
CS783: Theoretical Foundations of Cryptography
Lecture 14 (24/Sep/24)

Instructor: Chethan Kamath

To Recap Previous Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

1 / 18

To Recap Previous Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

Key conceptual takeaway: structure vs. hardness

1 / 18

To Recap Previous Module
We learnt: secure communication in the public-key setting
Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

Key conceptual takeaway: structure vs. hardness

Key tools: groups, random self-reducibility, plug and pray
1 / 18

This Module: Secure Computation...

1 / 18

**

Credit for images: Wikipedia (**User:Saliko)

This Module: Secure Computation...
Private computation of function

1 / 18

This Module: Secure Computation...
Private computation of function

1 / 18

This Module: Secure Computation...
Private computation of function

1 / 18

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'

This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'

Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

2 / 18

Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

2 / 18

Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18

Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18

Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18

Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2 / 18

Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2 / 18

Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

3 / 18

Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

Prover vs. verifier
Prover does the heavy lifting: derives the proof

1 Construct a line through � parallel to ��
2 ∠��� = ∠� and ∠��� = ∠� (alternate interior angles)
3 � ⇒ ∠� + ∠� + ∠� = ∠��� + ∠� + ∠��� =180°

3 / 18

Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

Prover vs. verifier
Prover does the heavy lifting: derives the proof

1 Construct a line through � parallel to ��
2 ∠��� = ∠� and ∠��� = ∠� (alternate interior angles)
3 � ⇒ ∠� + ∠� + ∠� = ∠��� + ∠� + ∠��� =180°

Verifier checks the proof, step by step

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

�� is the class of all such Ls

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

�� is the class of all such Ls

“Proof system” view of ��
Prover � is unbounded: finds short proof π for � (if one exists)
Verifier � is efficient: checks proof π against the statement �

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

�� is the class of all such Ls

“Proof system” view of ��
Prover � is unbounded: finds short proof π for � (if one exists)
Verifier � is efficient: checks proof π against the statement �

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

�� is the class of all such Ls

“Proof system” view of ��
Prover � is unbounded: finds short proof π for � (if one exists)
Verifier � is efficient: checks proof π against the statement �

3 / 18

Traditional “��” Proof...
Corresponds to class ��

A language L ∈ �� if there exists a polynomial-time
deterministic machine � such that

∀� ∈ L ∃π ∈ {�, �}����(|�|) : �(�, π) = �

�� is the class of all such Ls

“Proof system” view of ��
Prover � is unbounded: finds short proof π for � (if one exists)
Verifier � is efficient: checks proof π against the statement �
Completeness: � ∈ L ⇒ � finds π ⇒ �(�, π) = �

Soundness: � ̸∈ L ⇒ ̸ ∃π ∈ {�, �}����(|�|) s.t. �(�, π) = �

3 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

4 / 18

Which Languages have “��” Proofs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

4 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end

5 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1
An interactive protocol (�,�) for a language L is an interactive
proof (IP) system if the following holds:

5 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1
An interactive protocol (�,�) for a language L is an interactive
proof (IP) system if the following holds:

Completeness: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�

5 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1
An interactive protocol (�,�) for a language L is an interactive
proof (IP) system if the following holds:

Completeness: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Soundness: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�

5 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1
An interactive protocol (�,�) for a language L is an interactive
proof (IP) system if the following holds:

Completeness: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Soundness: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�

5 / 18

Interactive Proof (IP)
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1
An interactive protocol (�,�) for a language L is an interactive
proof (IP) system if the following holds:

Completeness: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Soundness: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�
Exercise 1 (Robustness of Defintion 1)
Show that languages captured by Defintion 1 doesn’t change when
1) ε� ≤ �/�|�|, ε� ≤ �/�|�|; 2) ε� ≤ �/� − �/|� |, ε� ≤ �/� − �/|� |

5 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Idea: �� ̸∼= �� ⇒ for any graph �, �� ∼= � and ��

∼= � both
cannot hold

Protocol 1 (Π��� : IP for GNI)

6 / 18

Power of Randomness+Interaction: IP for GNI...
Theorem 1
Π��� is an IP for L���

6 / 18

Power of Randomness+Interaction: IP for GNI...
Theorem 1
Π��� is an IP for L���

Proof.
Completeness:

�� ̸∼= �� ⇒ � can recover �� from �� with certainty
Pr[� ← ⟨�,�⟩(��,��)] = � ≥ �/�

6 / 18

Power of Randomness+Interaction: IP for GNI...
Theorem 1
Π��� is an IP for L���

Proof.
Completeness:

�� ̸∼= �� ⇒ � can recover �� from �� with certainty
Pr[� ← ⟨�,�⟩(��,��)] = � ≥ �/�

Soundness:
��

∼= �� ⇒ �� loses information about bits ��Hence best �∗ can do is guess ��s
Pr[� ← ⟨�∗,�⟩(��,��)] = �/�ρ < �/�

6 / 18

Which Languages have IPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

7 / 18

Which Languages have IPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

7 / 18

Which Languages have IPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

7 / 18

Which Languages have IPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

7 / 18

Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

7 / 18

Any Issues with the �� Proofs We Saw?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Boolean satisfiability (SAT)

8 / 18

Any Issues with the �� Proofs We Saw?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Boolean satisfiability (SAT)

Verifier gains “non-trivial knowledge” about witness �
Not desirable, e.g., when � = �� and � = �� (identification)

8 / 18

What About the IP We Saw?
Protocol 1 (Π��� : IP for GNI)

9 / 18

What About the IP We Saw?
Protocol 1 (Π��� : IP for GNI)

Seems � gains no knowledge beyond validity of the statement

9 / 18

What About the IP We Saw?
Protocol 1 (Π��� : IP for GNI)

Seems � gains no knowledge beyond validity of the statement
We will see that Π��� is (honest-verifier) zero-knowledge!

9 / 18

How to Capture “� Gains No Knowledge”?

Knowledge vs. information
Knowledge is computational

10 / 18

How to Capture “� Gains No Knowledge”?

Knowledge vs. information
Knowledge is computational: e.g., consider �� proof for GI

Given (��,��), the isomorphism π contains no information
But when given π , � “gains knowledge” since she couldn’t have
computed π herself

10 / 18

How to Capture “� Gains No Knowledge”?

Knowledge vs. information
Knowledge is computational: e.g., consider �� proof for GI

Given (��,��), the isomorphism π contains no information
But when given π , � “gains knowledge” since she couldn’t have
computed π herself

Knowledge pertains to public objects:
Flipping a private fair coin � and (later) revealing its outcome
leads to � gaining information
But � does not gain knowledge: she could herself have tossed
the private coin and revealed it

10 / 18

How to Capture “� Gains No Knowledge”?

Knowledge vs. information
Knowledge is computational: e.g., consider �� proof for GI

Given (��,��), the isomorphism π contains no information
But when given π , � “gains knowledge” since she couldn’t have
computed π herself

Knowledge pertains to public objects:
Flipping a private fair coin � and (later) revealing its outcome
leads to � gaining information
But � does not gain knowledge: she could herself have tossed
the private coin and revealed it

Intuitively, “� gains no knowledge” if anything � can compute
after the interaction, � could have computed without it

10 / 18

Defining Zero Knowledge via Simulators...
Formalised via “simulation paradigm”: View�(⟨�,�⟩(�)) can be
efficiently simulated given only the instance

11 / 18

Defining Zero Knowledge via Simulators...
Formalised via “simulation paradigm”: View�(⟨�,�⟩(�)) can be
efficiently simulated given only the instance

11 / 18

Defining Zero Knowledge via Simulators...
Formalised via “simulation paradigm”: View�(⟨�,�⟩(�)) can be
efficiently simulated given only the instance

11 / 18

Defining Zero Knowledge via Simulators...
Formalised via “simulation paradigm”: View�(⟨�,�⟩(�)) can be
efficiently simulated given only the instance

Defintion 2 (Honest-Verifier Perfect ZK)
An IP Π is honest-verifier perfect ZK if there exists a PPT
simulator ��� such that for all distinguishers � and all � ∈ L, the
following is zero

Pr[�(View�(⟨�,�⟩(�))) = �] − Pr[�(���(�)) = �]

11 / 18

Defining Zero Knowledge via Simulators...
Defintion 2 (Honest-Verifier Perfect ZK)
An IP Π is honest-verifier perfect ZK if there exists a PPT
simulator ��� such that for all distinguishers � and all � ∈ L, the
following is zero

Pr[�(View�(⟨�,�⟩(�))) = �] − Pr[�(���(�)) = �]

Malicious-Verifier ZK: honest verifier � → all verifiers �∗
For every �∗ there exists a PPT simulator ���

11 / 18

Defining Zero Knowledge via Simulators...
Defintion 2 (Honest-Verifier Perfect ZK)
An IP Π is honest-verifier perfect ZK if there exists a PPT
simulator ��� such that for all distinguishers � and all � ∈ L, the
following is zero

Pr[�(View�(⟨�,�⟩(�))) = �] − Pr[�(���(�)) = �]

Malicious-Verifier ZK: honest verifier � → all verifiers �∗
For every �∗ there exists a PPT simulator ���

Computational ZK: relax
all distinguishers � → PPT distinguishers
zero → negligible

11 / 18

Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

11 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

12 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

12 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

Proof.

12 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

Proof.

12 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

Proof.

12 / 18

Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

Proof.

Exercise 3
1 What happens if � is malicious and can deviate from protocol?
2 Using ideas from Π��� , build honest-verifier ZKP for L���

12 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Idea for ZK:

1 ��
∼= �� ⇒ if ��

∼= � then ��
∼= �

2 Prover sends a random � s.t. ��
∼= �

3 Verifier asks to prove ��
∼= � or ��

∼= � at random
Protocol 2 (Π�� : IP for GI)

13 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �
Zero knowledge:

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �
Zero knowledge:

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �
Zero knowledge:

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �
Zero knowledge:

14 / 18

Honest-Verifier ZKP for GI...
Theorem 3
Π�� is honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can answer both challenges ⇒ �

always accepts
Soundness: �� ̸∼= �� ⇒ for any � �∗ commits to, �� ∼= � and
��

∼= � cannot both hold ⇒ best �∗ can do is guess �
Zero knowledge:

14 / 18

Honest-Verifier ZKP for GI...

Exercise 4
1 What happens if � is malicious and can deviate from protocol?
2 Using ideas from Π�� , build honest-verifier ZKP for L��

14 / 18

Which Languages have ZKPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

15 / 18

Which Languages have ZKPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

15 / 18

Which Languages have ZKPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)

15 / 18

Are Randomness and Interaction Necessary?

Interaction is necessary
Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L ∈ ���

16 / 18

Are Randomness and Interaction Necessary?

Interaction is necessary
Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L ∈ ���

16 / 18

Are Randomness and Interaction Necessary?

Interaction is necessary
Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L ∈ ���

Randomness is necessary
Exercise 6
If L has an IP with deterministic verifier then L ∈ ��

Exercise 7
If L has an ZKP with deterministic verifier then L ∈ ���

16 / 18

To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

17 / 18

To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

Zero-knowledge proofs
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

17 / 18

To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

Zero-knowledge proofs
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for GNI (HW: QNR) and GI (HW: QR)

17 / 18

Next Lecture

27/Sep: Crib session for mid-term exam

01/Oct: More ZKP:
Malicious-verifier ZKPComputational ZKP for all of NP!

New cryptographic primitive: commitment schemes

18 / 18

References

1 [Gol01, Chapter 4] for details of today’s lecture
2 [GMR89] for definitional and philosophical discussion on ZK
3 The ZKPs for GI and GNI are taken from [GMR89, GMW91]
4 IP for all of ������ is due to [LFKN92, Sha90].

Computational ZKP for all of ������ is due to [GMW91].

18 / 18

Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.
Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.
J. ACM, 38(3):691–729, 1991.
Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.
Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems.
J. ACM, 39(4):859–868, October 1992.
Adi Shamir.
IP=PSPACE.
In 31st FOCS, pages 11–15. IEEE Computer Society Press, October 1990.

18 / 18

	Interactive Proof (IP)
	Zero Knowledge (Interactive) Proof (ZKP)
	Honest Verifier ZKP for Graph (Non-) Isomorphism

