
CS783: Theoretical Foundations of Cryptography
Lecture 13 (13/Sep/24)

Instructor: Chethan Kamath

Recall from Last Lecture
Sub-task 5.a: domain-extension of digital signature/MAC

Reduces to constructing collision-resistant hash functions

1 / 13

Recall from Last Lecture
Sub-task 5.a: domain-extension of digital signature/MAC

Reduces to constructing collision-resistant hash functions
Generic attacks via pigeonhole principle and birthday paradox

1 / 13

Recall from Last Lecture
Sub-task 5.a: domain-extension of digital signature/MAC

Reduces to constructing collision-resistant hash functions
Generic attacks via pigeonhole principle and birthday paradoxDomain extension for compression functions

Merkle-Damgård transform
Merkle trees

1 / 13

Recall from Last Lecture
Sub-task 5.a: domain-extension of digital signature/MAC

Reduces to constructing collision-resistant hash functions
Generic attacks via pigeonhole principle and birthday paradoxDomain extension for compression functions

Merkle-Damgård transform
Merkle trees

Some constructions:
Practical/unkeyed: SHA2, MD5
Theoretical/keyed: DLog- and SIS-based

1 / 13

Plan for Today’s Lecture...
Motivation: construct efficient signatures

2 / 13

Plan for Today’s Lecture...
Motivation: construct efficient signatures

New primitive: trap-door (one-way) permutation (TDP)
Efficient digital signatures from TDP

2 / 13

Plan for Today’s Lecture...
Motivation: construct efficient signatures

New primitive: trap-door (one-way) permutation (TDP)
Efficient digital signatures from TDP

2 / 13

Plan for Today’s Lecture...
Motivation: construct efficient signatures

New primitive: trap-door (one-way) permutation (TDP)
Efficient digital signatures from TDP
PKE from TDP

2 / 13

Plan for Today’s Lecture...

1 Trap-Door (One-Way) Permutation (TDP)

2 Efficient Digital Signatures from TDP

3 Public-Key Encryption from TDP

Plan for Today’s Lecture

1 Trap-Door (One-Way) Permutation (TDP)

2 Efficient Digital Signatures from TDP

3 Public-Key Encryption from TDP

2 / 13

Recall from Lecture 6: Collection of OWFs
Defintion 1 (One-way function (OWF) collection)
A collection of functions f := {f� : D� → R�}�∈I⊆{�,�}∗ is one-way if

1 There is an efficient index-sampling algorithm �����

2 Each f� in collection is efficiently computable

3 / 13

Recall from Lecture 6: Collection of OWFs
Defintion 1 (One-way function (OWF) collection)
A collection of functions f := {f� : D� → R�}�∈I⊆{�,�}∗ is one-way if

1 There is an efficient index-sampling algorithm �����

2 Each f� in collection is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr
�←�����(��)

�←D�
[���(f� (�)) ∈ f−�

�
(f� (�))]

3 / 13

Recall from Lecture 6: Collection of OWFs
Defintion 1 (One-way function (OWF) collection)
A collection of functions f := {f� : D� → R�}�∈I⊆{�,�}∗ is one-way if

1 There is an efficient index-sampling algorithm �����

2 Each f� in collection is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr
�←�����(��)

�←D�
[���(f� (�)) ∈ f−�

�
(f� (�))]

Recall examples:
1 Squaring modulo composite � = ��: f� (�) := �� mod �
2 Exp. with generator � modulo prime �: f�,� (�) := �� mod �

3 / 13

Recall from Lecture 6: Collection of OWFs
Defintion 1 (One-way function (OWF) collection)
A collection of functions f := {f� : D� → R�}�∈I⊆{�,�}∗ is one-way if

1 There is an efficient index-sampling algorithm �����

2 Each f� in collection is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr
�←�����(��)

�←D�
[���(f� (�)) ∈ f−�

�
(f� (�))]

Recall examples:
1 Squaring modulo composite � = ��: f� (�) := �� mod �
2 Exp. with generator � modulo prime �: f�,� (�) := �� mod �

Describe I , D� and R� above. How is � ∈ I sampled?
3 / 13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

4 / 13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

2 Each f� , � ∈ I , is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr(� ,τ)←�����(��)
�←D�

[���(f� (�)) ∈ f−�

�
(f� (�))]

4 / 13

OWP Collection with Trap-Door

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

2 Each f� , � ∈ I , is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr(� ,τ)←�����(��)
�←D�

[���(f� (�)) ∈ f−�

�
(f� (�))]

4 f−�

�
can be efficiently computed given trapdoor τ for �

4 / 13

Candidate TDPs
RSA TDP �f�,� : Z×

�
→ Z×

�

	
�,� , defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

5 / 13

Candidate TDPs
RSA TDP �f�,� : Z×

�
→ Z×

�

	
�,� , defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Rabin TDP �f� : Z×
�

[+, +] → Z×
�

[+, +]	
�

, defined as
f� (�) := �� mod �

One-way by hardness of factoring
The trapdoor is (�, �)

5 / 13

Candidate TDPs
RSA TDP �f�,� : Z×

�
→ Z×

�

	
�,� , defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Rabin TDP �f� : Z×
�

[+, +] → Z×
�

[+, +]	
�

, defined as
f� (�) := �� mod �

One-way by hardness of factoring
The trapdoor is (�, �)

Exercise 1
How can we compute f−�

�
(�) given (�,�)?

5 / 13

Plan for Today’s Lecture

1 Trap-Door (One-Way) Permutation (TDP)

2 Efficient Digital Signatures from TDP

3 Public-Key Encryption from TDP

5 / 13

Recall: “Hash-Then-Sign” One-Time Signature
1) Compute “hash” � = H(k,�) 2) sign � using Lamport’s OTS

6 / 13

Recall: “Hash-Then-Sign” One-Time Signature
1) Compute “hash” � = H(k,�) 2) sign � using Lamport’s OTS

6 / 13

Recall: “Hash-Then-Sign” One-Time Signature
1) Compute “hash” � = H(k,�) 2) sign � using Lamport’s OTS

Theorem 1 (Theorem 3, Lecture 12 (rephrased))
If Lamport’s scheme is OTS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

6 / 13

Recall: “Hash-Then-Sign” One-Time Signature
1) Compute “hash” � = H(k,�) 2) sign � using Lamport’s OTS

Theorem 1 (Theorem 3, Lecture 12 (rephrased))
If Lamport’s scheme is OTS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

How can a TDP be useful here?
6 / 13

Recall: “Hash-Then-Sign” One-Time Signature
1) Compute “hash” � = H(k,�) 2) sign � using Lamport’s OTS

Theorem 1 (Theorem 3, Lecture 12 (rephrased))
If Lamport’s scheme is OTS and H is CRHF then “hash-then-sign”
scheme is a one-time EU-CMA for arbitrarily-long messages.

How can a TDP be useful here? To replace Lamport’s OTS
6 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

7 / 13

TDP-based Signature: “Hash-then-Invert”
1) Compute “hash” � = H(k,�) 2) invert � using trapdoor

“Full domain” hash function H : K × {�, �}∗ → D�

Efficiency, when using RSA TDP (i.e., RSA-FDH)
f�,�(�) := �� mod �

Public key: (� , �) and description of H
Signatures: one element of Z×

�Signing/verification: one exponentiation + hash evaluation
7 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security?

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗
“Solution”: prove security in random-oracle model

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗
“Solution”: prove security in random-oracle model

Idealised model where H is a random function
All parties have oracle access to H

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗
“Solution”: prove security in random-oracle model

Idealised model where H is a random function
All parties have oracle access to H

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗
“Solution”: prove security in random-oracle model

Idealised model where H is a random function
All parties have oracle access to H

Reduction may “control” H (programming):
Constructs H by on-the-fly/lazy sampling
A “fresh” query � ∈ {�,�}∗ replied with � ← D�A “repeat” query � responded consistently with � (in table)

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Is H being CRHF sufficient to prove security? Seems not
Problem:

1 Need to invert a particular challenge �∗
2 Forger could forger any message �∗

Want: exploit H to “link” forgery (σ ∗,�∗) and challenge �∗
“Solution”: prove security in random-oracle model

Idealised model where H is a random function
All parties have oracle access to H

Reduction may “control” H (programming):
Constructs H by on-the-fly/lazy sampling
A “fresh” query � ∈ {�,�}∗ replied with � ← D�A “repeat” query � responded consistently with � (in table)

Warning:
Only heuristic security guarantee
Adversary could exploit specific implementation of H

8 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Let’s Prove Security of “Hash-then-Invert”...
Theorem 2
If f is a TDP and � is a random oracle then “hash-then-invert” is
EU-CMA for arbitrarily-long messages.
Proof sketch: plug and pray via random oracle programming.

9 / 13

Plan for Today’s Lecture

1 Trap-Door (One-Way) Permutation (TDP)

2 Efficient Digital Signatures from TDP

3 Public-Key Encryption from TDP

9 / 13

Let’s Construct CPA-Secure PKE from TDP...
Recall from Lecture 6:

Defintion 3 (Definition 2, Lecture 6)
A predicate hc : {�, �}� → {�, �} is hard-core for a function family
f� : {�, �}� → {�, �}�, if for every PPT predictor �, the following is
negligible

δ(�) := Pr
�←{�,�}�[�(f(�)) = hc(�)] − �/�

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Recall from Lecture 6:

Defintion 3 (Definition 2, Lecture 6)
A predicate hc : {�, �}� → {�, �} is hard-core for a function family
f� : {�, �}� → {�, �}�, if for every PPT predictor �, the following is
negligible

δ(�) := Pr
�←{�,�}�[�(f(�)) = hc(�)] − �/�

Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))
For a OWP f , let f ′(� , �) := (f(�), �). Then hc(� , �) := ⟨� , �⟩

�
is a

hard-core predicate for f ′.

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Recall from Lecture 6:

Defintion 3 (Definition 2, Lecture 6)
A predicate hc : {�, �}� → {�, �} is hard-core for a function family
f� : {�, �}� → {�, �}�, if for every PPT predictor �, the following is
negligible

δ(�) := Pr
�←{�,�}�[�(f(�)) = hc(�)] − �/�

Theorem 3 (Goldreich-Levin Theorem (Theorem 3, Lecture 6))
For a OWP f , let f ′(� , �) := (f(�), �). Then hc(� , �) := ⟨� , �⟩

�
is a

hard-core predicate for f ′.
Exercise 2
Extend Goldreich-Levin theorem for TDP f = {f� : D� → D�}�∈I

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

Alice: set up (f� , f−�

�
) as the key pair

Bob: to encrypt a bit �, sample � ← D� such that hc(�) = �

and send � = f ′
�
(�) as “hint”

Alice: to decrypt, compute � := f�−�(�) and output hc(�)

10 / 13

Let’s Construct CPA-Secure PKE from TDP...
Let f = {f� : D� → D�}�∈I be a TDP and hc be a HCP for f
How do you construct PKE?

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

Alice: set up (f� , f−�

�
) as the key pair

Bob: to encrypt a bit �, sample � ← D� such that hc(�) = �

and send � = f ′
�
(�) as “hint”

Alice: to decrypt, compute � := f�−�(�) and output hc(�)
Theorem 4
If f ′ is a TDP then Π is IND-CPA secure.

10 / 13

To Recap Today’s Lecture
Introduced a new primitive: trap-door permutation (TDP)

Motivation: efficient signature schemes

11 / 13

To Recap Today’s Lecture
Introduced a new primitive: trap-door permutation (TDP)

Motivation: efficient signature schemes

Two candidate TDPs: RSA and Rabin TDP
Not many candidates known (Paillier TDP, TDP from iO)

11 / 13

To Recap Today’s Lecture
Introduced a new primitive: trap-door permutation (TDP)

Motivation: efficient signature schemes

Two candidate TDPs: RSA and Rabin TDP
Not many candidates known (Paillier TDP, TDP from iO)

Efficient signature via “hash-then-invert” paradigm
Proof in random-oracle model: plug and pray + programming
RSA-PKCS#1 standard based on RSA-FDH

11 / 13

To Recap Today’s Lecture
Introduced a new primitive: trap-door permutation (TDP)

Motivation: efficient signature schemes

Two candidate TDPs: RSA and Rabin TDP
Not many candidates known (Paillier TDP, TDP from iO)

Efficient signature via “hash-then-invert” paradigm
Proof in random-oracle model: plug and pray + programming
RSA-PKCS#1 standard based on RSA-FDH

PKE from TDP:
New PKE based on RSA assumption

Not same as (textbook) RSA encryption

11 / 13

To Recap This Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

12 / 13

To Recap This Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

Key conceptual takeaway: structure vs. hardness

12 / 13

To Recap This Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

Key conceptual takeaway: structure vs. hardness

Key tools: groups, random self-reducibility, plug and pray
12 / 13

Next Module

Zero-knowledge proofs
Private computation of functions (MPC)
Private outsourcing: fully-homomorphic
encryption
Verifiable outsourcing: SNARGs

13 / 13

**

References

1 [KL14, §13.3 and §15.1] for details of this lecture.
2 Trap-door permutations were introduced in [DH76]. Yao [Yao82]

who showed how to construct PKE using TDPs.
3 The random oracle model was proposed in [FS87]. But it was

in [BR93] that it was shown how it can be fully exploited. E.g.,
the random-oracle-based of “hash-then-invert” construction is
from there.

13 / 13

Mihir Bellare and Phillip Rogaway.
Random oracles are practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 62–73. ACM Press, November
1993.
Whitfield Diffie and Martin E. Hellman.
New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.
Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification and signature
problems.
In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.
Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.
Andrew Chi-Chih Yao.
Theory and applications of trapdoor functions (extended abstract).
In 23rd FOCS, pages 80–91. IEEE Computer Society Press, November 1982.

13 / 13

	Trap-Door (One-Way) Permutation (TDP)
	Efficient Digital Signatures from TDP
	Public-Key Encryption from TDP

