CS783: Theoretical Foundations of Cryptography

Lecture 15 (01/Oct/24)

Instructor: Chethan Kamath

m /nteractive proof (IP)

m Compared to traditional "NP" proof
m P is powerful: IP for GNI

1/16

Recall from Last Lecture

[/nteracnve proof (IP)

“— m Compared to traditional “NP” proof .
m P is powerful: IP for GNI

m Zero-knowledge proof

n Knowledge vs. information -)
m Modelled “zero knowledge” via simulation paradtgm

1/16

Recall from Last Lecture

m /nteractive proof (IP)

O Compared to traditional "NP” proof .
m P is powerful: IP for GNI
m Zero-knowledge proof

n Knowledge vs. information -)
m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

1/16

Recall from Last Lecture

m /nteractive proof (IP)

OF=y Compared to traditional "NP” proof E
m P is powerful: IP for GNI

m Zero-knowledge proof

n Knowledge vs. information -)
m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

1/16

Recall from Last Lecture

m /nteractive proof (IP) ,
OF=y Compared to traditional "NP” proof E

m P is powerful: IP for GNI
m Zero-knowledge proof

n Knowledge vs. information -)
m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

1/16

Recall from Last Lecture

2

{
\

m /nteractive proof (IP)
O o Compared to traditional "NP" proof ‘@o

m [P is powerful: IP for GNI < ° ,’ N
m Zero-knowledge proof ; (\m)mx»&)\ view
[Knowledge vs. information R LA

m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

b(—%Dﬂ] He (Jb

1/16

Recall from Last Lecture

]

m /nteractive proof (IP)
O o Compared to traditional "NP" proof ‘@o

{
\

m [P is powerful: IP for GNI «
m Zero-knowledge proof T

n Knowledge vs. information R -)
m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

1/16

Recall from Last Lecture

2

{
\

m /nteractive proof (IP)
O o Compared to traditional "NP" proof ‘@o

m [P is powerful: IP for GNI < ° ,’ N
m Zero-knowledge proof ; (\m)m\w\ view
[Knowledge vs. information R LA

m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

1/16

Recall from Last Lecture

2

{
\

m /nteractive proof (IP)
O o Compared to traditional "NP" proof ‘@o

m [P is powerful: IP for GNI < ° ,’ N
m Zero-knowledge proof ; (\m)mx»&)\ view
[Knowledge vs. information R LA

m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

N é’»rr-ﬁu-)iabd

ﬂi@wv (<QJ \/> (GO/ QD)

1/16

Recall from Last Lecture

m /nteractive proof (IP)

O Compared to traditional "NP” proof .
m P is powerful: IP for GNI
m Zero-knowledge proof

n Knowledge vs. information -)
m Modelled “zero knowledge” via simulation paradtgm

m Honest-verifier ZKP for GNI (Exercise 3: QNR)

,»mﬂajmd

Jiew, (€2 (60, 0)

m Honest-verifier ZKP for Gl (Exerase 4 QR)

1/16

(ZK)IPs are Useful!

m Applications of IP: Verifiable outsourcing

ﬁo‘r'
<« 9
=) gl
ar-ut
._77,,(%% L, %
= (ff:::ff>
RN
’
N2

S

2/16

(ZK)IPs are Useful!

m Applications of IP: Verifiable outsourcing

=T
54 Al
e
&, .
&5
DN

e

m Applications of ZKP:

m Cryptocurrency: prove validity of a transaction without
revealing information

@) zcasn (Q MoNERO

m Digital signatures: next lecture

2/16

(ZK)IPs are Useful!

m Applications of IP: Verifiable outsourcing

=, .
|88 <9
BRI _Tl
'C%% SR
Al Rl
<A
_

e

m Applications of ZKP:

m Cryptocurrency: prove validity of a transaction without
revealing information

@) zcasn (Q MoNERO

m Digital signatures: next lecture
m NIST is currently standardising ZKP (projects/pec/zkproof)

2/16

¢

R
N

TN
) (

m Malicious-verifier ZKP for Gl

\

3/16

NP- Lompkefre

¢

R
(DY

o
.

m Malicious-verifier ZKP for Gl T {\\p

@

\

3/16

Plan for Today's Lecture

@ m Malicious-verifier ZKP for Gl
m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

NP- LomP\e}Ye

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

‘/ ; ‘\ m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

yle Prat veits
etery eriet
etactly Ne

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

:/ ;) m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

e - yde Enat oits
e efery Nerfe s

AL T etactly Ne
s —@

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

‘ m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

& - g> ,,,,,,,) wde tnat \I\S'\jfs
ANl cry et

A (PR ’\ o9 LAy foﬂﬁ@ e

: 4 —(B . L4 —{B) .

; " //_ N A N

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

‘ m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

G0 @ @ @ Uews
: \b.':—— g | \bia/ D e o | ety erte

A L ’\ v LA V/‘ IN v v Q\fatjf@ Ne
AT T AT

- i 2 g | - 4‘3.[

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

‘ m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

P — @& & LA e ot sits
: \b.':—— 57 \é';-;/ }6“2”5"/ ey Nerte
Al Sl A vA LR vy eladly 0Ne
VRN N B S R N

- i L2 - =0 £2- —=&)

o(,QHJLq -G has @ Hami|konian Lgde}

3/16

Plan for Today's Lecture

NP- LomP\e}Ye

‘ m Moalicious-verifier ZKP for Gl

m /KP for all of NP
m Blum's protocol for Graph Hamiltonicity (GH)
m Civen a graph G, decide whether it has a Hamiltonian cycle

“

G0 @ @ @ Uews
| IR ek e | efery Nerte

A (P ’\ v LA V/‘ I v v Q\fatjf@m(@
e ey || e e |

G—0 @& Sty ———

oL gy =506 nag @ Ham'ltsaian ujae}
m Commitment scheme

— m Digital analogues of lockers
m OWP — (non-interactive) commitment scheme

3/16

3

1 Malicious-Verifier ZKP for Graph Isomorphism o o

2 (Computational) ZKP for NP/‘I_\

3 Commitment Scheme

3/16

3

1 Malicious-Verifier ZKP for Graph Isomorphism o o

v

2 (Computational) ZKP for NP*
< b

12 7

3 Commitment Scheme

3/16

w Observagon tranSLtngg of Lsomorphtsm
m Gy =G = if G = H then Gy =

4/16

Recall l'g: Honest-Verifier ZK for Gl

@3 Observagon transitivity of isomorphism
mGEG=U0GEH thenGo—

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3V accepts if the revealed permutation is valid

4116

Recall l'g: Honest-Verifier ZK for Gl
&3 Observa‘;TLon transitivity of Lsomorphtsm o= g,
m Gy = 61:>th1: then G = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3V accepts if the revealed permutation is valid

4/16

Recall l'g: Honest-Verifier ZK for Gl

&3 Observa‘;TLon transitivity of Lsomorphtsm
m G = 61:>th1: then Gg = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3 V accepts if the revealed permutation is valid

4/16

Recall l'g: Honest-Verifier ZK for Gl

&3 Observa‘;TLon transitivity of Lsomorphtsm
m G = 61:>th1: then Gg = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3 V accepts if the revealed permutation is valid

4/16

Recall l'g: Honest-Verifier ZK for Gl

&3 Observa‘;TLon transitivity of Lsomorphtsm
m G = 61:>th1: then Gg = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3 V accepts if the revealed permutation is valid

4/16

Recall l'g: Honest-Verifier ZK for Gl

&3 Observa‘;TLon transitivity of Lsomorphtsm
m G = 61:>th1: then Gg = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3 V accepts if the revealed permutation is valid

(Omwk TV (,\:W(ch
Te kerrn. N («@/H'-j q@”)

' (LWTY o=0
Y= i o=

4/16

Recall l'g: Honest-Verifier ZK for Gl

&3 Observa‘;TLon transitivity of Lsomorphtsm
m G = 61:>th1: then Gg = H

Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3 V accepts if the revealed permutation is valid

(Omwk TV (,\:W(ch
Te kerrn. N («@/H'-j q@”)

' (LWTY o=0
Y= i o=

4/16

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

4/16

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.

m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

4116

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, G = H and Gy = H
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

< forrn.on () ACCEPT IF
W= (&) M=)
o o=0
W= iq if =t .

4116

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

4116

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

4116

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

o

4116

Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, G = H and Gy = H
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

é,Qbrrn.d\ Ofﬂ

-
o bb=0
yi={ it o=t Oo

@
amt:cal ¥L;+)
o\gtrbjced e

g Beron (el

4116

What about Malicious Verifiers? @

Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP 11 is perfect ZK for L if for every V* there exists a PPT

simulator SimY" such that for all distinguishers D and all x € L,

the following is zero

PrD(Viewy: ((P, V*)(x))) = 1] — Pr[D(SimV*(x)) = 1]

5/16

What about Malicious Verifiers? ")

Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP 11 is perfect ZK for L if for every V* there exists a PPT

simulator SimY" such that for all distinguishers D and all x € L,

the following is zero

PrlD (Viewwz((P:V2)(x)) = 1] — PriD(Sim"" (x)) = 1]

5/16

What about Malicious Verifiers? ¢

Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP 11 is perfect ZK for L if for every V* there exists a PPT

simulator SimY" such that for all distinguishers D and all x € L,

the following is zero

5/16

What about Malicious Verifiers? ")

Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP 11 is perfect ZK for L if for every V* there exists a PPT

simulator SimY" such that for all distinguishers D and all x € L,

the following is zero

@V\/hat happens if we use honest-verifier simulator Sim now?

5/16

What about Malicious Verifiers? ")

Defintion 1 ((Malicious-Verifier) Perfect ZK)

An IP 11 is perfect ZK for L if for every V* there exists a PPT
simulator SimY" such that for all distinguishers D and all x € L,
the following is zero

PrlD (Viewwa((P:V)(x)) = 1] — PriD(Sim¥ () = 1

@V\/hat happens if we use honest-verifier simulator Sim now?

m The distribution of b generated by V* may not be uniform
m [t could depend arbitrarily on P's message H

5/16

g is a malicious-verifier perfect ZKP for Lg)

6/16

[1g Works Also For Malictous Verifiers! B
st need o diffeceatsim
Theorem 2

g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK) @

o erra. o (1A
H= @)

oo fb=0
Y= iq’ i b=t

6/16

[1g Works Also For Malictous Verifiers! B
st need o diffeceatsim
Theorem 2

g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK) @

o erra. o (1A
H= @)

oo fb=0
Y= iq’ i b=t

6/16

[1g Works Also For Malictous Verifiers!
Jusc need o differents, er
Theorem 2
g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK)@'Idea: Sim invokes V*!

“ —
: Qo

N AD))

m New simulator S|m " repeat tLlL requtred
1 Sample random H - Gp+ for b* « {0,1}

2 Invoke V* on H to obtain challenge b (with fresh random coins)

3 If b* = b output ((Go, G1), (H, b,))

O

6/16

[1g Works Also For Malictous Verifiers!
Jusc need o differents, er
Theorem 2
g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK)@'Idea: Sim invokes V*!

“ —
: Qo

N AD))

m New simulator S|m " repeat tLlL requtred
1 Sample random H - Gp+ for b* « {0,1}

2 Invoke V* on H to obtain challenge b (with fresh random coins)

3 If b* = b output ((Go, G1), (H, b,))

O

6/16

[1g Works Also For Malictous Verifiers!
Jusc need o differents, er
Theorem 2
g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK)é’Idea: Sim invokes V*!

m New simulator Sim¥": repeat till required
1 Sample random H - Gp+ for b* « {0,1}

2 Invoke V* on H to obtain challenge b (with fresh random coins)

3 If b* = b output ((Go, G1), (H, b,))

O

6/16

[1g Works Also For Malictous Verifiers!
Jusc need o differents, er
Theorem 2
g is a malicious-verifier perfect ZKP for Lg)

Proof (of ZK)é’Idea: Sim invokes V*!

T forrn.on ()

= (&)
w1 d0=0 K

W= \q i o=t 3 Qo,
az/hcallg M’ W tﬁg \

dirioyed e

m New simulator S|m " repeat till required
1 Sample random H - Gp- for b* « {0, 1}
2 Invoke V* on H to obtain challenge b (with fresh random coins)
3 If b* = b output ((Go, G1), (H, b,)) O

6/16

g Works ALSQ For Malicious Verifiers!...

6/16

g Works ALSQ For Malicious Verifiers!...

@What is the run-time of the new simulator SimY " ?

6/16

g Works ALSQ For Malicious Verifiers!...

@ Why is b independent of b*? H hides b*

@What is the run-time of the new simulator Sim""?
m [n expectation: polynomial time
m Worst case: exponential time

Exercise 1

Can you come up with a strict PPT simulator?

6/16

g Works Alsp For Malicious Verifiers!...

@ Why is b independent of b*? H hides b*

@What is the run-time of the new simulator Sim""?
m [n expectation: polynomial time
m Worst case: exponential time

Exercise 1

Can you come up with a strict PPT simulator?

Exercise 2

1 Design malicious-verifier perfect ZKP for Lqr
2 Think about malicious-verifier perfect ZKP for Lgni
m Hint: you need to somehow use [g| as sub-routine

6/16

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for NP/':_\

3 Commitment Scheme

i 3
2 7
3 b
4 5

Go

5 —@

4+ —&
AN

Gy

6/16

ZKP for an NP-complete language L. implies ZKP for any L € NP

Np- LomPKe,j(e
il

7116

/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

NP~ Lompke,‘*e

Construction 1 (e = (P¢, Ve) — 1= (P, V)

1 Encode x € L by Karp-reducing to x. € L
2 Use ZKP for L on x¢

7116

/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

90 ®O°.,

4

1 Encode x € L by Karp-reducing to x. € L
2 Use ZKP for L on x¢

7116

/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

3 %

1 Encode x € L by Karp-reducing to x. € L
2 Use ZKP for L on x¢

7116

/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

NP~ Lompke,‘*e

Construction 1 (I_I = (P, Vo) = I = (P V))

1 Encode x € L bykarp—rec‘/i/'c:tzng toxc € L¢
2 Use ZKP for L on x¢

7116

/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

NP~ Lompke,‘*e

Construction 1 (I_I = (P, Vo) = I = (P V))

1 Encode x € L by-karp—rec‘l'b'c:tzng toxc € L¢
2 Use ZKP for L on x¢

Exercise 3
Show that if T¢ is a ZKP for L. then I is a ZKP for L

7116

Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [lg: (e
m Honest P “commits” to Gy and G; by sending H = d(Gj)

Te oron. (b))
f=1 &)

gorr =0
Y= (t(r i o=t

8/16

Let's Construct ZKP for Graph Hamiltonicity

ol

m Let's recall/rephrase [g:
m Honest P “commits” to Gy and G; by sending H = d(Gj)

m Soundness: commitment H is “perfectly binding” if Gog # Gy
malicious P* can commit to only one of Gy or G; in advance

o Roron.n (1)
W= (@)

gorr =0
Y= (t(r i o=t

8/16

Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [g:

m Honest P “commits” to Gy and G; by sending H = d(Gj)

m Soundness: commitment H is "perfectly binding” if Go # G =
malicious P* can commit to only one of Gy or G; in advance

m ZK: commitment is "perfectly hiding” if Go = G = H hides
information about Go/ Gy

T feren.on (1)
=1 (&)

G o0
Y= (tq o=t

8/16

Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [g:
Honest P “commits” to Go and Gy by sending H = 0(Gy)
Soundness: commitment H is “perfectly binding” if Go # G1 =
malicious P* can commit to only one of Gy or G; in advance
ZK: commitment is "perfectly hiding” if Go = G1 = H hides
information about Go/ Gy

m Possible because of Gl's structure: isomorphisms are transitive

T feren.on (1)
=1 (&)

G o0
Y= (tq o=t

8/16

Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [g:

m Honest P “commits” to Gy and G; by sending H = d(Gj)

m Soundness: commitment H is "perfectly binding” if Go # G =
malicious P* can commit to only one of Gy or G; in advance

m ZK: commitment is "perfectly hiding” if Go = G = H hides

information about Go/ Gy
m Possible because of Gl's structure: isomorphisms are transitive

e toron. o Qﬂ
s)

G o0
Y= (tq o=t

m Physical analogy: H acts as a secure “locker”

1 Hides its contents from the verifier V
2 Binds P* by forcing it to store either Gg or Gi before seeing

challenge b

8/16

a
&3 Observation: @G Hamiltenian and G = H then E@Hamiltonian

9/16

using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

X Observation: (@aHamiltonian and G = H then H Hamiltonian

Protocol 2 (INgy = (P, V): First attempt at ZKP for GH) ©>

9/16

Jsing Lockess
Let's Construct ZKP for Graph Hamiltonicity... [+
A
XS Observation: (GaHamiltonian and G = H then ™ Hamiltonian
Protocol 2 (Mgn = (P, V): First attempt at ZKP for GH) C Q

-

9/16

using Lockees

Let's Construct ZKP for Graph Hamiltonicity... (= |

XS Observation: (GaHamiltonian and G = H then ™ Hamiltonian

9/16

using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

9/16

using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

9/16

Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o C\,rﬂ H (r(G

Sote ¢

9/16

Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o (1), H T(4)

Jore ¢ 0 @

9/16

Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o (1), H T(4)

Jore ¢ 0 @

9/16

Usmg Lockess

Let's Construct ZKP for Graph Hamiltonicity...

&B Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

(Fe ferm. o C\,rﬂ H (r(G)

Sote ¢

9/16

Usmg Lockess

Let's Construct ZKP for Graph Hamiltonicity...

&B Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

(Fe ferm. o C\,rﬂ H (r(G)

Jore ¢ 0 @

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttonlank/‘

Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH) Q)

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttonlank/‘

Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH) @ é@

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)3 Observation: (G'Hamiltontan and G i H then ™ Hamlttoniank/‘

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)3 Observation: (G'Hamiltontan and G i H then ™ Hamlttoniank/‘

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)S Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

v
1 P samples random permutation o and puts it in locker L

2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)S Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

v
1 P samples random permutation o and puts it in locker L

2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)S Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

v
1 P samples random permutation o and puts it in locker L

2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

\Jsmg Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (G'Hamiltontan and G i H then ™ Hamlttoniank/‘

1 P samples random permuta%g% o and put\fs it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

\Jsmg Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (G'Hamiltontan and G i H then ™ Hamlttoniank/‘

1 P samples random permuta%g% o and put\fs it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttonlank/‘

Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH) Q)

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?
9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttonlank/‘

Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH) Q)

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?
9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttonlank/‘

Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH) @ é@

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?
9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (GHamiltonian and G = H then ™ Hamlttoniank/‘

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)3 Observation: (G'Hamiltontan and G i H then ™ Hamlttoniank/‘

9 i = = 777.:
\ - G "W ‘\‘ l
Te Rrm.on (1), Hi= (&)
Sore ¢in @

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)3 Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?

9/16

Using Lockers

Let's Construct ZKP for Graph Hamiltonicity... [~ |

&)3 Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

1 P samples random permutation o and put\ls it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?

9/16

\Jsmg Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

WAS N
1 P samples random permutatt{)ﬁ o and puts it in locker L

2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?
9/16

\Jsmg Lockers

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: (G'Hamiltontan and G 2 H then ™ Hamlttoniank/‘

(v Vo
1 P samples random permutation o and puts it in locker L
2 P commits by sending L and H := o(G) to V

3 V challenges P to reveal 0) o by opening L or 1) Hamiltonian
cycle a(y) in H

m Problem: not clear if zero knowledge. How to simulate?

9/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

10/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

KPerm.mOﬂ, =T(4)

1 P samples random permutation o and sets H := 0(G)

10/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

< ferm.on (1), = (@)

owae(20) () (oo,

1 P samples random permutation o and sets H := 0(G)
2 P commits by sending o and H := o(G) in lockers to V

m Lockers (Ly, ..., L,), where L; stores ofi)
m Lockers (L,-J-)(,.j)e(..) store H's adjacency matrix
" 2

10/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

< ferm.on (1), = (@)

e EIE)) Gl o

B

1 P samples random permutation o and sets H := 0(G)
2 P commits by sending o and H := o(G) in lockers to V
m Lockers (Ly, ..., L,), where L; stores ofi)
m Lockers (L"J)(i,j)e(;') store H's adjacency matrix
3 V challenges P to reveal either 0) all lockers; or 1) lockers
Lij, Ljk. -, Le; corresponding to Ham. cycle o(y) in H

10/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

< ferm.on (1), = (@)

e EIE)) Gl o

— % @) J@
QOp—— 7
~° Tl

1 P samples random permutation o and sets H := o(G)
2 P commits by sending o and H := o(G) in lockers to V
m Lockers (Ly, ..., L,), where L; stores ofi)
m Lockers (L"J)(i,j)e(;') store H's adjacency matrix
3 V challenges P to reveal either 0) all lockers; or 1) lockers
Lij, Ljk. -, Le; corresponding to Ham. cycle o(y) in H

10/16

Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

< ferm.on (1), = (@)

Covae (@) () (Gesuy)

_,</6o OO(Z) (Oo,) @
QOp—— 7
~° Tl

1 P samples random permutation o and sets H := o(G)
2 P commits by sending o and H := o(G) in lockers to V
m Lockers (Ly, ..., L,), where L; stores ofi)
m Lockers (L,-,j)(,.’j)e(..) store H's adjacency matrix
3 V challenges P to reveal either 0) all lockers; or 1) lockers
Lij, Ljk. -, Le; corresponding to Ham. cycle o(y) in H
4 V accepts if0) H=0(G) or1) L;j, Ljk, -, Lp; correspond to
a Ham. cycle.

10/16

[1&y s Computational ZKP for Graph Hamiltonicity

m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =

el @90) @)) o

‘""-._W/ cly) T

11/16

[1&y s Computational ZKP for Graph Hamiltonicity

m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =

) /'N o .

Vigwog (0 6)

e) S
m Simulator: again, sample out of order
1 Sample random b — {0, 1}
2 Ifb=0

m Sample random permutation ¢ and set H := ¢(G)
m Prepare lockers (Lg, ..., L,) and (L,-J-)('.j)e(,.) as in protocol
- 2

11/16

cu ts Computational ZKP for Graph Hamiltonicity

m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =

N -m o, oo :
:) \

Nigwog (0 6)

LTl ey S
m Simulator: again, sample out of order
1 Sample random b — {0, 1}
2 fb=0

m Sample random permutation ¢ and set H := ¢(G)
m Prepare lockers (Lg, ..., L,) and (L,-J-) as in protocol

(i=(3)
.3 fb=1
- é\ .-'m Sample random cycle C over [1,]
D : m Leave lockers (Ly, ..., L,) empty and store C's adjacency matrix
/," in (L;j) PR
F (id)E(3)

11/16

[1&y s Computational ZKP for Graph Hamiltonicity...

Exercise 4

Describe the simulator for malicious-verifier ZK for I_I/GH

Exercise b

Think of ZKP for other NP-complete problems like n x n Sudoku
and graph three-colouring

11/16

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for NP

3 Commitment Scheme

Go

&
7
b
5

11/16

Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax:

/5ot

e
T Lender

12116

Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax: =

L
AL 500 7

@o ° W
Cender

12116

Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax:

12116

Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax:

12116

Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax:

/5ot
(C =5 x,r) fe.
N

Cender

P(r [R(S(t)x;r)/x}r) = 1};)

m Computational hiding: c reveals no information about x to
PPT adversaries

12116

Commitment Schemes are Digital Lockers

Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the followzng syntax: =
o)<
/7%%0‘ \ o Rn=%
‘ SO0 fe mmm+ iy
rmal

Condr foceijer
m Correctness: for all n € N and mputs x €{0,1};

Pr [R(SE250 %0) 1))
m Computational hiding: c reveals no information about x to
PPT adversaries

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings r, rn € {0,1}" such that R(c,) # R(c, r»)

12116

Commitment Schemes are Digital Lockers

Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the followmg syntax: =
o)<
/7%%0‘ \ o Rn=%
‘ SO0 fe ann\‘r iy
revwl

Condr foceijer
m Correctness: for all n € N and mputs x €{0,1};

Pr (RG(,250,40) 1))

Computational hiding: c reveals no information about x to
PPT adversaries

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings r, rn € {0,1}" such that R(c,) # R(c, r»)

In general the commit phase can be interactive

12/16

How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

ko= len(1y)
¢:= EY\L(W’/“@
op | (RO =(pLC

G0N
Pk =len (i)
o= EnC(f,)

13/16

How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

2, Gek) 5 &
WMT
eV
ex 3 rf Recenex
cender

ko= len(1y)
= EnC(¥,250)
op | (RO =(pLC

G0N
Pk = Gen(Pin)
o= EnC(f,)

@What are the properties we require from [1?

13/16

How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

2, Gek) 5 &
WMT
enea ;

%, rf feceer

ko= len(1y)
= EnC(¥,250)
op | (RO =(pLC

X500y
Pk = Gen(Pin)
o= ENC(p,n0)

Sender

@What are the properties we require from [1?
1 Recognise honestly sampled pks
2 Ciphertext-indistinguishability = hiding
3 Perfect correctness of decryption = binding

13/16

How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

- enC (0,
5 Ql?k) ol ¢ (%,151)
ot

op | (RO =(pLC
veresl

L, o fiecenfex

sk = len(n)

X500t
Pk < len(fin)
(= BnC(§,mn)

Sender

@What are the properties we require from [1?
1 Recognise honestly sampled pks
2 Ciphertext-indistinguishability = hiding
3 Perfect correctness of decryption = binding

Exercise 6

Which of the PKEs we have seen satisfy the above properties?

13/16

How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate

hc:{0,1}" — {0,1}

X = 136 (_r)
op ! if and

5L €§LO A\]I
"

r< o} >, c=(,G) o (=0
c.=(he(0)bT, L,UD mmnﬁlr
5 Recees

Cender

14/16

How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

“ AP ¢ = W (_r)
1«6%9“}0 €%§ ;“d
r< o} o, c=(4G) G- frD)
= O\ L(()@l, WE,(\U mm\'\ﬁl‘
eVl
0

Cender

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding

14/16

How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

€90 ‘]r
r</'iotﬁ

¢.=(he(0)O1, £6))

X = 136 (_r)
op ! if and
G=frlD)

o, c=(4G)
it

veveal
X0

Cender

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding

Exercise 7

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for {O, 1}€

14/16

How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding

14/16

How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding

Exercise 7

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for {O, 1}€
14116

To Recap Today's Lecture

m Malicious-verifier perfect ZKP for Gl

m Simulator was expected polynomial-time
m Takeaway: Out of order sampling of transcript

15/16

To Recap Today's Lecture

m Malicious-verifier perfect ZKP for Gl

m Simulator was expected polynomial-time
m Takeaway: Out of order sampling of transcript

m Computational ZKP for NP

m Blum's protocol for Graph Hamiltonicity
m What about perfect/statistical ZKP for NP?

m Not possible (unless polynomial hierarchy collapses)!

15/16

To Recap Today's Lecture

m Malicious-verifier perfect ZKP for Gl

m Simulator was expected polynomial-time
m Takeaway: Out of order sampling of transcript

m Computational ZKP for NP

m Blum's protocol for Graph Hamiltonicity
m What about perfect/statistical ZKP for NP?

m Not possible (unless polynomial hierarchy collapses)!

m Commitment schemes

m Non-interactive constructions from PKE and OWP
m Two-message construction from PRG «— OWF

15/16

Next Lecture

m Proofs of knowledge (PoK)

m PoK for the discrete-logarithm problem: Schnorr's protocol
m Fiat-Shamir Transform

m Digital signatures from discrete-logarithm problem in the
random-oracle model

16/16

4

References

[Gol01, Chapter 4] for details of today's lecture
[GMR89] for definitional and philosophical discussion on ZK
The ZKP for graph Hamiltonicity is due to Blum [Blu86]

The constructions of commitment scheme from OWP and PRG
is from [GMW91] and [Nao090]

16/16

	Malicious-Verifier ZKP for Graph Isomorphism
	(Computational) ZKP for NP
	Commitment Scheme

