CS783: Theoretical Foundations of Cryptography

Lecture 14 (24/Sep/24)

Instructor: Chethan Kamath
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This Module: Secure Computation
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m Axioms theorems=true statements

m E.g: Axioms of Euclidean geometry

L>The0rem: “Sum of angles of a triangle equals 180°"

m Prover vs. verifier
m Prover does the heawy lifting: derives the proof

1 Construct a line through B parallel to AC
2 /DBA = Za and ZEBC = Zc (alternate interior angles)
3 2= Za+4b+ Zc=4ZDBA+ Zb+ LEBC =180°

m Verifier checks the proof, step by step
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Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
Labemerk \»\H\(L&S/@foojf
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

peover P Verifier \
m "Proof system” view of NP
m Prover P is unbounded: finds short proof 7 for x (if one exists)
Verifier V is efficient. checks proof s against the statement x
Completeness: ®EL = P finds 7 = V(x, 1) =1
Soundness: &L = Ar € {0, 1}V st vix, 1) =1
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Quadratic resLduositg (OR) Quad. non-residuosity (QNR)
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Which Languages have “NP" Proofs?
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Interactive Proof (IP)

m Difference from NP proofs: O@
o)
1 Verifier V is randomised S Ce
<2 Prover P and V interact and :
N

V accepts/rejects in the end

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds:  comypleteness crrorac(n)l

m Completeness: for every x € L, Pr[1 « (P, V)(x)] >1—1/3
m Soundness: for every x & L and malicious prover P*, @

Prl « (P*,V)(x)] < 1/3 “ condnectator 2
Exercise 1 (Robustness of Defintion 1)

Show that languages captured by Defintion 1 doesn’t change when
1) ec < 12K, e <172 2) ep <112 — 1/|x|, 65 < 1/2 — 1/|x|
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‘@ Idea: Go # G; = for any graph H, Gy = H and Gy = H both
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Power of Randomness+Interaction: |P for GNI

Idea Go # G; = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

ACCEPT (P
\ "‘E[Hé. bx’f/b

2y
\*}‘EC\»PA g @~
He

oy

Para\\e\/ gequeﬂk\allg repeat b boof coundness

6/18



Mgy is an IP for Loy

6/18
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Power of Randomness-+Interaction: IP for GNI...

Theorem 1

Mgy is an IP for Loy

Proof.

m Completeness:
m Go ¥ Gi1 = P can recover b; from H; with certainty

Pl « (P,V)(Go, G1)] =1>2/3

m Soundness:

m Gy = G; = H; loses information about bits b;
m Hence best P* can do is guess b;s

Pr1 « (P*,V)(Go, Gy)] = 1/2° < 1/3
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Which Languages have [Ps?
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Which Languages have IPs? PSPACE Languages

Graph non-isomorphism (GNI)
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1 Interactive Proof (IP)
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism
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Any Issues with the NP Proofs We Saw?

Quadratic residuosity (QR)

Accept 1
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Quadratic residuosity (QR)

Accept 1
Ay oned

o{,Qpﬁi&\,g) 1 J1eZy ST Y=o modr\)}

Quad. non-residuosity (QNR)

Ak 1
\ ‘Jﬂ/f( Jor Bt

w . )
o () P16z, 65 y=r¢ mod ]

Graph isomorphism (Gl)

K1 §(6o G ) Iparmukation a&ﬁ;ﬂﬁca)k

Boolean sattsﬁabtutg (SAT)

OCsn:i@iBastqnmeﬂ‘c a ék. bla)=1 k

m Verifier gains "non-trivial knowledge” about witness w
m Not desirable, e.g, when x = pk and w = sk (identification)
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What About the IP We Saw?
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What About the I[P We Saw?

Protocol 1 (Mgpy: IP for GNI

\&‘GGJFE‘

)
ACCEPT |7
~ -b
' (o \lf W‘: 60 e
br%x JRIEN
Qo P Qo, §”
H go° /“ 2R
bi ; éj 417 ‘b
P G925 ol ¢ \\

Para\le\/gequmbaug Yepeak o boof. coudness

m Seems V gains no knowledge beyond validity of the statement
m We will see that lNgns is (honest-verifier) zero-knowledge!
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m Knowledge vs. informatione” f [

m Knowledge is computational: e.g., consider NP proof for Cl

m Given (Go, G1), the isomorphism s contains no information
) m But when given 71, V “gains knowledge” since she couldn’t have
computed 7 herself

— 3
m Knowledge pertains to public objects:
5 \

m Flipping a private fair coin b and (later) revealing its outcome
leads to V gaining information

" m But V does not gain knowledge: she could herself have tossed

the private coin and revealed it

» (cthec ton the validiy o} x)
'O Intuitively, "V gains no knowledge” if anything,V can compute
after the interaction, V could have computed without it
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Defining Zero Knowledge via Simulators

m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance
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Defining Zero Knowledge via Simulators

V5 View'= ansApre + oins
m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance “

Defintion 2 (Honest-Verifier Perfect ZK)
An IP T1 is honest-verifier perfect ZK if there exists a PPT

simulator Sim such that for all distinguishers D and all x € L, the
following is zero

Pr{D(Viewy((P, V)(x))) = 1] — Pr[D(Sim(x)) = 1]
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Defining Zero Knowledge via Simulators...

Defintion 2 (Honest-Verifier Perfeet ZK)

An IP 1 is honest-verifier_perfect ZK if there exists a PPT
simulator Sim such that forall distinguishers D and all x € L, the
following is zero

PrID(Viewy (P, V)(x))) = 1] — PriD(Sim(x)) = 1

m Malicious-Verifier ZK: honest verifier V. — all verifiers V*
m For every V* there exists a PPT simulator Sim
m Computational ZK: relax

m all distinguishers D — PPT distinguishers
m zero — negligible
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1 Interactive Proof (IP)
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism
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Proof.
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[Nen ts Honest-Verifier /K

Theorem 2

Mgy is honest-verifier perfect zero-knowledge IP for Ly
Proof.
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Exercise 3

1 What happens if V is malicious and can deviate from protocol?

2 Using ideas from Mgy, build honest-verifier ZKP for Lonr
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m |dea for ZK'

[ 1/} G() G1 = if Gl H then Gg
2 Prover sends a random H st. G1
13 Verifier asks to prove Gg = H or G; = H at random
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Honest-Verifier ZKP for Gl

m |dea for ZK: &= G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H_st. Gy = H.

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ol-jc‘f
Ik G H()
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Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o
1 Gg = Gy = if Gi = H then G():GH
2 Prover sends a random H st Gy =
3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)
G
(ompdkﬂ'(z\:ﬂ@o Loz ™y
f G- HG)
0 &P Qg
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Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H_st. Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)
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Honest-Verifier ZKP for Gl

m ldea for ZK =G

@17

1 Go G = if Gl = H then Gg = GH

2 Prover sends a random H ?‘rt G = I-gr

3 Verifier asks to prove Gg = H or G; = H at random

Protocol 2 (Mg IP for Gl)

(OMP\AJ( T: G =T,

ey Z10G)
Te foren. o C@,H; T&) HgT %*2 H(»)
¢t fo=0
=

ey, OOO
b
P V
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Honest-Verifier ZKP for Gl

m ldea for ZK =G

@17

1 Go—GlélfGlz thenGogﬂH

2 Prover sends a random H ?‘rt G =

3 Verifier asks to prove Gg = H or G; = H at random

Protocol 2 (Mg IP for Gl)

Cornpole T G=T0 (O

ey Z10G)
Te feron. o om,\*; 7 &) HgT %Q H(w)
g fo=0
= {

)

(Para\\@\/geqummllg epet o boof. condness )
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[gi is honest-verifier perfect zero-knowledge IP for Lg
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Honest-Verifier ZKP for Gl...

Theorem 3

[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.

m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is guess b
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Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is quess b
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Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is quess b
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Honest-Verifier ZKP for Gl...

Exercise 4

1 What happens if V is malicious and can deviate from protocol?

2 Using ideas from gy, build honest-verifier ZKP for Lqr
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Which Languages have ZKPs?

Quadratic residuosity (QR)

&

(s P
o(,&p\:z@,g) :31&7/3 sL.y=o rmdN}

Quad. non-residuosity (QNR)

@

My
- ) P17 6yt ool ]

Graph isomorphism (Gl)

%t:i@oﬁ.) JparmpkaionT 4.%.(.(:ﬂ(oo)}

Graph non-isomorphism (GNI)

oL :l@mg,ﬁ) permukation T ek.(u:ﬂ(ou)1

Boolean satisfiability (SAT)

deyr-{ b 3 assignenent a ¢k da)=1 §

Bool. unsatisfiability (UNSAT)

OCuNsn:iCbi }‘lasgiqnmer\t a sk &la)- ilg
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(omputational

Which Languages have LKPs? PSPACE Languag s

Boolean satisfiability (SAT)

deyr-{ b 3 assignenent a ¢k da)=1 §

Bool. unsatisfiability (UNSAT)

O Oo,%

OCuNsn:iCbi }‘lasgiqnmer\t a sk &la)- ilg

15/18



Are Randomness and Interaction Necessary?

—

-, Interaction is necessary

Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L € BPP
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Exercise 5 j
If L has a non-interactive (i.e, one-message) ZKP then L € BPP
e?

16/18



e T e, Pr[vw JEZ
AP NIRRTV gy Avr NW=U<lg

 Interaction is necessary - bounded-elror Pmbgb}\isb]c \;jo\gom\'a\@;??)

Exercise 5 }2
If L has a non-interactive (i.e, one-message) ZKP then L € BPP
Randomness is necessary

Exercise 6

If L has an IP with deterministic verifier then L & NP
Exercise 7 @

If L has an ZKP with deterministic verifier then L € BPP

16/18



m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI
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To Recap Today's Lecture

m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI

m Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm
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To Recap Today's Lecture

m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI

m Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

m Honest-verifier /KP for GNI (HW: QNR) and GI (HW: QR)
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Next Lecture

m 27/Sep: Crib session for mid-term exam

m 01/Oct: More ZKP:

m Malicious-verifier ZKP
m Computational ZKP for all of NP!

m New cryptographic primitive: commitment schemes
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