CS783: Theoretical Foundations of Cryptography

Lecture 14 (24/Sep/24)

Instructor: Chethan Kamath



To Recap Previous Module

m We learnt: secure communication in the public-key setting
m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP
m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA
ﬁatj em\anqe »
Publc- keg WWH

1/18



To Recap Previous Module

We learnt: secure communication in the public-key setting

Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP

Hardness assumptions: Factoring, DLog, OR, [WE, RSA

,,,,, ‘ DLDL}
ﬁag Loxdhang A d//\I/E—\DDH"""Y\

© ke keg wyaon A o

AFARONG

S~ D Joan
TOP. (qq)b ‘\qo)
Key conceptual takeaway: structure vs. hardness
x,' EAJE\ E;Eét
Pt

1/18



To Recap Previous Module

m We learnt: secure communication in the public-key setting

m Cryptographic primitives encountered: key-exchange,
public-key encryption, signature, hash function, TDP

m Hardness assumptions: Factoring, DlLog, OR, [WE, RSA

"""" ‘ DLD[}
ﬁag e(change = E/NLDD 2

‘ PU‘O\( k(’.j WWH \‘GP\ ﬂFﬂCtO‘f\ﬂg

7 oan
o (¢F ()
m Key conceptual takeaway: structure vs. hardness
Ic‘/:%i G
i . ) .
) l—é)_x 4}9(1)‘.:@1 \:91/; Q-—égl\r ‘:c'y—é)_%g—p'_‘
T @Ge o >
(- e !Zn (o
R.M / ( =X / Yoo [Yio|Y 20]Y s
‘E'(j q ) g PH Yo 5’ Yul¥a| be iﬂ,l}

Cel1)
m Key tools: groups, random self-reducibility, plug and pray

1/18



This Module: Secure Computation

MO 3
Cewre wmp)

t i
;beqan y of Lomp N)?\‘

QD E LEBDD

; ’ ; Present
Pogt > % o ~1o70: 1990 ~1010s - Qe

Credit for images: Wikipedia (**User:Saliko)
1/18



This Module: Secure Computation...

Private computation of function

O

oo. (o)

o0 .
~ ~

1/18



This Module: Secure Computation...

Private computation of function

O

oo. (o)
"0 — ¢ 0

[ : S ~

1/18



This Module: Secure Computation...
LI-\8

Private computation of function
@ ! @

¢ 0

~ —

1/18



This Module: Secure Computation...
LI1-18 Li4-16

Private computation of function Zero-knowledge proofs

Prover \erifiec

1/18



This Module: Secure Computation...
LI1-18 Li4-16

Private computation of function Zero-knowledge proofs

__'% :
Prover \erifier

1/18



This Module: Secure Computation...
LI1-18 Li4-16

Private computation of function Zero-knowledge proofs

__'% :
Prover \erifier

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowledge proofs

Prover \erifiec

. Private outsourcing
ek

5
.>',-C>0°
AN

=il

Verifiable outsourcing

LIS

L20

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowledge proofs

Prover \erifiec

e
Q 0
¢ . D
— LN -
. Private outsourcing
. ».. I ;
IR NP
Y
5
—
o 0
L

Verifiable outsourcing

L20

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowledge proofs

Prover

. Private outso
By »..

urcin
;

Verifiable outsourcing

L20

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowl edge proofs

=] 4*’
B
o
S

L20

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowl edge proofs

=] 4*’
B
o
S

L20

1/18



This Module: Secure Computation...

Li1-18

Li4-16

Private computation of function

Zero-knowl edge proofs

Prover

... Verifiable outsourcing

{EE G=RT
‘ (4]
=1

L20

1/18



This Module: Secure Computation...
LI-18 Li4-16
Zero-knowledge proofs

Prover \erifiec

Lo LU
1/18



Plan for Today's Lecture

N /
- X

m What constitutes a proof? A %

m Traditional "NP" proofs vs interactive proofs @
LN

2/18



Plan for Today's Lecture

/
X

T ‘\‘
m What constitutes a proof? A % z

m Traditional "NP" proofs vs interactive proofs @
RN

m Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

2/18



Plan for Today's Lecture

{02

m What constitutes a proof? 2
m Traditional "NP" proofs vs interactive proofs

m Zero-knowledge proofs: capture “zero knowledge” via
simulation paradigm

m Examples. ZKP for:
m Graph isomorphism (Gl)
m Quadratic residuosity (OR)
m Graph non-isomorphism (GNI)
m Quadratic non-residuosity (QNR)

2/18



Plan for Today's Lecture

4

m What constitutes a proof? 2
m Traditional "NP" proofs vs interactive proofs

B 7

Sy L
m Examples. ZKP for: Qo Cffﬂlﬁo) G- (O”)E)H PEM\LMX?C\OQQI or
m Graph isomorphism (GI) mum%LW)QEOQ(T[@T@)EE‘ g Ql:WT(C\Q

m Quadratic residuosity (OR)
m Graph non-isomorphism (GNI)
m Quadratic non-residuosity (QNR)

2/18



Plan for Today's Lecture

4

m What constitutes a proof? 2
m Traditional "NP" proofs vs interactive proofs

K
gy L4
m Examples. ZKP for: Qo Cffﬂlﬁo) G- (O‘”]/E)H PEM\LME%%Q or
m Graph isomorphism (GI) mum%LW)QEOQ(T[@T@)EE‘ g Ql:TT(C\o)

m Quadratic residuosity (OR)
m Craph non-isomorphism (GNI) Y 5
m Quadratic non-residuosity (QNR) : o X@ @
PR\
4 Bs

i . 2/18



Plan for Today's Lecture

1 Interactive Proof (IP)

2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2/18



1 Interactive Proof (IP)
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

2/18



Traditional “NP" Proof

derivation rules
e

m Axioms theorems=true statements

m E.g: Axioms of Euclidean geometry

L>The0rem: “Sum of angles of a triangle equals 180°"

3/18



Traditional “NP" Proof

derivation rules
e

m Axioms theorems=true statements

m E.g: Axioms of Euclidean geometry

on

L>The0rem: “Sum of angles of a triangle equals 180

m Prover vs. verifier
m Prover does the heawy lifting: derives the proof

1 Construct a line through B parallel to AC
2 /DBA = Za and ZEBC = Zc (alternate interior angles)
3 2= Za+4b+ Zc=4ZDBA+ Zb+ LEBC =180°

3/18



Traditional “NP" Proof

derivation rules
e

m Axioms theorems=true statements

m E.g: Axioms of Euclidean geometry

L>The0rem: “Sum of angles of a triangle equals 180°"

m Prover vs. verifier
m Prover does the heawy lifting: derives the proof

1 Construct a line through B parallel to AC
2 /DBA = Za and ZEBC = Zc (alternate interior angles)
3 2= Za+4b+ Zc=4ZDBA+ Zb+ LEBC =180°

m Verifier checks the proof, step by step

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that

Vx € £ 3 € {0, 1}PYI - v(x, 7) = 1

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
wikness froof

dabenet” G T < 10,1170 vix, 3 — 1

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
Labemerk \»\H\(L&S/@foojf
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

peover P Nerifier N
m "Proof system” view of NP

m Prover P is unbounded: finds short proof 7 for x (if one exists)
m Verifier V is efficient. checks proof 7 against the statement x

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
Labemerk \»\H\&&S/@foojf
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

peover P Nerifier N
m "Proof system” view of NP

m Prover P is unbounded: finds short proof 7 for x (if one exists)
m Verifier V is efficient. checks proof 7 against the statement x

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
Labemerk \»\H\&&S/@foojf
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

peover P Nerifier N
m "Proof system” view of NP

m Prover P is unbounded: finds short proof 7 for x (if one exists)
m Verifier V is efficient. checks proof 7 against the statement x

3/18



Traditional “NP" Proof...

m Corresponds to class NP

m A language £ € NP if there exists a polynomial-time
deterministic machine V such that )
Labemerk \»\H\(L&S/@foojf
AME” e 3 < 10,117V v (x, 1) = 1

m NP is the class of all such Ls

peover P Verifier \
m "Proof system” view of NP
m Prover P is unbounded: finds short proof 7 for x (if one exists)
Verifier V is efficient. checks proof s against the statement x
Completeness: ®EL = P finds 7 = V(x, 1) =1
Soundness: &L = Ar € {0, 1}V st vix, 1) =1

3/18



Which Languages have “NP" Proofs?

Quadratic residuosity (QR)

&

.4
dgp={Ng) - I, 85y mod N}

4/18



Which Languages have “NP" Proofs?

Quadratic residuosity (QR)

4/18



Which Languages have “NP" Proofs?

Quadratic residuosity (QR)
.
\ Loy oot

RN
.4
dgp={Ng) - I, 85y mod N}

4/18



Which Languages have “NP" Proofs?

Quadratic residuosity (QR)
.
\ Loy oot

RN
.4
dgp={Ng) - I, 85y mod N}

Quad. non-residuosity (QNR)

4/18



Which Languages have “NP" Proofs?

Quadratic residuosity (QR)
.
\ Loy oot

.4
dgp={Ng) - I, 85y mod N}

Quad. non-residuosity (QNR)

\

\ (00 54
R
—_—

4/18



Quadratic resLduositg (OR) Quad. non-residuosity (QNR)

Auq* 0

@ W

™M K .
JJ&(’\ 1@ y): j1e?/ SL y== modN c(,ma\:i@,\”;%he?/u sL.y-% modt\l}

Graph isomorphism (Gl)

o(,m:i@b,ﬁ.): Jparmpkaton T Q.‘?.(l{:-ﬂ(_(.\o)k

4/18



Which Languages have “NP" Proofs?

Graph isomorphism (Gl)

K= 3(o 61 ): Spermukation Tk =TiCcoy

4/18



Which Languages have “NP" Proofs?

Graph isomorphism (Gl) Graph non-isomorphism (GNI)

K =G, ): permaton T 6f 6 =TICG| o gy =J(Go Gr) PpermbkaBoN T sk G=Ti(co)

4/18



Which Languages have “NP" Proofs?

Graph isomorphism (Gl) Graph non-isomorphism (GNI)

K =G, ): permaton T 6f 6 =TICG| o gy =J(Go Gr) PpermbkaBoN T sk G=Ti(co)

4/18



Which Languages have “NP" Proofs?

Boolean sattsﬁabtlttg (SAT)
Aueef ik

dasw:idl%asg&qnmeﬂt a <& dla)-1{

Bool. unsatisfiability (UNSAT)
N

dsyr=] - Passigneneot a sk da)- |

4/18



Interactive Proof (IP)

m Difference from NP proofs: O@
(©)1 Verifier V is randomised £ o
<2 Prover P and V interact and @ :

V accepts/rejects in the end

5/18



Interactive Proof (IP)

m Difference from NP proofs: O@ Q
1 Verifier V is randomised 4 Qe, ‘7["3\
<2 Prover P and V interact and @ : ﬂ&

. )
V accepts/rejects in the end > 3

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds:

5/18



Interactive Proof (IP)

m Difference from NP proofs: oO@OO

1 Verifier V is randomised
<2 Prover P and V interact and
V accepts/rejects in the end

%_

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds:

m Completeness: for every x € L, Pr[1 « (P, V)(x)] >1—1/3

5/18



Interactive Proof (IP)

m Difference from NP proofs: 90®Oo

1 Verifier V is randomised
<2 Prover P and V interact and
V accepts/rejects in the end >

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds:

m Completeness: for every x € L, Pr[1 « (P, V)(x)] >1—1/3
m Soundness: for every x & L and malicious prover P*,
Prl « (P*,V)(x)] < 1/3

5/18



Interactive Proof (IP)

m Difference from NP proofs: 90®Oo

1 Verifier V is randomised
<2 Prover P and V interact and
V accepts/rejects in the end >

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds: ~comyleweness crrofacm)1

m Completeness: for every x € L, Pr[1 « (P, V)(x)] >1—1/3
m Soundness: for every x & L and malicious prover P*, @

PlL — (P V) < 1By Aol

|

5/18



Interactive Proof (IP)

m Difference from NP proofs: O@
o)
1 Verifier V is randomised S Ce
<2 Prover P and V interact and :
N

V accepts/rejects in the end

Defintion 1

An interactive protocol (P, V) for a language L is an interactive
proof (IP) system if the following holds:  comypleteness crrorac(n)l

m Completeness: for every x € L, Pr[1 « (P, V)(x)] >1—1/3
m Soundness: for every x & L and malicious prover P*, @

Prl « (P*,V)(x)] < 1/3 “ condnectator 2
Exercise 1 (Robustness of Defintion 1)

Show that languages captured by Defintion 1 doesn’t change when
1) ec < 12K, e <172 2) ep <112 — 1/|x|, 65 < 1/2 — 1/|x|

5/18



‘@ Idea: Go # G; = for any graph H, Gy = H and Gy = H both
cannot hold

Sét of al\ graphs

Ci=16: a2y

go:;i(l a4 2‘00}

6/18



Power of Randomness+Interaction: IP for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: IP for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: IP for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: IP for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: IP for GNI

Idea Go # G; = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: IP for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

6/18



Power of Randomness+Interaction: |P for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

)

- b_;’{ol\
Niehp): @j
}*<;

iy

Para\\e\/gequeﬂ%\dl(g repeak o boot, condnes

6/18



Power of Randomness+Interaction: |P for GNI

A/, ~ ~
‘@ ldea: Gy # Gy = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

)

- b_;’{ol\
Niehp): @j
}*<;

iy

Para\\e\/gequeﬂ%\dl(g repeak o boot, condnes

6/18



Power of Randomness+Interaction: |P for GNI

Idea Go # G; = for any graph H, Gy = H and Gy = H both
cannot hold

Protocol 1 (Mgpy: IP for GNI)

ACCEPT (P
\ "‘E[Hé. bx’f/b

2y
\*}‘EC\»PA g @~
He

oy

Para\\e\/ gequeﬂk\allg repeat b boof coundness

6/18



Mgy is an IP for Loy

6/18



Power of Randomness-+Interaction: IP for GNI...

Theorem 1

Menr is an IP for Lo

Proof.

m Completeness:
m Gy %gl = P can recover b; from H; with certainty

Pl « (P,V)(Go, G1)] =1>2/3

6/18



Power of Randomness-+Interaction: IP for GNI...

Theorem 1

Mgy is an IP for Loy

Proof.

m Completeness:
m Go ¥ Gi1 = P can recover b; from H; with certainty

Pl « (P,V)(Go, G1)] =1>2/3

m Soundness:

m Gy = G; = H; loses information about bits b;
m Hence best P* can do is guess b;s

Pr1 « (P*,V)(Go, Gy)] = 1/2° < 1/3

6/18



Which Languages have [Ps?

Quadratic residuosity (QR)

[P

[a P!
Log-{thy) - P12, 55 y=o° odn]

Quad. non-residuosity (QNR)

Graph isomorphism (GCl)

ORS¢

(
b

4 mzsc@oﬁ-) Jparmukation T s&,ﬁl:ﬂ(ﬁo)k

o= §(Go,6) B permvkation ¢k (,=Ti(Gy

Graph non-isomorphism (GNI)

Boolean satisfiability (SAT)

ACcept i
it

|

darr=§ 0 3ass ignonent @ sk bla)- ik

Bool. unsatisfiability (UNSAT)

Lsir-§ : Passignenert @ sk )=}

7118



Which Languages have [Ps?

Graph non-isomorphism (GNI)

.u .

L :i@aﬁ\)ﬁ parmukation T k. (=Ti(Gy
Bool. unsatisfiability (UNSAT)

OCUNSAT:SLQT Passignonent 4 ik @(a):ﬂ;

7118



Which Languages have [Ps?

Graph non-isomorphism (GNI)

.u .

o= §(Go,6) B permvkation ¢k (,=Ti(Gy

Bool. unsatisfiability (UNSAT)

OCUNSAT:SLQT Passignonent 4 ik @(a):ﬂ;

7118



Which Languages have IPs? PSPACE Languages

Graph non-isomorphism (GNI)

.u .

oy (G, ) Bpermukation gk 6=Ti(Gy

Bool. unsatisfiability (UNSAT)

dnsyr=] ¢ Passignenent a ¢k dG)- i

7118



1 Interactive Proof (IP)
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

7118



Any Issues with the NP Proofs We Saw?

Quadratic residuosity (QR)

Accept 1
Ay ored

&Qgii@,g) 1 J1eZy ST y=A modr\)}

Quad. non-residuosity (QNR)

puek
\ 3€7f B or B)

Graph isomorphism (Gl)

& e
TN

\

o(,m:i@a?c\): JpamikatonT éﬁ:,(:;ﬂ((m)k

J/SAT:i(b 3 asgtqnmeﬂt q sk &)= ik

8/18



Any Issues with the NP Proofs We Saw?

Quadratic residuosity (QR)

Accept 1
Ay oned

o{,Qpﬁi&\,g) 1 J1eZy ST Y=o modr\)}

Quad. non-residuosity (QNR)

Ak 1
\ ‘Jﬂ/f( Jor Bt

w . )
o () P16z, 65 y=r¢ mod ]

Graph isomorphism (Gl)

K1 §(6o G ) Iparmukation a&ﬁ;ﬂﬁca)k

Boolean sattsﬁabtutg (SAT)

OCsn:i@iBastqnmeﬂ‘c a ék. bla)=1 k

m Verifier gains "non-trivial knowledge” about witness w
m Not desirable, e.g, when x = pk and w = sk (identification)

8/18



What About the IP We Saw?

Protocol 1 (Mg IP for GNI)

Mie(i,p):

' (o \% %‘;C\o
k>1'4_1 { 1% ?*;; G

Paraue\/gequmﬁdug Yepea& bo boof, coumdness

9/18



What About the IP We Saw?

Protocol 1 (Mg IP for GNI)

I\C((:PT 13

\4‘601é]‘

' (o \lf %‘;60
k>1'4_1 { 1% ¥¥;§ G

Para“e\/gequmbduy Yepeak o boof coumdness

m Seems V gains no knowledge beyond validity of the statement

9/18



What About the I[P We Saw?

Protocol 1 (Mgpy: IP for GNI

\&‘GGJFE‘

)
ACCEPT |7
~ -b
' (o \lf W‘: 60 e
br%x JRIEN
Qo P Qo, §”
H go° /“ 2R
bi ; éj 417 ‘b
P G925 ol ¢ \\

Para\le\/gequmbaug Yepeak o boof. coudness

m Seems V gains no knowledge beyond validity of the statement
m We will see that lNgns is (honest-verifier) zero-knowledge!

9/18



How to Capture “V Gains No Knowledge"?

in e Informakion-theorebic sense
m Knowledge vs. informatione” f l

m Knowledge is computational

10/18



How to Capture “V Gains No Knowledge"?

in the Information-thedrebic sense
m Knowledge vs. informatione” f [

m Knowledge is computational: e.g., consider NP proof for Cl

m Given (Go, G1), the isomorphism s contains no information
) m But when given 71, V “gains knowledge” since she couldn’t have
computed 7 herself

10/18



How to Capture “V Gains No Knowledge"?

in the Information-thedrebic sense
] Know[edge vs. information<” " f [

| Knowledge is computational: e.g,, consider NP proof for Gl
l Given (Go, Gy), the isomorphism 7 contains no information
l

m But when given 7, V “gains knowledge” since she couldn’t have
computed 7 herself

@U Gi= rr((,)
m Knowledge pertains to public objects:

m Flipping a private fair coin b and (later) revealing its outcome
leads to V gaining information

" m But V does not gain knowledge: she could herself have tossed

the private coin and revealed it

10/18



How to Capture “V Gains No Knowledge"?

in the Information-thedrebic sense
m Knowledge vs. informatione” f [

m Knowledge is computational: e.g., consider NP proof for Cl

m Given (Go, G1), the isomorphism s contains no information
) m But when given 71, V “gains knowledge” since she couldn’t have
computed 7 herself

— 3
m Knowledge pertains to public objects:
5 \

m Flipping a private fair coin b and (later) revealing its outcome
leads to V gaining information

" m But V does not gain knowledge: she could herself have tossed

the private coin and revealed it

» (cthec ton the validiy o} x)
'O Intuitively, "V gains no knowledge” if anything,V can compute
after the interaction, V could have computed without it

10/18



Defining Zero Knowledge via Simulators

m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance

11/18



Defining Zero Knowledge via Simulators

V5 VieW'= A+ (ansApre + oins
m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance

11/18



Defining Zero Knowledge via Simulators

V5 View'= ansApre + oins
m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance .

11/18



Defining Zero Knowledge via Simulators

V5 View'= ansApre + oins
m Formalised via “simulation paradigm”: Viewy((P, V)(x)) can be
efficiently simulated given only the instance “

Defintion 2 (Honest-Verifier Perfect ZK)
An IP T1 is honest-verifier perfect ZK if there exists a PPT

simulator Sim such that for all distinguishers D and all x € L, the
following is zero

Pr{D(Viewy((P, V)(x))) = 1] — Pr[D(Sim(x)) = 1]

11/18



Defining Zero Knowledge via Simulators...

Molit | ‘\,’MS*‘JC‘(\]L'\C‘(
Defintion 2 (Henest-Verifter Perfect ZK)VV*

An IPT1 is honest-verifier perfect ZK if there exists a PPT
simulator Sim such that for all distinguishers D and all x € L, the
following is zero

PrD(Viewy (€P, V)(x))) = 1] — Pr[D(Sim(x)) = 1]

m Malicious-Verifier ZK: honest verifier V — all verifiers V*
m For every V* there exists a PPT simulator Sim

11/18



Defining Zero Knowledge via Simulators...

Defintion 2 (Honest-Verifier Perfeet ZK)

An IP 1 is honest-verifier_perfect ZK if there exists a PPT
simulator Sim such that forall distinguishers D and all x € L, the
following is zero

PrID(Viewy (P, V)(x))) = 1] — PriD(Sim(x)) = 1

m Malicious-Verifier ZK: honest verifier V. — all verifiers V*
m For every V* there exists a PPT simulator Sim
m Computational ZK: relax

m all distinguishers D — PPT distinguishers
m zero — negligible

11/18



1 Interactive Proof (IP)
2 Zero Knowledge (Interactive) Proof (ZKP)

3 Honest Verifier ZKP for Graph (Non-) Isomorphism

11/18



[Nen ts Honest-Verifier /K

Theorem 2

[Gni (s honest-verifier perfect zero-knowledge IP for LGy

Pam\\d/geweﬂ%l(g V@P@t b boof coudness

12/18



[Nen ts Honest-Verifier /K

Theorem 2

[Gni (s honest-verifier perfect zero-knowledge IP for LGy

ky ¥%‘ :;
@_ b6, @\ o igwy (@G0
) .
O O (CRO (ST ey
Para\\@\/gequmballg epeat b boof.  couiness

12/18



[Nen ts Honest-Verifier /K

Theorem 2

Mgy is honest-verifier perfect zero-knowledge IP for Ly
Proof.

\j‘\cu) v (<P/V7 (_QJ/QD) = (LQ*;D/(b /H /b[ ) )
¥ G ¥ G

12/18



[Nen ts Honest-Verifier /K

Theorem 2
Mgy is honest-verifier perfect zero-knowledge IP for Ly

Proof.
\]\Cu) Y] (<P/V7 (_C(U,QD) = (LQU,Q\>/<b\ /Ha} ; bfl)\l’:[“ rti)

i (6,6) = @

i Qui G )

12/18



[Nen ts Honest-Verifier /K

Theorem 2
Mgy is honest-verifier perfect zero-knowledge IP for Ly

Proof.

Vigwoy (PN o= (o) (b i, by Jeas))
¥GFE G B
[ﬂl G (GG ) == M - comple befoly and FeGe

&: P (Gl (b1 4, b))

¥ G, \J\Cu)v@P/WQ%,QI)) \@mb(a\\g Adnbuted & QWU‘D,Q).

12/18



[Nen ts Honest-Verifier /K

Theorem 2

Mgy is honest-verifier perfect zero-knowledge IP for Ly
Proof.

View y (M CG)= (G0 (bi K, bi) g )
= \ieli,p) - S0mple betoij and HCy
Ul () (b1 1, b))

¥ G, ¥ \J\@)v@?/\ﬁ@g,@) \amb(a\\g Adnbuted & QW\C%&J,

Exercise 3

1 What happens if V is malicious and can deviate from protocol?

2 Using ideas from Mgy, build honest-verifier ZKP for Lonr

12/18



m |dea for ZK'

[ 1/} G() G1 = if Gl H then Gg
2 Prover sends a random H st. G1
13 Verifier asks to prove Gg = H or G; = H at random

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &= G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H_st. Gy = H.

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ol-jc‘f
Ik G H()

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o
1 Gg = Gy = if Gi = H then G():GH
2 Prover sends a random H st Gy =
3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)
G
(ompdkﬂ'(z\:ﬂ@o Loz ™y
f G- HG)
0 &P Qg

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H st Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ,;—_fC.,
I gH=)

(OMP\A)( T: G =T,

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H st Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ,;—_fC.,
I gH=)

(OMP\A)( T: G =T,

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H st Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ,;—_fC.,
I gH=)

(OMP\A)( T: G =T,

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H_st. Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ,;—_fC.,
IF 4H)

(OMP\A)( T: G =T,

e focon. o (A= T &)
: ﬁ\‘““ d-o=0
Y= e oo 4
oo.@

13/18



Honest-Verifier ZKP for Gl

m |dea for ZK: &G
T < o

1 Gg = Gy = if Gi = H then G():GH

2 Prover sends a random H_st. Gy =

3 Verifier asks to prove Gg = H or G; = H at random
Protocol 2 (Mg IP for Gl)

G ;—jC,
IF 4H)

(OMP\AJ( T: G =T,

Te loern.n (1 AN=T&)
: ﬁ\‘““ d-o=0
Y= e oo 4
oo‘@

13/18



Honest-Verifier ZKP for Gl

m ldea for ZK =G

@17

1 Go G = if Gl = H then Gg = GH

2 Prover sends a random H ?‘rt G = I-gr

3 Verifier asks to prove Gg = H or G; = H at random

Protocol 2 (Mg IP for Gl)

(OMP\AJ( T: G =T,

ey Z10G)
Te foren. o C@,H; T&) HgT %*2 H(»)
¢t fo=0
=

ey, OOO
b
P V

13/18



Honest-Verifier ZKP for Gl

m ldea for ZK =G

@17

1 Go—GlélfGlz thenGogﬂH

2 Prover sends a random H ?‘rt G =

3 Verifier asks to prove Gg = H or G; = H at random

Protocol 2 (Mg IP for Gl)

Cornpole T G=T0 (O

ey Z10G)
Te feron. o om,\*; 7 &) HgT %Q H(w)
g fo=0
= {

)

(Para\\@\/geqummllg epet o boof. condness )

13/18



[gi is honest-verifier perfect zero-knowledge IP for Lg

14118



Honest-Verifier ZKP for Gl...

Theorem 3

[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.

m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is guess b

14/18



Honest-Verifier ZKP for Gl...

Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.

m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge:

([J\)VLOEIV/LQ U\) (LQ u) (H 0 'IP >

™

¥ G2,

14/18



Honest-Verifier ZKP for Gl...

Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge: CC”) ﬁ% (\u”“‘ \‘;rf:lo
([A)VQ@WQQ Gy = (LQ G) (H 0,y >
™
¥ 6,2

14/18



Honest-Verifier ZKP for Gl...

Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is guess b

m Zero knowledge: (c,,) ﬁ% (\u”“‘ \‘;rf:lo
Viewy (CN(G,0)= (4,0 )(H bw}})
™
Y620 om ﬂ%,ht) :

14/18



Honest-Verifier ZKP for Gl...

Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is quess b

m Zero knowledge: “) ﬁ (L . \‘;r\:’
Yiewy (@MY= (60 (H 0y )
1020 mlGl). mpe bedoi , Y« garmotdkion on O
4 seb = ()
THQXNCERD)

14/18



Honest-Verifier ZKP for Gl...

Theorem 3
[gi is honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can answer both challenges = V
always accepts

m Soundness: Gg # Gy = for any H P* commits to, Gg = H and
G1 = H cannot both hold = best P* can do is quess b

m Zero knowledge: (&) / (l o0 \‘%fr\:’
Uiewy (®V(G,G) = (6,0 (H 0 )

Cwn(9<4> §0mp€ befol lvégdeﬂQﬁk(ylm\C WA
] scb H = (Gy)

ok (G (Roy)

6,20 Viewy (@N1(GG) | ambm\gd@:nb&fd o Cm(ama)

s
¥ 6,2

%

14/18



Honest-Verifier ZKP for Gl...

Exercise 4

1 What happens if V is malicious and can deviate from protocol?

2 Using ideas from gy, build honest-verifier ZKP for Lqr

14/18



Which Languages have ZKPs?

Quadratic residuosity (QR)

&

(s P
o(,&p\:z@,g) :31&7/3 sL.y=o rmdN}

Quad. non-residuosity (QNR)

@

My
- ) P17 6yt ool ]

Graph isomorphism (Gl)

%t:i@oﬁ.) JparmpkaionT 4.%.(.(:ﬂ(oo)}

Graph non-isomorphism (GNI)

oL :l@mg,ﬁ) permukation T ek.(u:ﬂ(ou)1

Boolean satisfiability (SAT)

deyr-{ b 3 assignenent a ¢k da)=1 §

Bool. unsatisfiability (UNSAT)

OCuNsn:iCbi }‘lasgiqnmer\t a sk &la)- ilg

15/18



Which Languages have ZKPs?

Boolean satisfiability (SAT)

‘Lsn:iib 3 a&gtqnment q sk dla)= ik

Bool. unsatisfiability (UNSAT)

O Oo,?

Lonsyr-{ O Passignoent a sk da)- ilg

15/18



(omputational

Which Languages have LKPs? PSPACE Languag s

Boolean satisfiability (SAT)

deyr-{ b 3 assignenent a ¢k da)=1 §

Bool. unsatisfiability (UNSAT)

O Oo,%

OCuNsn:iCbi }‘lasgiqnmer\t a sk &la)- ilg

15/18



Are Randomness and Interaction Necessary?

—

-, Interaction is necessary

Exercise 5
If L has a non-interactive (i.e, one-message) ZKP then L € BPP

16/18



IUUPREEEEE T ed, Pr[V@ 372/3 :
QPR N DTV g ?vr RIOEIES

“ Interaction is necessary odnded_elrof Pmbgb}\isbc \po\gom\’a\(}??)_;;

Exercise 5 j
If L has a non-interactive (i.e, one-message) ZKP then L € BPP
e?

16/18



e T e, Pr[vw JEZ
AP NIRRTV gy Avr NW=U<lg

 Interaction is necessary - bounded-elror Pmbgb}\isb]c \;jo\gom\'a\@;??)

Exercise 5 }2
If L has a non-interactive (i.e, one-message) ZKP then L € BPP
Randomness is necessary

Exercise 6

If L has an IP with deterministic verifier then L & NP
Exercise 7 @

If L has an ZKP with deterministic verifier then L € BPP

16/18



m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI

17118



To Recap Today's Lecture

m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI

m Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

17118



To Recap Today's Lecture

m Traditional “NP" proofs vs interactive proofs
m [P is more powerful: IP for GNI

m Zero-knowledge proofs

m Knowledge vs. information
m Modelled “zero knowledge” via simulation paradigm

m Honest-verifier /KP for GNI (HW: QNR) and GI (HW: QR)

17118



Next Lecture

m 27/Sep: Crib session for mid-term exam

m 01/Oct: More ZKP:

m Malicious-verifier ZKP
m Computational ZKP for all of NP!

m New cryptographic primitive: commitment schemes

18/18



4

References

[Gol01, Chapter 4] for details of today's lecture
[GMR89] for definitional and philosophical discussion on ZK
The ZKPs for Gl and GNI are taken from [GMR89, GMW91|

IP for all of PSPACE is due to [LFKN92, Sha90].
Computational ZKP for all of PSPACE is due to [GMW91].

18/18



Shaft Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput,, 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems.
J. ACM, 39(4):859-868, October 1992.

Adi Shamir.
IP=PSPACE.
In 371st FOCS, pages 11-15. IEEE Computer Society Press, October 1990.

18/18



	Interactive Proof (IP)
	Zero Knowledge (Interactive) Proof (ZKP)
	Honest Verifier ZKP for Graph (Non-) Isomorphism

