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Applications of IP: Verifiable outsourcing

Applications of ZKP:
Cryptocurrency: prove validity of a transaction without
revealing information

Digital signatures: next lecture
NIST is currently standardising ZKP (projects/pec/zkproof)
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Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

Commitment scheme
Digital analogues of lockers
OWP → (non-interactive) commitment scheme
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the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(� ))) = �] − Pr[�(����∗ (� )) = �]

What happens if we use honest-verifier simulator ��� now?
The distribution of � generated by �∗ may not be uniform
It could depend arbitrarily on �’s message �
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Why is � independent of �∗? � hides �∗
What is the run-time of the new simulator ����∗?

In expectation: polynomial time
Worst case: exponential time

Exercise 1
Can you come up with a strict PPT simulator?
Exercise 2

1 Design malicious-verifier perfect ZKP for L��

2 Think about malicious-verifier perfect ZKP for L���

Hint: you need to somehow use Π�� as sub-routine
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Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

Exercise 3
Show that if Π� is a ZKP for L� then Π is a ZKP for L
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malicious �∗ can commit to only one of �� or �� in advance
ZK: commitment is “perfectly hiding” if ��

∼= �� ⇒ � hides
information about ��/��Possible because of ��’s structure: isomorphisms are transitive

Physical analogy: � acts as a secure “locker”
1 Hides its contents from the verifier �
2 Binds �∗ by forcing it to store either �� or �� before seeing

challenge �
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) store � ’s adjacency matrix

3 � challenges � to reveal either �) all lockers; or �) lockers
�� ,� , �� ,� , · · · , �ℓ ,� corresponding to Ham. cycle σ (ψ) in �

4 � accepts if �) � = σ (� ) or �) �� ,� , �� ,� , · · · , �ℓ ,� correspond to
a Ham. cycle.
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2 If � = �

Sample random permutation σ and set � := σ (� )
Prepare lockers (��, . . . ,��) and

��,�
�

(�,�)∈(��) as in protocol
3 If � = �

Sample random cycle � over [�,�]
Leave lockers (��, . . . ,��) empty and store � ’s adjacency matrix
in

��,�
�

(�,�)∈(��)
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Π′
��

is Computational ZKP for Graph Hamiltonicity...

Exercise 4
Describe the simulator for malicious-verifier ZK for Π′

��

Exercise 5
Think of ZKP for other ��-complete problems like �× � Sudoku
and graph three-colouring

11 / 16



Plan for Today’s Lecture

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for ��

3 Commitment Scheme
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Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��) ̸= �(�, ��)
In general the commit phase can be interactive

12 / 16



How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

13 / 16



How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?

13 / 16



How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?
1 Recognise honestly sampled ��s
2 Ciphertext-indistinguishability ⇒ hiding
3 Perfect correctness of decryption ⇒ binding

13 / 16



How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?
1 Recognise honestly sampled ��s
2 Ciphertext-indistinguishability ⇒ hiding
3 Perfect correctness of decryption ⇒ binding

Exercise 6
Which of the PKEs we have seen satisfy the above properties?
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Simulator was expected polynomial-time
Takeaway: Out of order sampling of transcript

Computational ZKP for ��
Blum’s protocol for Graph HamiltonicityWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

Commitment schemes
Non-interactive constructions from PKE and OWP
Two-message construction from PRG ← OWF
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Next Lecture

Proofs of knowledge (PoK)
PoK for the discrete-logarithm problem: Schnorr’s protocol
Fiat-Shamir Transform

Digital signatures from discrete-logarithm problem in the
random-oracle model
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is from [GMW91] and [Nao90]
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