

CS783: Theoretical Foundations of Cryptography

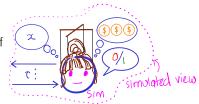
Lecture 15 (01/Oct/24)

Instructor: Chethan Kamath

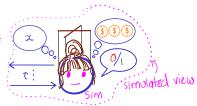
■ Interactive proof (IP)

- Compared to traditional "NP" proof
- IP is powerful: IP for GNI

- *Interactive* proof (IP)
- $() \xrightarrow{} \blacksquare$ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm



- Interactive proof (IP)
- (♦) ≒ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm
 - Honest-verifier ZKP for GNI (Exercise 3: QNR)

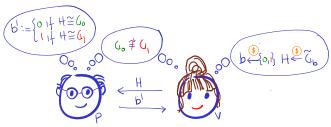


- Interactive proof (IP)
- (♦) ≒ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information
 - Modelled "zero knowledge" via simulation paradigm
 - Honest-verifier ZKP for GNI (Exercise 3: QNR)

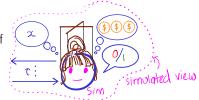
simulated view

- *Interactive* proof (IP)
- $() \hookrightarrow \blacksquare$ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information

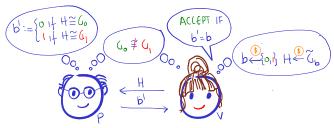
- of t simulated view
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)



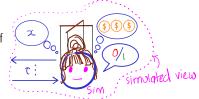
- *Interactive* proof (IP)
- $() \hookrightarrow \blacksquare$ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information



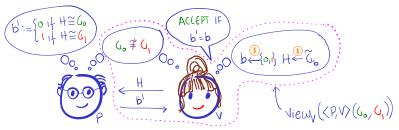
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)



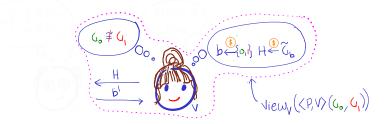
- *Interactive* proof (IP)
- $(\) \hookrightarrow \blacksquare$ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information



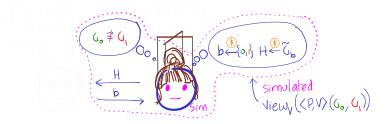
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)



- *Interactive* proof (IP)
- $^{(1)}$ $\stackrel{(1)}{\longrightarrow}$ \blacksquare Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information
- t: simulated view
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)

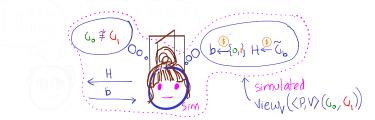


- *Interactive* proof (IP)
- $^{(1)}$ $\stackrel{(1)}{\longrightarrow}$ \blacksquare Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information
- c: Simulated view
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)



- *Interactive* proof (IP)
- $(\) \hookrightarrow \blacksquare$ Compared to traditional "NP" proof
 - IP is powerful: IP for GNI
 - Zero-knowledge proof
 - Knowledge vs. information

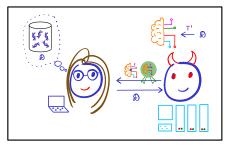
- Modelled "zero knowledge" via simulation paradigm
- Honest-verifier ZKP for GNI (Exercise 3: QNR)



■ Honest-verifier ZKP for GI (Exercise 4: QR)

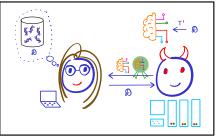
(ZK)IPs are Useful!

■ Applications of IP: Verifiable outsourcing



(ZK)IPs are Useful!

■ Applications of IP: Verifiable outsourcing

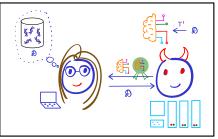


- Applications of ZKP:
 - Cryptocurrency: prove validity of a transaction without revealing information

Digital signatures: next lecture

(ZK)IPs are Useful!

■ Applications of IP: Verifiable outsourcing



- Applications of ZKP:
 - Cryptocurrency: prove validity of a transaction without revealing information

- Digital signatures: next lecture
- NIST is currently standardising ZKP (projects/pec/zkproof)

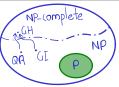
■ *Malicious-verifier* ZKP for GI

Malicious-verifier ZKP for GI

Malicious-verifier ZKP for ${\sf GI}$

ZKP for all of NP

■ Blum's protocol for Graph Hamiltonicity (GH)



• Given a graph G, decide whether it has a Hamiltonian cycle

Malicious-verifier ZKP for GI

- ZKP for all of NP
 - Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle

while that visits every vertex exactly once

NP

NP-complete

Malicious-verifier ZKP for GI

ZKP for all of NP

- Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle

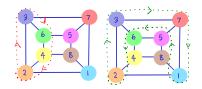
while that visits every vertex exactly once

NP

NP-complete

Malicious-verifier ZKP for GI

- ZKP for all of NP
 - Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle



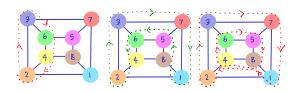
uycle that visits every vertex exactly once

NP

NP-complete

Malicious-verifier ZKP for GI

- ZKP for all of NP
 - Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle



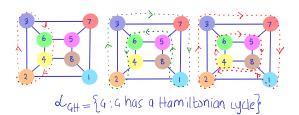
while that visits every vertex exactly once

NP

NP-complete

Malicious-verifier ZKP for GI

- ZKP for all of NP
 - Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle



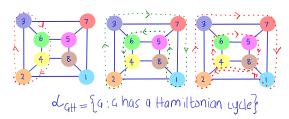
uycle that visits every vertex exactly once

NP

NP-complete

Malicious-verifier ZKP for GI

- ZKP for all of NP
 - Blum's protocol for Graph Hamiltonicity (GH)
 - Given a graph G, decide whether it has a Hamiltonian cycle,



uycle that visits every vertex exactly once

NP

NP-complete

- Commitment scheme
- *
- Digital analogues of lockers
- OWP \rightarrow (non-interactive) commitment scheme

- 1 Malicious-Verifier ZKP for Graph Isomorphism
- 2 (Computational) ZKP for NP

G1

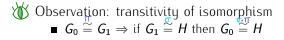
Go

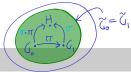
1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for NP

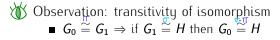
G1

Go

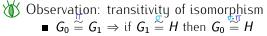




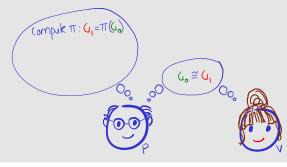
- 1 P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid

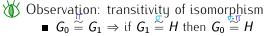


- $(\mathbf{x}_{0},$
- **1** P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid

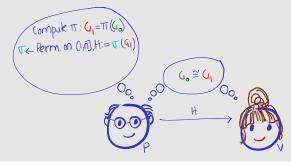


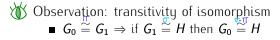
- 1 P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid



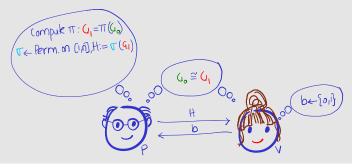


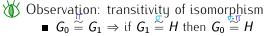
- 1 P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid



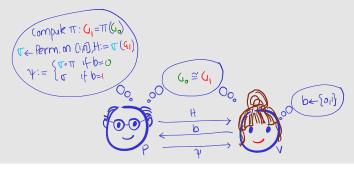


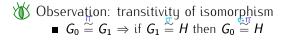
- $(\begin{array}{c} \begin{array}{c} & H \\ & &$
- **1** P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid





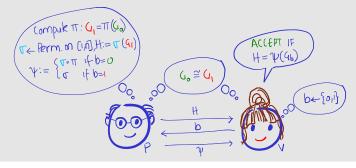
- **1** P "commits" by sending a random H s.t. $G_1 \stackrel{\sim}{=} H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid





Protocol 1 ($\Pi_{GI} = (P, V)$: IP for GI)

- 1 P "commits" by sending a random H s.t. $G_1 \cong H$
- 2 For $b \leftarrow \{0, 1\}$, V challenges P to "reveal" $G_b \cong H$
- 3 V accepts if the revealed permutation is valid



 $\tilde{\zeta} = \tilde{\zeta}_1$

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

Proof.

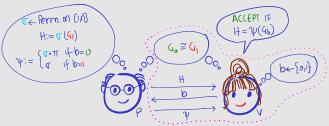
- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

Proof.

- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$
- Zero knowledge: sample *out of order* (info. vs knowledge)

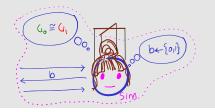


Recall Π_{GI} : Honest-Verifier ZK for GI...

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$
- Zero knowledge: sample *out of order* (info. vs knowledge)

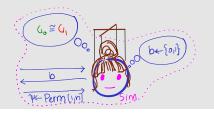


Recall Π_{GI} : Honest-Verifier ZK for GI_{\dots}

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$
- Zero knowledge: sample *out of order* (info. vs knowledge)



Recall Π_{GI} : Honest-Verifier ZK for GI_{\dots}

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

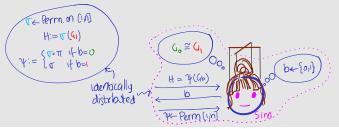
- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$
- Zero knowledge: sample *out of order* (info. vs knowledge)

Recall Π_{GI} : Honest-Verifier ZK for GI_{\dots}

Theorem 1

 $\Pi_{\textit{GI}}$ is a honest-verifier perfect zero-knowledge IP for $\mathcal{L}_{\textit{GI}}$

- Completeness: $G_0 \cong G_1 \Rightarrow \mathsf{P}$ can reveal on either challenge \Rightarrow V always accepts $\Rightarrow \epsilon_c = 0$
- Soundness: $G_0 \not\cong G_1 \Rightarrow$ for any H, $G_0 \cong H$ and $G_1 \cong H$ cannot both hold \Rightarrow best P^* can do is guess $b \Rightarrow \epsilon_s = 1/2$
- Zero knowledge: sample *out of order* (info. vs knowledge)



Definition 1 ((Malicious-Verifier) Perfect ZK)

An IP \sqcap is perfect ZK for \mathcal{L} if for every V^{*} there exists a PPT simulator Sim^{V*} such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\Pr[\mathsf{D}(\mathsf{View}_{\mathsf{V}^*}(\langle\mathsf{P},\mathsf{V}^*\rangle(x)))=1]-\Pr[\mathsf{D}(\mathsf{Sim}^{\mathsf{V}^*}(x))=1]$$

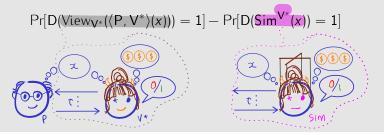
Definition 1 ((*Malicious-Verifier*) Perfect ZK)

An IP \sqcap is perfect ZK for \mathcal{L} if for every V^{*} there exists a PPT simulator Sim^{V*} such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

$$\Pr[\mathsf{D}(\mathsf{View}_{\mathsf{V}^*}(\langle \mathsf{P}, \mathsf{V}^* \rangle(x))) = 1] - \Pr[\mathsf{D}(\mathsf{Sim}^{\mathsf{V}^*}(x)) = 1]$$

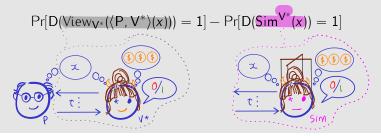
Definiton 1 ((*Malicious-Verifier*) Perfect ZK)

An IP \sqcap is perfect ZK for \mathcal{L} if for every V^{*} there exists a PPT simulator Sim^{V*} such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero



Definiton 1 ((*Malicious-Verifier*) Perfect ZK)

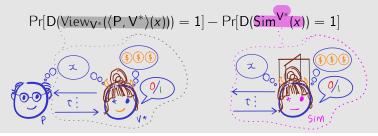
An IP \sqcap is perfect ZK for \mathcal{L} if for every V^{*} there exists a PPT simulator Sim^{V*} such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero



What happens if we use honest-verifier simulator Sim now?

Definiton 1 ((*Malicious-Verifier*) Perfect ZK)

An IP \sqcap is perfect ZK for \mathcal{L} if for every V^{*} there exists a PPT simulator Sim^{V*} such that for all distinguishers D and all $x \in \mathcal{L}$, the following is zero

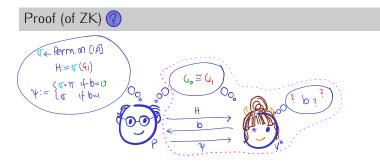


What happens if we use honest-verifier simulator Sim now?

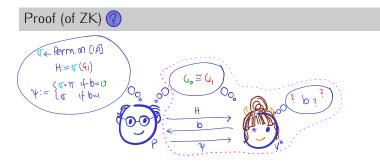
- The distribution of b generated by V* may not be uniform
- It could depend arbitrarily on P's message H

Theorem 2

Theorem 2



Theorem 2

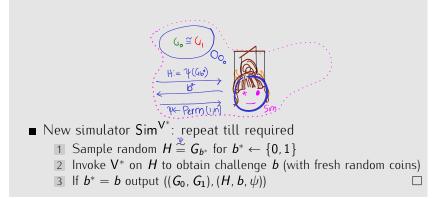


Ingl Works Also For Malicious Verifiers! Just need a different sim

Theorem 2

 Π_{GI} is a malicious-verifier perfect ZKP for \mathcal{L}_{GI}

Proof (of ZK) "Idea: Sim invokes V*!

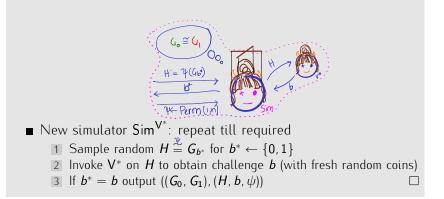


Ingl Works Also For Malicious Verifiers! Just need a different sim

Theorem 2

 Π_{GI} is a malicious-verifier perfect ZKP for \mathcal{L}_{GI}

Proof (of ZK) "Idea: Sim invokes V*!

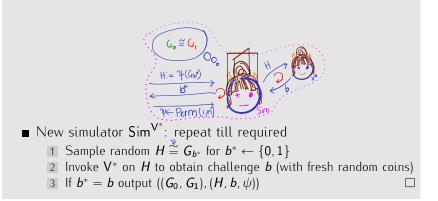


Ingl Works Also For Malicious Verifiers! Just need a different sim

Theorem 2

 Π_{GI} is a malicious-verifier perfect ZKP for \mathcal{L}_{GI}

Proof (of ZK) "Idea: Sim invokes V*!



Theorem 2



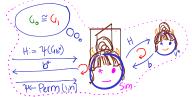
Π_{GI} Works Also For Malicious Verifiers!...

 \bigcirc Why is **b** independent of **b***?

Π_{GI} Works Also For Malicious Verifiers!...

Why is b independent of b*? H hides b*
What is the run-time of the new simulator Sim^{V*}?

Π_{GI} Works Also For Malicious Verifiers!...



Why is b independent of b*? H hides b*
What is the run-time of the new simulator Sim^{V*}?

- In expectation: polynomial time
- Worst case: exponential time

Exercise 1

Can you come up with a strict PPT simulator?

Π_{GI} Works Also For Malicious Verifiers!...

Why is b independent of b*? H hides b*
What is the run-time of the new simulator Sim^{V*}?

- In expectation: polynomial time
- Worst case: exponential time

Exercise 1

Can you come up with a strict PPT simulator?

Exercise 2

- 1 Design malicious-verifier perfect ZKP for \mathcal{L}_{QR}
- 2 Think about malicious-verifier perfect ZKP for $\mathcal{L}_{\mathsf{GNI}}$
 - \blacksquare Hint: you need to somehow use Π_{GI} as sub-routine

Plan for Today's Lecture

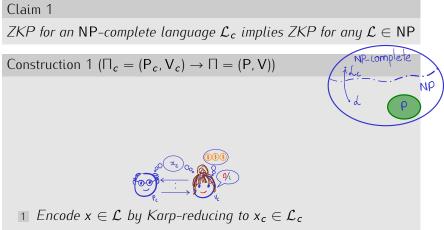
1 Malicious–Verifier ZKP for Graph Isomorphism 4

2 (Computational) ZKP for NP

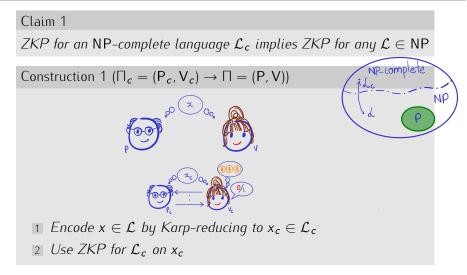
ZKP for Any Problem in NP

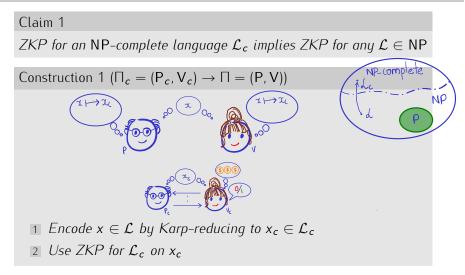
Claim 1

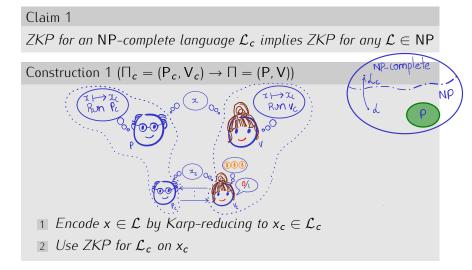
ZKP for an NP-complete language \mathcal{L}_c implies ZKP for any $\mathcal{L} \in \mathsf{NP}$

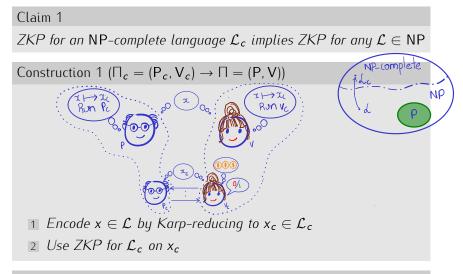


2 Use ZKP for \mathcal{L}_c on x_c







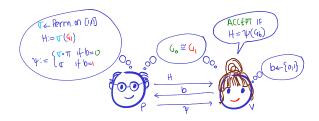


Exercise 3

Show that if Π_c is a ZKP for \mathcal{L}_c then Π is a ZKP for \mathcal{L}

■ Let's recall/rephrase Π_{GI}:

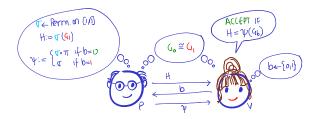
• Honest P "commits" to G_0 and G_1 by sending $H = \sigma(G_1)$



~=ć,

■ Let's recall/rephrase Π_{GI}:

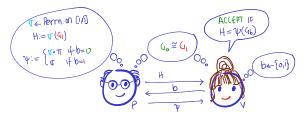
■ Honest P "commits" to G_0 and G_1 by sending $H = \sigma(G_1)$ ■ Soundness: commitment H is "perfectly binding" if $G_0 \neq G_1 \Rightarrow$ malicious P* can commit to only one of G_0 or G_1 in advance



بَ^ن = ج

■ Let's recall/rephrase Π_{GI}:

Honest P "commits" to G₀ and G₁ by sending H = σ(G₁)
Soundness: commitment H is "perfectly binding" if G₀ ≆ G₁ ⇒ malicious P* can commit to only one of G₀ or G₁ in advance
ZK: commitment is "perfectly hiding" if G₀ ≅ G₁ ⇒ H hides information about G₀/G₁

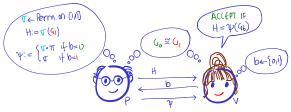


 $\tilde{\zeta} = \tilde{\zeta}_1$

■ Let's recall/rephrase Π_{GI}:

■ Honest P "commits" to G_0 and G_1 by sending $H = \sigma(G_1)$ ■ Soundness: commitment H is "perfectly binding" if $G_0 \not\cong G_1 \Rightarrow$ malicious P* can commit to only one of G_0 or G_1 in advance

- ZK: commitment is "perfectly hiding" if $G_0 \cong G_1 \Rightarrow H$ hides information about G_0/G_1
- Possible because of GI's structure: isomorphisms are transitive

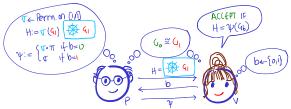


 $\tilde{\zeta} = \tilde{\zeta}_1$

■ Let's recall/rephrase Π_{GI}:

■ Honest P "commits" to G_0 and G_1 by sending $H = \sigma(G_1)$ ■ Soundness: commitment H is "perfectly binding" if $G_0 \not\cong G_1 \Rightarrow$ malicious P* can commit to only one of G_0 or G_1 in advance

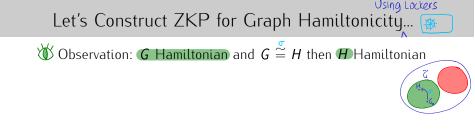
- ZK: commitment is "perfectly hiding" if $G_0 \cong G_1 \Rightarrow H$ hides information about G_0/G_1
- Possible because of GI's structure: isomorphisms are transitive

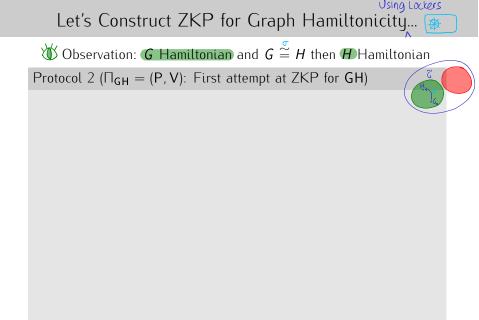


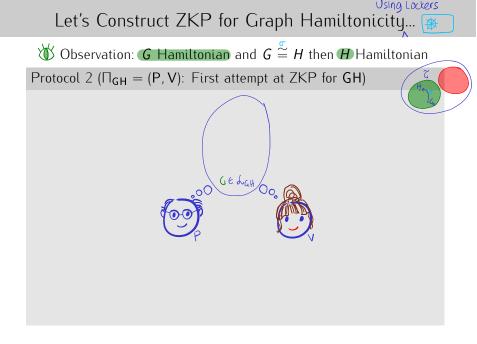
■ Physical analogy: *H* acts as a secure "locker"

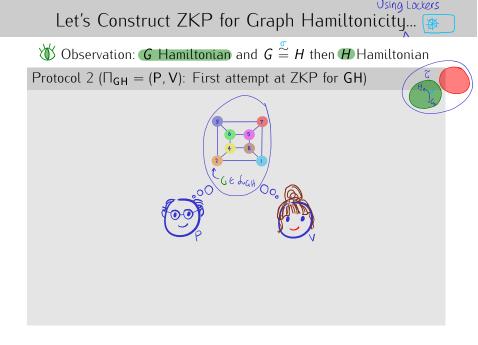
- 1 Hides its contents from the verifier V
- 2 Binds P^* by forcing it to store either G_0 or G_1 before seeing challenge b

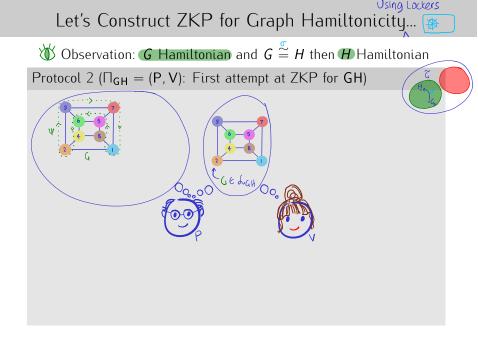
ζ=ζ,

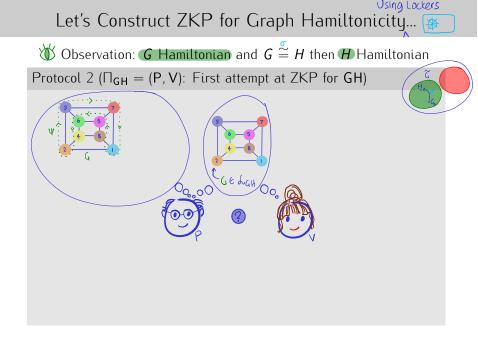


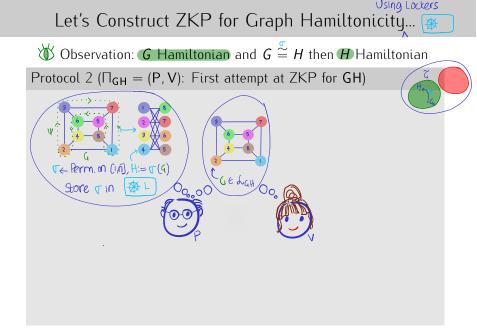


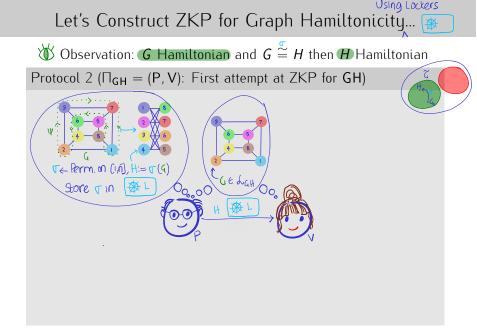


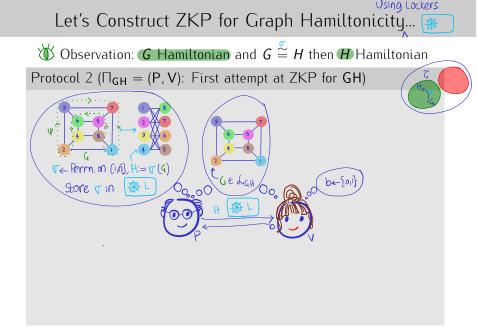


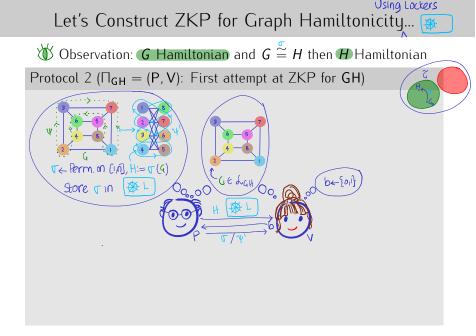


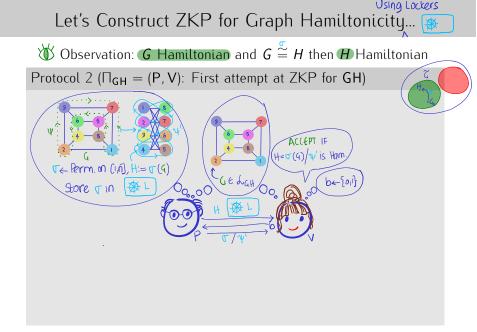


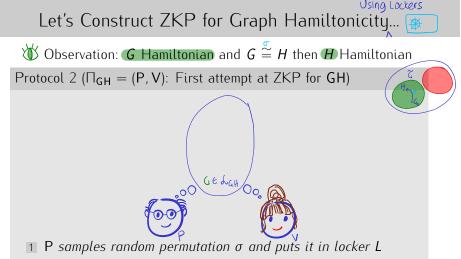




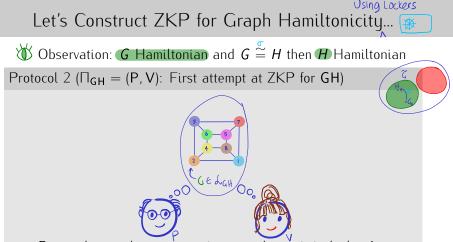




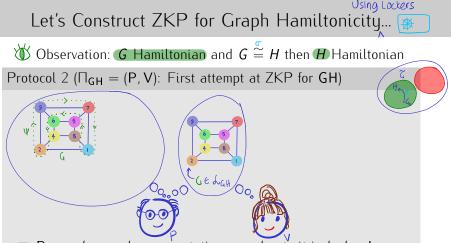




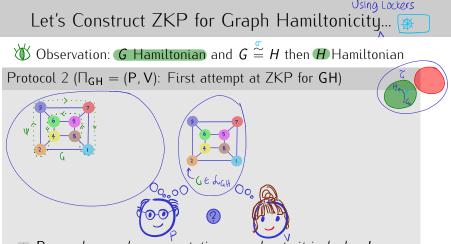
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



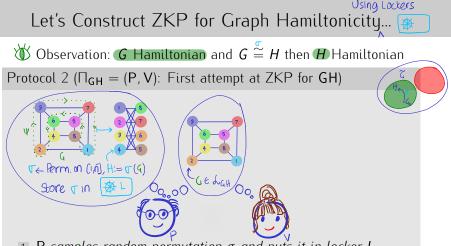
- 1 P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



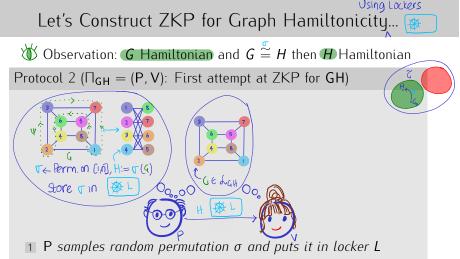
- **1** P samples random permutation σ and puts it in locker L
- 2 P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



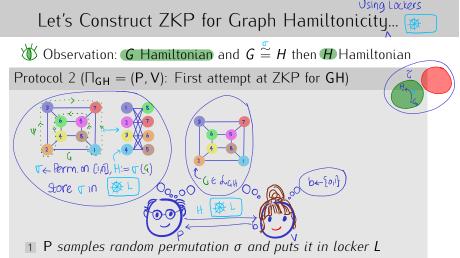
- 1 P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



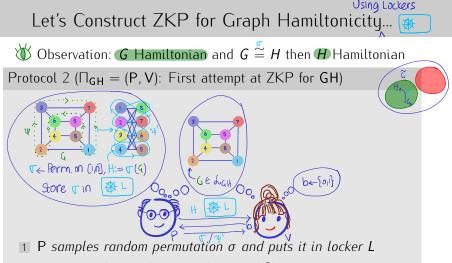
- **1** P samples random permutation σ and puts it in locker L
- 2 P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



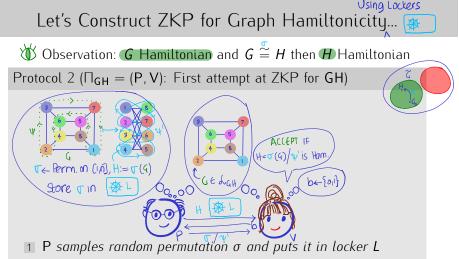
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



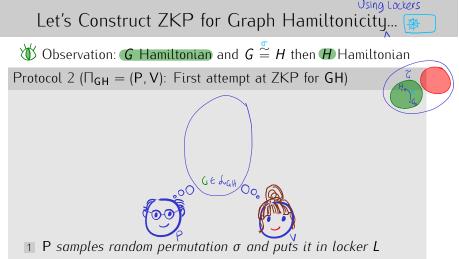
- 2 P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



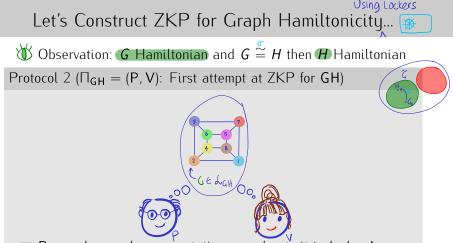
- 2 P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



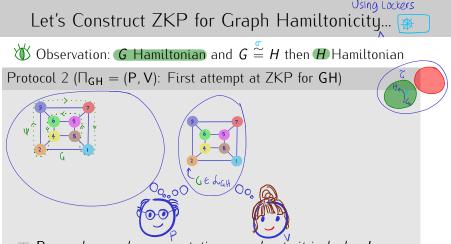
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



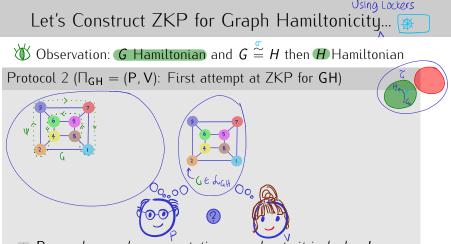
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H
- Problem: not clear if zero knowledge. How to simulate?



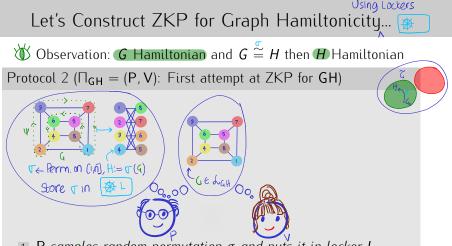
- 1 P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



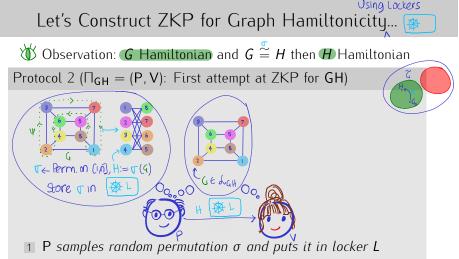
- 1 P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H
- Problem: not clear if zero knowledge. How to simulate?



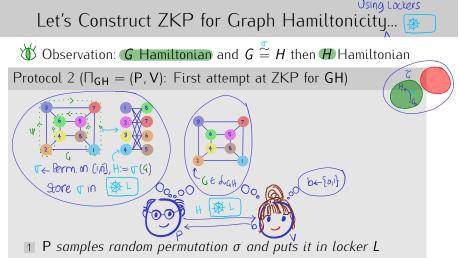
- 1 P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H
- Problem: not clear if zero knowledge. How to simulate?



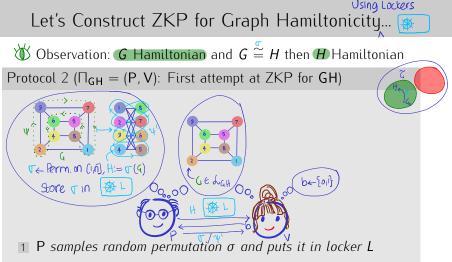
- **1** P samples random permutation σ and puts it in locker L
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



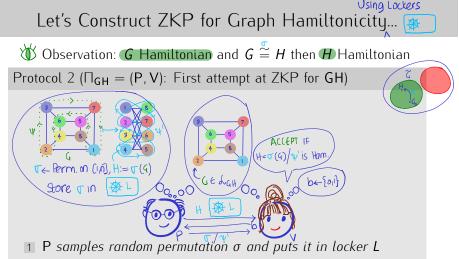
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H



- 2 P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H

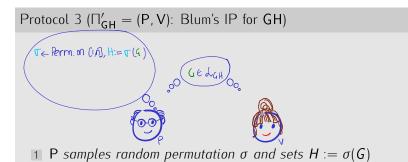


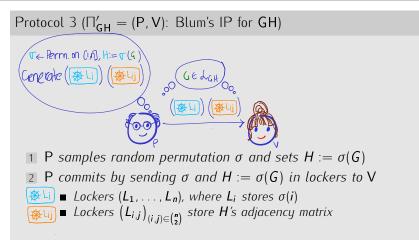
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H

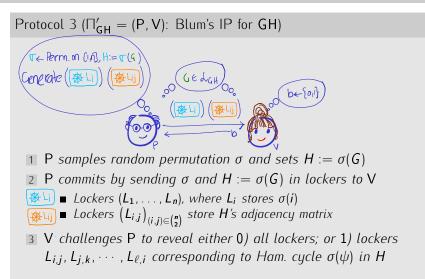


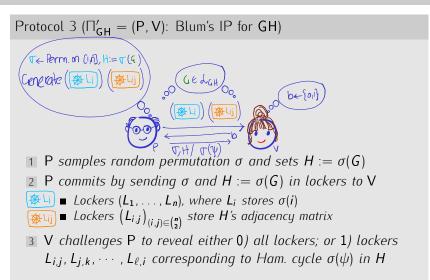
- **2** P commits by sending L and $H := \sigma(G)$ to V
- 3 V challenges P to reveal 0) σ by opening L or 1) Hamiltonian cycle $\sigma(\psi)$ in H

Protocol 3 ($\Pi'_{GH} = (P, V)$: Blum's IP for GH)









ACLEPT IF

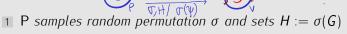
 $H=\sigma(4)/\sigma(\psi)$ is Ham

besoil

Protocol 3 ($\Pi'_{GH} = (P, V)$: Blum's IP for GH)

 $T \leftarrow \text{Perm. on (in), H := T(G)}$

Cenerate (🐺 Li



GELGH

- **2** P commits by sending σ and $H := \sigma(G)$ in lockers to V
- B Lockers (L_1, \ldots, L_n) , where L_i stores $\sigma(i)$

o

- \mathfrak{F}_{ij} Lockers $(L_{i,j})_{(i,j)\in \binom{n}{2}}$ store H's adjacency matrix
- **3** V challenges P to reveal either 0) all lockers; or 1) lockers $L_{i,j}, L_{j,k}, \dots, L_{\ell,i}$ corresponding to Ham. cycle $\sigma(\psi)$ in H
- 4 V accepts if 0) $H = \sigma(G)$ or 1) $L_{i,j}, L_{j,k}, \dots, L_{\ell,i}$ correspond to a Ham. cycle.

Π_{GH}' is Computational ZKP for Graph Hamiltonicity

- Soundness: locker binding $\Rightarrow \Pi'_{GH}$ is sound
- Zero-knowledge: locker "computationally" hides its content \Rightarrow Π'_{GH} is honest-verifier *computational* zero-knowledge for \mathcal{L}_{GH}

Π_{GH}' is Computational ZKP for Graph Hamiltonicity

- Soundness: locker binding $\Rightarrow \Pi'_{\mathsf{GH}}$ is sound
- Zero-knowledge: locker "computationally" hides its content \Rightarrow Π'_{GH} is honest-verifier *computational* zero-knowledge for \mathcal{L}_{GH}

■ Simulator: again, sample out of order

- 1 Sample random $b \leftarrow \{0, 1\}$
- 2 If b = 0
 - Sample random permutation σ and set $H := \sigma(G)$
 - Prepare lockers (L_1, \ldots, L_n) and $(L_{ij})_{(ij) \in \binom{n}{2}}$ as in protocol

Π_{GH}' is Computational ZKP for Graph Hamiltonicity

- Soundness: locker binding $\Rightarrow \Pi'_{GH}$ is sound
- Zero-knowledge: locker "computationally" hides its content \Rightarrow Π'_{GH} is honest-verifier *computational* zero-knowledge for \mathcal{L}_{GH}

■ Simulator: again, sample out of order

- 1 Sample random $b \leftarrow \{0, 1\}$
- 2 If b = 0
 - Sample random permutation σ and set $H := \sigma(G)$
 - Prepare lockers (L_1, \ldots, L_n) and $(L_{ij})_{(ij) \in \binom{n}{2}}$ as in protocol
 - If b = 1
 - `■ Sample random *cycle* C over [1, *n*]
 - Leave lockers (L_1, \ldots, L_n) empty and store C's adjacency matrix in $(L_{ij})_{(i,j) \in \binom{n}{2}}$

Π_{GH}' is Computational ZKP for Graph Hamiltonicity...

Exercise 4

Describe the simulator for malicious-verifier ZK for Π'_{GH}

Exercise 5

Think of ZKP for other NP-complete problems like $n \times n$ Sudoku and graph three-colouring

Plan for Today's Lecture

1 Malicious–Verifier ZKP for Graph Isomorphism 4

2 (Computational) ZKP for NP

Defintion 2

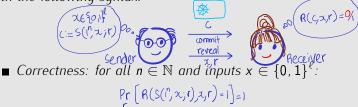
Defintion 2

Defintion 2

Defintion 2

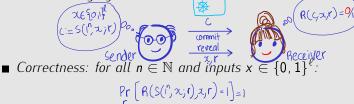
Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R) with the following syntax:



 Computational hiding: c reveals no information about x to PPT adversaries

Defintion 2



- Computational hiding: c reveals no information about x to PPT adversaries
- Perfect binding: for any $c \in \{0, 1\}^*$, there do not exist openings $r_1, r_2 \in \{0, 1\}^*$ such that $R(c, r_1) \neq R(c, r_2)$

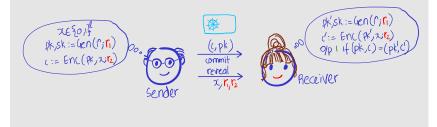
Defintion 2

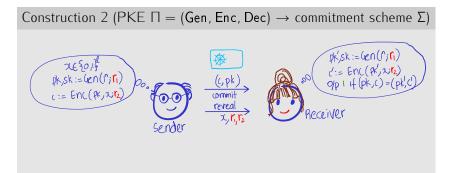
A (non-interactive) commitment scheme is a pair of algorithms (S, R) with the following syntax:

- Computational hiding: c reveals no information about x to PPT adversaries
- Perfect binding: for any $c \in \{0, 1\}^*$, there do not exist openings $r_1, r_2 \in \{0, 1\}^*$ such that $R(c, r_1) \neq R(c, r_2)$

■ In general the commit phase can be interactive

Construction 2 (PKE Π = (Gen, Enc, Dec) \rightarrow commitment scheme Σ)





 \bigcirc What are the properties we require from \square ?

Construction 2 (PKE $\Pi = (Gen, Enc, Dec) \rightarrow \text{commitment scheme } \Sigma$)

 \bigcirc What are the properties we require from \square ?

- 1 Recognise honestly sampled *pk*s
- 2 Ciphertext-indistinguishability \Rightarrow hiding
- 3 Perfect correctness of decryption \Rightarrow binding

Construction 2 (PKE $\Pi = (Gen, Enc, Dec) \rightarrow \text{commitment scheme } \Sigma$)

O What are the properties we require from \square ?

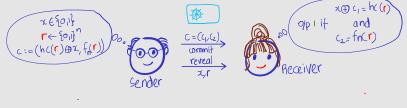
- 1 Recognise honestly sampled *pk*s
- 2 Ciphertext-indistinguishability \Rightarrow hiding
- 3 Perfect correctness of decryption \Rightarrow binding

Exercise 6

Which of the PKEs we have seen satisfy the above properties?

Construction 3 (OWP $f_n : \{0, 1\}^n \to \{0, 1\}^n \to bit$ -commitment Σ)

■ Recall: every (leaky) f_n has hard-core predicate hc: $\{0, 1\}^n \rightarrow \{0, 1\}$



Construction 3 (OWP $f_n : \{0, 1\}^n \to \{0, 1\}^n \to bit$ -commitment Σ)

■ Recall: every (leaky) f_n has hard-core predicate hc: $\{0, 1\}^n \rightarrow \{0, 1\}$

■ Security of hard-core predicate hc ⇒ computational hiding
 ■ f permutation ⇒ perfect binding

Construction 3 (OWP $f_n : \{0, 1\}^n \to \{0, 1\}^n \to bit$ -commitment Σ)

■ Recall: every (leaky) f_n has hard-core predicate hc: $\{0,1\}^n \rightarrow \{0,1\}$

■ Security of hard-core predicate hc ⇒ computational hiding
 ■ f permutation ⇒ perfect binding

Exercise 7

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for $\{0,1\}^{\ell}$

Construction 3 (OWP $f_n : \{0, 1\}^n \to \{0, 1\}^n \to bit$ -commitment Σ)

■ Recall: every (leaky) f_n has hard-core predicate hc: $\{0,1\}^n \rightarrow \{0,1\}$

■ Security of hard-core predicate hc ⇒ computational hiding
 ■ f permutation ⇒ perfect binding

Construction 3 (OWP $f_n : \{0, 1\}^n \to \{0, 1\}^n \to bit$ -commitment Σ)

■ Recall: every (leaky) f_n has hard-core predicate hc: $\{0,1\}^n \rightarrow \{0,1\}$

■ Security of hard-core predicate hc ⇒ computational hiding
 ■ f permutation ⇒ perfect binding

Exercise 7

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for $\{0,1\}^{\ell}$

To Recap Today's Lecture

■ Malicious-verifier perfect ZKP for GI

- Simulator was expected polynomial-time
- Takeaway: Out of order sampling of transcript

To Recap Today's Lecture

- Malicious-verifier perfect ZKP for GI
 - Simulator was expected polynomial-time
 - Takeaway: Out of order sampling of transcript
- \blacksquare Computational ZKP for NP
 - Blum's protocol for Graph Hamiltonicity
 - What about perfect/statistical ZKP for NP?
 - Not possible (unless polynomial hierarchy collapses)!

To Recap Today's Lecture

- Malicious-verifier perfect ZKP for GI
 - Simulator was expected polynomial-time
 - Takeaway: Out of order sampling of transcript
- Computational ZKP for NP
 - Blum's protocol for Graph Hamiltonicity
 - What about perfect/statistical ZKP for NP?
 - Not possible (unless polynomial hierarchy collapses)!
- Commitment schemes
 - Non-interactive constructions from PKE and OWP
 - Two-message construction from PRG \leftarrow OWF

Next Lecture

- Proofs of knowledge (PoK)
- PoK for the discrete-logarithm problem: Schnorr's protocol
- Fiat-Shamir Transform
 - Digital signatures from discrete-logarithm problem in the random-oracle model

References

- 1 [Gol01, Chapter 4] for details of today's lecture
- $\ensuremath{\mathbb 2}$ [GMR89] for definitional and philosophical discussion on ZK
- 3 The ZKP for graph Hamiltonicity is due to Blum [Blu86]
- 4 The constructions of commitment scheme from OWP and PRG is from [GMW91] and [Nao90]