
CS783: Theoretical Foundations of Cryptography
Lecture 15 (01/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

1 / 16

Recall from Last Lecture...
Interactive proof (IP)

Compared to traditional “��” proof
IP is powerful: IP for ���

Zero-knowledge proof
Knowledge vs. information
Modelled “zero knowledge” via simulation paradigm

Honest-verifier ZKP for ��� (Exercise 3: ���)

Honest-verifier ZKP for �� (Exercise 4: ��)
1 / 16

(ZK)IPs are Useful!
Applications of IP: Verifiable outsourcing

2 / 16

T'

(ZK)IPs are Useful!
Applications of IP: Verifiable outsourcing

Applications of ZKP:
Cryptocurrency: prove validity of a transaction without
revealing information

Digital signatures: next lecture

2 / 16

T'

(ZK)IPs are Useful!
Applications of IP: Verifiable outsourcing

Applications of ZKP:
Cryptocurrency: prove validity of a transaction without
revealing information

Digital signatures: next lecture
NIST is currently standardising ZKP (projects/pec/zkproof)

2 / 16

T'

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

3 / 16

Plan for Today’s Lecture...
Malicious-verifier ZKP for ��
ZKP for all of ��

Blum’s protocol for Graph Hamiltonicity (��)
Given a graph � , decide whether it has a Hamiltonian cycle

Commitment scheme
Digital analogues of lockers
OWP → (non-interactive) commitment scheme

3 / 16

Plan for Today’s Lecture

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for ��

3 Commitment Scheme

3 / 16

Plan for Today’s Lecture

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for ��

3 Commitment Scheme

3 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (Π�� = (�,�): IP for GI)
1 � “commits” by sending a random � s.t. �� ∼= �

2 For � ← {�, �}, � challenges � to “reveal” ��
∼= �

3 � accepts if the revealed permutation is valid

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�
Zero knowledge: sample out of order (info. vs knowledge)

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�
Zero knowledge: sample out of order (info. vs knowledge)

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�
Zero knowledge: sample out of order (info. vs knowledge)

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�
Zero knowledge: sample out of order (info. vs knowledge)

4 / 16

Recall Π��: Honest-Verifier ZK for ��...
Theorem 1
Π�� is a honest-verifier perfect zero-knowledge IP for L��

Proof.
Completeness: �� ∼= �� ⇒ � can reveal on either challenge ⇒
� always accepts ⇒ ε� = �

Soundness: �� ̸∼= �� ⇒ for any �, �� ∼= � and ��
∼= �

cannot both hold ⇒ best �∗ can do is guess � ⇒ ε� = �/�
Zero knowledge: sample out of order (info. vs knowledge)

4 / 16

What about Malicious Verifiers?
Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP Π is perfect ZK for L if for every �∗ there exists a PPT
simulator ����∗ such that for all distinguishers � and all � ∈ L,
the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(�))) = �] − Pr[�(����∗ (�)) = �]

5 / 16

What about Malicious Verifiers?
Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP Π is perfect ZK for L if for every �∗ there exists a PPT
simulator ����∗ such that for all distinguishers � and all � ∈ L,
the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(�))) = �] − Pr[�(����∗ (�)) = �]

5 / 16

What about Malicious Verifiers?
Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP Π is perfect ZK for L if for every �∗ there exists a PPT
simulator ����∗ such that for all distinguishers � and all � ∈ L,
the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(�))) = �] − Pr[�(����∗ (�)) = �]

5 / 16

What about Malicious Verifiers?
Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP Π is perfect ZK for L if for every �∗ there exists a PPT
simulator ����∗ such that for all distinguishers � and all � ∈ L,
the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(�))) = �] − Pr[�(����∗ (�)) = �]

What happens if we use honest-verifier simulator ��� now?

5 / 16

What about Malicious Verifiers?
Defintion 1 ((Malicious-Verifier) Perfect ZK)
An IP Π is perfect ZK for L if for every �∗ there exists a PPT
simulator ����∗ such that for all distinguishers � and all � ∈ L,
the following is zero

Pr[�(View�∗ (⟨�,�∗⟩(�))) = �] − Pr[�(����∗ (�)) = �]

What happens if we use honest-verifier simulator ��� now?
The distribution of � generated by �∗ may not be uniform
It could depend arbitrarily on �’s message �

5 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK)

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK)

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK) Idea: ��� invokes �∗!

New simulator ����∗ : repeat till required
1 Sample random � ∼= ��∗ for �∗ ← {�, �}
2 Invoke �∗ on � to obtain challenge � (with fresh random coins)
3 If �∗ = � output ((��,��), (� , �, ψ))

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK) Idea: ��� invokes �∗!

New simulator ����∗ : repeat till required
1 Sample random � ∼= ��∗ for �∗ ← {�, �}
2 Invoke �∗ on � to obtain challenge � (with fresh random coins)
3 If �∗ = � output ((��,��), (� , �, ψ))

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK) Idea: ��� invokes �∗!

New simulator ����∗ : repeat till required
1 Sample random � ∼= ��∗ for �∗ ← {�, �}
2 Invoke �∗ on � to obtain challenge � (with fresh random coins)
3 If �∗ = � output ((��,��), (� , �, ψ))

6 / 16

Π�� Works Also For Malicious Verifiers!...
Theorem 2
Π�� is a malicious-verifier perfect ZKP for L��

Proof (of ZK) Idea: ��� invokes �∗!

New simulator ����∗ : repeat till required
1 Sample random � ∼= ��∗ for �∗ ← {�, �}
2 Invoke �∗ on � to obtain challenge � (with fresh random coins)
3 If �∗ = � output ((��,��), (� , �, ψ))

6 / 16

Π�� Works Also For Malicious Verifiers!...

Why is � independent of �∗?

6 / 16

Π�� Works Also For Malicious Verifiers!...

Why is � independent of �∗? � hides �∗
What is the run-time of the new simulator ����∗?

6 / 16

Π�� Works Also For Malicious Verifiers!...

Why is � independent of �∗? � hides �∗
What is the run-time of the new simulator ����∗?

In expectation: polynomial time
Worst case: exponential time

Exercise 1
Can you come up with a strict PPT simulator?

6 / 16

Π�� Works Also For Malicious Verifiers!...

Why is � independent of �∗? � hides �∗
What is the run-time of the new simulator ����∗?

In expectation: polynomial time
Worst case: exponential time

Exercise 1
Can you come up with a strict PPT simulator?
Exercise 2

1 Design malicious-verifier perfect ZKP for L��

2 Think about malicious-verifier perfect ZKP for L���

Hint: you need to somehow use Π�� as sub-routine
6 / 16

Plan for Today’s Lecture

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for ��

3 Commitment Scheme

6 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

7 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

7 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

7 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

7 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

7 / 16

ZKP for Any Problem in ��

Claim 1
ZKP for an ��-complete language L� implies ZKP for any L ∈ ��

Construction 1 (Π� = (�� ,��) → Π = (�,�))

1 Encode � ∈ L by Karp-reducing to �� ∈ L�

2 Use ZKP for L� on ��

Exercise 3
Show that if Π� is a ZKP for L� then Π is a ZKP for L

7 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Let’s recall/rephrase Π�� :

Honest � “commits” to �� and �� by sending � = σ (��)

8 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Let’s recall/rephrase Π�� :

Honest � “commits” to �� and �� by sending � = σ (��)Soundness: commitment � is “perfectly binding” if �� ̸∼= �� ⇒
malicious �∗ can commit to only one of �� or �� in advance

8 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Let’s recall/rephrase Π�� :

Honest � “commits” to �� and �� by sending � = σ (��)Soundness: commitment � is “perfectly binding” if �� ̸∼= �� ⇒
malicious �∗ can commit to only one of �� or �� in advance
ZK: commitment is “perfectly hiding” if ��

∼= �� ⇒ � hides
information about ��/��

8 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Let’s recall/rephrase Π�� :

Honest � “commits” to �� and �� by sending � = σ (��)Soundness: commitment � is “perfectly binding” if �� ̸∼= �� ⇒
malicious �∗ can commit to only one of �� or �� in advance
ZK: commitment is “perfectly hiding” if ��

∼= �� ⇒ � hides
information about ��/��Possible because of ��’s structure: isomorphisms are transitive

8 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Let’s recall/rephrase Π�� :

Honest � “commits” to �� and �� by sending � = σ (��)Soundness: commitment � is “perfectly binding” if �� ̸∼= �� ⇒
malicious �∗ can commit to only one of �� or �� in advance
ZK: commitment is “perfectly hiding” if ��

∼= �� ⇒ � hides
information about ��/��Possible because of ��’s structure: isomorphisms are transitive

Physical analogy: � acts as a secure “locker”
1 Hides its contents from the verifier �
2 Binds �∗ by forcing it to store either �� or �� before seeing

challenge �

8 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Observation: � Hamiltonian and �

∼= � then � Hamiltonian
Protocol 2 (Π�� = (�,�): First attempt at ZKP for ��)

1 � samples random permutation σ and puts it in locker �
2 � commits by sending � and � := σ (�) to �

3 � challenges � to reveal �) σ by opening � or �) Hamiltonian
cycle σ (ψ) in �

Problem: not clear if zero knowledge. How to simulate?
9 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

10 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

1 � samples random permutation σ and sets � := σ (�)

10 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

1 � samples random permutation σ and sets � := σ (�)
2 � commits by sending σ and � := σ (�) in lockers to �

Lockers (��, . . . , ��), where �� stores σ (�)
Lockers

��,�
�

(�,�)∈(�
�
) store � ’s adjacency matrix

10 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

1 � samples random permutation σ and sets � := σ (�)
2 � commits by sending σ and � := σ (�) in lockers to �

Lockers (��, . . . , ��), where �� stores σ (�)
Lockers

��,�
�

(�,�)∈(�
�
) store � ’s adjacency matrix

3 � challenges � to reveal either �) all lockers; or �) lockers
�� ,� , �� ,� , · · · , �ℓ ,� corresponding to Ham. cycle σ (ψ) in �

10 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

1 � samples random permutation σ and sets � := σ (�)
2 � commits by sending σ and � := σ (�) in lockers to �

Lockers (��, . . . , ��), where �� stores σ (�)
Lockers

��,�
�

(�,�)∈(�
�
) store � ’s adjacency matrix

3 � challenges � to reveal either �) all lockers; or �) lockers
�� ,� , �� ,� , · · · , �ℓ ,� corresponding to Ham. cycle σ (ψ) in �

10 / 16

Let’s Construct ZKP for Graph Hamiltonicity...
Protocol 3 (Π′

�� = (�,�): Blum’s IP for ��)

1 � samples random permutation σ and sets � := σ (�)
2 � commits by sending σ and � := σ (�) in lockers to �

Lockers (��, . . . , ��), where �� stores σ (�)
Lockers

��,�
�

(�,�)∈(�
�
) store � ’s adjacency matrix

3 � challenges � to reveal either �) all lockers; or �) lockers
�� ,� , �� ,� , · · · , �ℓ ,� corresponding to Ham. cycle σ (ψ) in �

4 � accepts if �) � = σ (�) or �) �� ,� , �� ,� , · · · , �ℓ ,� correspond to
a Ham. cycle.

10 / 16

Π′
��

is Computational ZKP for Graph Hamiltonicity...
Soundness: locker binding ⇒ Π′

�� is sound
Zero-knowledge: locker “computationally” hides its content ⇒
Π′
�� is honest-verifier computational zero-knowledge for L��

11 / 16

Π′
��

is Computational ZKP for Graph Hamiltonicity...
Soundness: locker binding ⇒ Π′

�� is sound
Zero-knowledge: locker “computationally” hides its content ⇒
Π′
�� is honest-verifier computational zero-knowledge for L��

Simulator: again, sample out of order
1 Sample random � ← {�, �}
2 If � = �

Sample random permutation σ and set � := σ (�)
Prepare lockers (��, . . . ,��) and

��,�
�

(�,�)∈(��) as in protocol

11 / 16

Π′
��

is Computational ZKP for Graph Hamiltonicity...
Soundness: locker binding ⇒ Π′

�� is sound
Zero-knowledge: locker “computationally” hides its content ⇒
Π′
�� is honest-verifier computational zero-knowledge for L��

Simulator: again, sample out of order
1 Sample random � ← {�, �}
2 If � = �

Sample random permutation σ and set � := σ (�)
Prepare lockers (��, . . . ,��) and

��,�
�

(�,�)∈(��) as in protocol
3 If � = �

Sample random cycle � over [�,�]
Leave lockers (��, . . . ,��) empty and store � ’s adjacency matrix
in

��,�
�

(�,�)∈(��)
11 / 16

Π′
��

is Computational ZKP for Graph Hamiltonicity...

Exercise 4
Describe the simulator for malicious-verifier ZK for Π′

��

Exercise 5
Think of ZKP for other ��-complete problems like �× � Sudoku
and graph three-colouring

11 / 16

Plan for Today’s Lecture

1 Malicious-Verifier ZKP for Graph Isomorphism

2 (Computational) ZKP for ��

3 Commitment Scheme

11 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}ℓ :

Computational hiding: � reveals no information about � to
PPT adversaries

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}ℓ :

Computational hiding: � reveals no information about � to
PPT adversaries
Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��) ̸= �(�, ��)

12 / 16

Commitment Schemes are Digital Lockers
Defintion 2
A (non-interactive) commitment scheme is a pair of algorithms (�,�)
with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}ℓ :

Computational hiding: � reveals no information about � to
PPT adversaries
Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��) ̸= �(�, ��)
In general the commit phase can be interactive

12 / 16

How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

13 / 16

How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?

13 / 16

How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?
1 Recognise honestly sampled ��s
2 Ciphertext-indistinguishability ⇒ hiding
3 Perfect correctness of decryption ⇒ binding

13 / 16

How to Construct Commitment Schemes?...
Construction 2 (PKE Π = (���, ���,���) → commitment scheme Σ)

What are the properties we require from Π?
1 Recognise honestly sampled ��s
2 Ciphertext-indistinguishability ⇒ hiding
3 Perfect correctness of decryption ⇒ binding

Exercise 6
Which of the PKEs we have seen satisfy the above properties?

13 / 16

How to Construct Commitment Schemes?...
Construction 3 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

14 / 16

How to Construct Commitment Schemes?...
Construction 3 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f permutation ⇒ perfect binding

14 / 16

How to Construct Commitment Schemes?...
Construction 3 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f permutation ⇒ perfect binding

Exercise 7
1 Formally describe the construction, and write down the proof
2 Given a bit-commitment, construct a commitment for {�, �}ℓ

14 / 16

How to Construct Commitment Schemes?...
Construction 3 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f permutation ⇒ perfect binding

14 / 16

How to Construct Commitment Schemes?...
Construction 3 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f permutation ⇒ perfect binding

Exercise 7
1 Formally describe the construction, and write down the proof
2 Given a bit-commitment, construct a commitment for {�, �}ℓ

14 / 16

To Recap Today’s Lecture

Malicious-verifier perfect ZKP for ��
Simulator was expected polynomial-time
Takeaway: Out of order sampling of transcript

15 / 16

To Recap Today’s Lecture

Malicious-verifier perfect ZKP for ��
Simulator was expected polynomial-time
Takeaway: Out of order sampling of transcript

Computational ZKP for ��
Blum’s protocol for Graph HamiltonicityWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

15 / 16

To Recap Today’s Lecture

Malicious-verifier perfect ZKP for ��
Simulator was expected polynomial-time
Takeaway: Out of order sampling of transcript

Computational ZKP for ��
Blum’s protocol for Graph HamiltonicityWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

Commitment schemes
Non-interactive constructions from PKE and OWP
Two-message construction from PRG ← OWF

15 / 16

Next Lecture

Proofs of knowledge (PoK)
PoK for the discrete-logarithm problem: Schnorr’s protocol
Fiat-Shamir Transform

Digital signatures from discrete-logarithm problem in the
random-oracle model

16 / 16

References

1 [Gol01, Chapter 4] for details of today’s lecture
2 [GMR89] for definitional and philosophical discussion on ZK
3 The ZKP for graph Hamiltonicity is due to Blum [Blu86]
4 The constructions of commitment scheme from OWP and PRG

is from [GMW91] and [Nao90]

16 / 16

	Malicious-Verifier ZKP for Graph Isomorphism
	(Computational) ZKP for NP
	Commitment Scheme

