CS783: Theoretical Foundations of Cryptography

Lecture 15 (01/Oct/24)

Instructor: Chethan Kamath
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m Applications of ZKP:

m Cryptocurrency: prove validity of a transaction without
revealing information

@) zcasn (Q MoNERO

m Digital signatures: next lecture
m NIST is currently standardising ZKP (projects/pec/zkproof)
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m Commitment scheme

— m Digital analogues of lockers
m OWP — (non-interactive) commitment scheme
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Protocol 1 (Ig) = (P, V): IP for GI)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” Gp = H

3V accepts if the revealed permutation is valid
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Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.

m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

4116



Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, G = H and Gy = H
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

< forrn.on () ACCEPT IF
W= (&) M=)
o o=0
W= iq if =t .

4116



Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

4116



Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

4116



Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, Gg = H and G; =
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

o

4116



Recall l'g: Honest-Verifier ZK for Gl...

Theorem 1

[Gi is a honest-verifier perfect zero-knowledge IP for Lg

Proof.
m Completeness: Gp = Gi = P can reveal on either challenge =
V always accepts = €. =0

m Soundness: Go # Gy = for any H, G = H and Gy = H
cannot both hold = best P* can do is guess b = €5 = 1/2

m Zero knowledge: sample out of order (info. vs knowledge)

é,Qbrrn.d\ Ofﬂ

-
o bb=0
yi={ it o=t Oo

@
amt:cal ¥L;+ )
o\gtrbjced e

g Beron (el

4116



What about Malicious Verifiers? @

Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP 11 is perfect ZK for L if for every V* there exists a PPT

simulator SimY" such that for all distinguishers D and all x € L,

the following is zero

PrD(Viewy: ((P, V*)(x))) = 1] — Pr[D(SimV*(x)) = 1]
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What about Malicious Verifiers? ")

Defintion 1 ((Malicious-Verifier) Perfect ZK)

An IP 11 is perfect ZK for L if for every V* there exists a PPT
simulator SimY" such that for all distinguishers D and all x € L,
the following is zero

PrlD (Viewwa((P:V)(x)) = 1] — PriD(Sim¥ () = 1

@V\/hat happens if we use honest-verifier simulator Sim now?

m The distribution of b generated by V* may not be uniform
m [t could depend arbitrarily on P's message H
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3 If b* = b output ((Go, G1), (H, b, ))
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@ Why is b independent of b*? H hides b*

@What is the run-time of the new simulator Sim""?
m [n expectation: polynomial time
m Worst case: exponential time
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g Works Alsp For Malicious Verifiers!...

@ Why is b independent of b*? H hides b*

@What is the run-time of the new simulator Sim""?
m [n expectation: polynomial time
m Worst case: exponential time

Exercise 1

Can you come up with a strict PPT simulator?

Exercise 2

1 Design malicious-verifier perfect ZKP for Lqr
2 Think about malicious-verifier perfect ZKP for Lgni
m Hint: you need to somehow use [g| as sub-routine
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/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

NP~ Lompke,‘*e

Construction 1 (e = (P¢, Ve) — 1= (P, V)

1 Encode x € L by Karp-reducing to x. € L
2 Use ZKP for L on x¢
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/ZKP for Any Problem in NP

Claim 1
ZKP for an NP-complete language L. implies ZKP for any L € NP

NP~ Lompke,‘*e

Construction 1 (I_I = (P, Vo) = I = (P V))

1 Encode x € L by-karp—rec‘l'b'c:tzng toxc € L¢
2 Use ZKP for L on x¢

Exercise 3
Show that if T¢ is a ZKP for L. then I is a ZKP for L
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Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [lg: (e
m Honest P “commits” to Gy and G; by sending H = d(Gj)
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m Honest P “commits” to Gy and G; by sending H = d(Gj)

m Soundness: commitment H is "perfectly binding” if Go # G =
malicious P* can commit to only one of Gy or G; in advance

m ZK: commitment is "perfectly hiding” if Go = G = H hides
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Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [g:
Honest P “commits” to Go and Gy by sending H = 0(Gy)
Soundness: commitment H is “perfectly binding” if Go # G1 =
malicious P* can commit to only one of Gy or G; in advance
ZK: commitment is "perfectly hiding” if Go = G1 = H hides
information about Go/ Gy

m Possible because of Gl's structure: isomorphisms are transitive
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Let's Construct ZKP for Graph Hamiltonicity

m Let's recall/rephrase [g:

m Honest P “commits” to Gy and G; by sending H = d(Gj)

m Soundness: commitment H is "perfectly binding” if Go # G =
malicious P* can commit to only one of Gy or G; in advance

m ZK: commitment is "perfectly hiding” if Go = G = H hides

information about Go/ Gy
m Possible because of Gl's structure: isomorphisms are transitive

e toron. o Qﬂ
s )

G o0
Y= (tq o=t

m Physical analogy: H acts as a secure “locker”

1 Hides its contents from the verifier V
2 Binds P* by forcing it to store either Gg or Gi before seeing

challenge b
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using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

X Observation: (@aHamiltonian and G = H then H Hamiltonian

Protocol 2 (INgy = (P, V): First attempt at ZKP for GH) ©>

9/16



Jsing Lockess
Let's Construct ZKP for Graph Hamiltonicity... [+
A
XS Observation: (GaHamiltonian and G = H then ™ Hamiltonian
Protocol 2 (Mgn = (P, V): First attempt at ZKP for GH) C Q

-

9/16



using Lockees

Let's Construct ZKP for Graph Hamiltonicity... (= |

XS Observation: (GaHamiltonian and G = H then ™ Hamiltonian

9/16



using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

9/16



using Lockecs

Let's Construct ZKP for Graph Hamiltonicity...

&)3 Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

9/16



Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o C\,rﬂ H (r(G

Sote ¢

9/16



Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o (1), H T(4)

Jore ¢ 0 @

9/16



Using Lockees

Let's Construct ZKP for Graph Hamiltonicity...

&)S Observation: €G"Hamiltonian and G 2 H then @@ Hamiltonian
Protocol 2 (MNgn = (P, V): First attempt at ZKP for GH)

1 %
G @ w‘*

(Fe Perm o (1), H T(4)

Jore ¢ 0 @

9/16



Usmg Lockess

Let's Construct ZKP for Graph Hamiltonicity...
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Let's Construct ZKP for Graph Hamiltonicity...
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Using Lockers

Let's Construct ZKP for Graph Hamiltonicity...
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Let's Construct ZKP for Graph Hamiltonicity...

Protocol 3 (Mg = (P, V): Blum's IP for GH)

< ferm.on (1), = (@)

Covae (@) () (Gesuy)

\\\\\_,</6o OO(Z ) ( Oo,) @
QOp—— 7
~° Tl

1 P samples random permutation o and sets H := o(G)
2 P commits by sending o and H := o(G) in lockers to V
m Lockers (Ly, ..., L,), where L; stores ofi)
m Lockers (L,-,j)(,.’j)e(..) store H's adjacency matrix
3 V challenges P to reveal either 0) all lockers; or 1) lockers
Lij, Ljk. -, Le; corresponding to Ham. cycle o(y) in H
4 V accepts if0) H=0(G) or1) L;j, Ljk, -, Lp; correspond to
a Ham. cycle.
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[1&y s Computational ZKP for Graph Hamiltonicity

m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =
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m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =

) /'N o .

Vigwog (0 6)

e ) S
m Simulator: again, sample out of order
1 Sample random b — {0, 1}
2 Ifb=0

m Sample random permutation ¢ and set H := ¢(G)
m Prepare lockers (Lg, ..., L,) and (L,-J-)('.j)e(,.) as in protocol
- 2
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cu ts Computational ZKP for Graph Hamiltonicity

m Soundness: locker binding = [, is sound
m /ero-knowledge: locker “computationally” hides its content =

N -m o, oo :
: ) \

Nigwog (0 6)

LTl ey S
m Simulator: again, sample out of order
1 Sample random b — {0, 1}
2 fb=0

m Sample random permutation ¢ and set H := ¢(G)
m Prepare lockers (Lg, ..., L,) and (L,-J-) as in protocol

(i=(3)
.3 fb=1
- é\ .-'m Sample random cycle C over [1, ]
D : m Leave lockers (Ly, ..., L,) empty and store C's adjacency matrix
/," in (L;j) PR
F (id)E(3)
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[1&y s Computational ZKP for Graph Hamiltonicity...

Exercise 4

Describe the simulator for malicious-verifier ZK for I_I/GH

Exercise b

Think of ZKP for other NP-complete problems like n x n Sudoku
and graph three-colouring
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Commitment Schemes are Digital Lockers

Defintion 2

A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the following syntax:

/5ot

e
T Lender
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A (non-interactive) commitment scheme is a pair of algorithms (S, R)
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/5ot
(C =5 x,r) fe.
N

Cender

P(r [R(S(t )x;r)/x}r) = 1};)

m Computational hiding: c reveals no information about x to
PPT adversaries
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Commitment Schemes are Digital Lockers

Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (S, R)
with the followmg syntax: =
o)<
/7%%0‘ \ o Rn=%
‘ SO0 fe ann\‘r iy
revwl

Condr foceijer
m Correctness: for all n € N and mputs x €{0,1};

Pr (RG(,250,40) 1))

Computational hiding: c reveals no information about x to
PPT adversaries

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings r, rn € {0,1}" such that R(c, ) # R(c, r»)

In general the commit phase can be interactive
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How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

ko= len(1y)
¢:= EY\L(W’/“@
op | (RO =(pLC

G0N
Pk =len (i)
o= EnC(f, )
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How to Construct Commitment Schemes?

Construction 2 (PKE 1 = (Gen, Enc, Dec) — commitment scheme ¥)

- enC (0,
5 Ql?k) ol ¢ (%,151)
ot

op | (RO =(pLC
veresl

L, o fiecenfex

sk = len(n)

X500t
Pk < len(fin)
(= BnC(§,mn)

Sender

@What are the properties we require from [1?
1 Recognise honestly sampled pks
2 Ciphertext-indistinguishability = hiding
3 Perfect correctness of decryption = binding

Exercise 6

Which of the PKEs we have seen satisfy the above properties?
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How to Construct Commitment Schemes?...

Construction 3 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate

hc:{0,1}" — {0,1}

X = 136 (_r)
op ! if and

5L €§LO A\]I
"

r< o} >, c=(,G) o (=0
c.=(he(0)bT, L,UD mmnﬁlr
5 Recees

Cender
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“ AP ¢ = W (_r)
1«6%9“}0 €%§ ;“d
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= O\ L(()@l, WE,(\U mm\'\ﬁl‘
eVl
0

Cender

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding
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m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

€90 ‘]r
r</'iotﬁ

¢.=(he(0)O1, £6))

X = 136 (_r)
op ! if and
G=frlD)

o, c=(4G)
it

veveal
X0

Cender

m Security of hard-core predicate hc = computational hiding
m f permutation = perfect binding

Exercise 7

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for {O, 1}€
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m Malicious-verifier perfect ZKP for Gl
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m Takeaway: Out of order sampling of transcript
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m Simulator was expected polynomial-time
m Takeaway: Out of order sampling of transcript

m Computational ZKP for NP

m Blum's protocol for Graph Hamiltonicity
m What about perfect/statistical ZKP for NP?

m Not possible (unless polynomial hierarchy collapses)!

m Commitment schemes

m Non-interactive constructions from PKE and OWP
m Two-message construction from PRG «— OWF
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Next Lecture

m Proofs of knowledge (PoK)

m PoK for the discrete-logarithm problem: Schnorr's protocol
m Fiat-Shamir Transform

m Digital signatures from discrete-logarithm problem in the
random-oracle model
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The constructions of commitment scheme from OWP and PRG
is from [GMW91] and [Nao090]

16/16



	Malicious-Verifier ZKP for Graph Isomorphism
	(Computational) ZKP for  NP 
	Commitment Scheme

