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Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
Hardness assumptions: Factoring, DLog, QR, LWE, RSA

Key conceptual takeaway: structure vs. hardness

Key tools: groups, random self-reducibility, plug and pray
1 / 18



This Module: Secure Computation...

1 / 18

**

Credit for images: Wikipedia (**User:Saliko)



This Module: Secure Computation...
Private computation of function

1 / 18



This Module: Secure Computation...
Private computation of function

1 / 18



This Module: Secure Computation...
Private computation of function

1 / 18



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

1 / 18



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'



This Module: Secure Computation...
Private computation of function Zero-knowledge proofs

Private outsourcing Verifiable outsourcing

1 / 18

T T'



Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

2 / 18



Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

2 / 18



Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18



Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18



Plan for Today’s Lecture

What constitutes a proof?
Traditional “��” proofs vs interactive proofs

Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

Examples. ZKP for:
Graph isomorphism (GI)
Quadratic residuosity (QR)
Graph non-isomorphism (GNI)
Quadratic non-residuosity (QNR)

2 / 18



Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2 / 18



Plan for Today’s Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2 / 18



Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

3 / 18



Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

Prover vs. verifier
Prover does the heavy lifting: derives the proof

1 Construct a line through � parallel to ��
2 ∠��� = ∠� and ∠��� = ∠� (alternate interior angles)
3 � ⇒ ∠� + ∠� + ∠� = ∠��� + ∠� + ∠��� =180°

3 / 18



Traditional “��” Proof...
Axioms derivation rules−−−−−−−−→ theorems=true statements

E.g.: Axioms of Euclidean geometry
Theorem: “Sum of angles of a triangle equals 180°”

Prover vs. verifier
Prover does the heavy lifting: derives the proof

1 Construct a line through � parallel to ��
2 ∠��� = ∠� and ∠��� = ∠� (alternate interior angles)
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Verifier checks the proof, step by step
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�� is the class of all such Ls

“Proof system” view of ��
Prover � is unbounded: finds short proof π for � (if one exists)
Verifier � is efficient: checks proof π against the statement �
Completeness: � ∈ L ⇒ � finds π ⇒ �(�, π) = �

Soundness: � ̸∈ L ⇒ ̸ ∃π ∈ {�, �}����(|�|) s.t. �(�, π) = �
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Completeness: for every � ∈ L, Pr[� ← ⟨�,�⟩(� )] ≥ � − �/�
Soundness: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(� )] ≤ �/�
Exercise 1 (Robustness of Defintion 1)
Show that languages captured by Defintion 1 doesn’t change when
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Proof.
Completeness:

�� ̸∼= �� ⇒ � can recover �� from �� with certainty
Pr[� ← ⟨�,�⟩(��,��)] = � ≥ �/�

Soundness:
��

∼= �� ⇒ �� loses information about bits ��Hence best �∗ can do is guess ��s
Pr[� ← ⟨�∗,�⟩(��,��)] = �/�ρ < �/�
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Graph isomorphism (GI) Boolean satisfiability (SAT)

Verifier gains “non-trivial knowledge” about witness �
Not desirable, e.g., when � = �� and � = �� (identification)
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We will see that Π��� is (honest-verifier) zero-knowledge!
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Given (��,��), the isomorphism π contains no information
But when given π , � “gains knowledge” since she couldn’t have
computed π herself

Knowledge pertains to public objects:
Flipping a private fair coin � and (later) revealing its outcome
leads to � gaining information
But � does not gain knowledge: she could herself have tossed
the private coin and revealed it

Intuitively, “� gains no knowledge” if anything � can compute
after the interaction, � could have computed without it

10 / 18
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following is zero

Pr[�(View�(⟨�,�⟩(� ))) = �] − Pr[�(���(� )) = �]

Malicious-Verifier ZK: honest verifier � → all verifiers �∗
For every �∗ there exists a PPT simulator ���

Computational ZK: relax
all distinguishers � → PPT distinguishers
zero → negligible
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Π��� is Honest-Verifier ZK
Theorem 2
Π��� is honest-verifier perfect zero-knowledge IP for L���

Proof.

Exercise 3
1 What happens if � is malicious and can deviate from protocol?
2 Using ideas from Π��� , build honest-verifier ZKP for L���
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Theorem 3
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Honest-Verifier ZKP for GI...

Exercise 4
1 What happens if � is malicious and can deviate from protocol?
2 Using ideas from Π�� , build honest-verifier ZKP for L��
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Which Languages have ZKPs?
Quadratic residuosity (QR) Quad. non-residuosity (QNR)

Graph isomorphism (GI) Graph non-isomorphism (GNI)

Boolean satisfiability (SAT) Bool. unsatisfiability (UNSAT)
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Are Randomness and Interaction Necessary?

Interaction is necessary
Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L ∈ ���
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Are Randomness and Interaction Necessary?

Interaction is necessary
Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L ∈ ���

Randomness is necessary
Exercise 6
If L has an IP with deterministic verifier then L ∈ ��

Exercise 7
If L has an ZKP with deterministic verifier then L ∈ ���

16 / 18



To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

17 / 18



To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

Zero-knowledge proofs
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

17 / 18



To Recap Today’s Lecture

Traditional “��” proofs vs interactive proofs
IP is more powerful: IP for GNI

Zero-knowledge proofs
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for GNI (HW: QNR) and GI (HW: QR)
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Next Lecture

27/Sep: Crib session for mid-term exam

01/Oct: More ZKP:
Malicious-verifier ZKPComputational ZKP for all of NP!

New cryptographic primitive: commitment schemes
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