W‘jﬂon r\;@(« L Fadorng Z,gabS
B TDPs/ f (‘)‘b e
ACYCIE

m Key conceptual takeaway: structure vs. hardness

i:;\g\:,) 5ATED
= //; L gk g\“ﬁ z 0 P Pl ;
0=1 ‘gg(l) q ,9/9 g\ ok .
ﬂ C? + LT i o o
-t L A [t G SENERER
R / ‘E‘q(g) =% g / Ph— Bm. g 1Y Y s b {0}

n Keg tools: groups, random self-reducibility, plug and pray

12113

Next Module

MODJLE 3
Cewre wmp)
m Zero-knowledge proofs Q\)bum\j of compufing
X X
m Private computation of functions (MPC) : ‘
m Private outsourcing: fully-homomorphic :
encryption : }
Y
m Verifiable outsourcing: SNARGs 5 - a4

n=reey

~[070s" ~19905" ~9010¢

Y * a % & Dresent
Yost > A &

13/13

References

1 [KL14, §13.3 and §15.1] for details of this lecture.

2 Trap-door permutations were introduced in [DH76]. Yao [Yao82]
who showed how to construct PKE using TDPs.

3 The random oracle model was proposed in [FS87] But it was
in [BR93] that it was shown how it can be fully exploited. E.q,
the random-oracle-based of “hash-then-invert” construction is
from there.

13/13

B Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62-73. ACM Press, November
1993.

@ Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

@ Amos Fiat and Adi Shamir.

How to prove yourself: Practical solutions to identification and signature
problems.

In Andrew M. Odlyzko, editor, CRYPTO'86, volume 263 of LNCS, pages
186-194. Springer, Heidelberg, August 1987.

a Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

[4 Andrew Chi-Chih Yao.
Theory and applications of trapdoor functions (extended abstract).

In 23rd FOCS, pages 80-91. IEEE Computer Society Press, November 1982.
13/13

	Trap-Door (One-Way) Permutation (TDP)
	Efficient Digital Signatures from TDP
	Public-Key Encryption from TDP

