CS783: Theoretical Foundations of Cryptography

Lecture 16 (04/Oct/24)

Instructor: Chethan Kamath
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- m Takeaway: out of order sampling of transcript ...
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(ComputatLonal) ZKP for NP

m Blum’s protocol for Graph Hamtltontatg using lockers
m Locker computationally hides = ZK
m What about perfect/statistical ZKP for NP?

ANot possible (unless polynomial hierarchy collapses)!

m Commitment schemes: digital lockers (@)( >

m Non-interactive constructions from PKE and OWP
m Two-message construction from PRG «— OWF

1/16



Commitment Schemes are Digital Lockers

Defintion 1

A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax:
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Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax: —
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m Correctness: for all n € N and iﬁputs be {0,1}:
Prr [R(S@")b )-r))r/b) - 1}:)

m Computational hiding: PPT adversary cannot distinguish
commitment to O from commitment to 1

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings ry, r1 € {0,1}" such that R(c, ry,0) = R(c, r, 1) =1

m In general the commit phase can be interactive —
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Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
befons

resoi”

L~.:@\c(r)eab,¥,w>

Cender fecoier

m Security of hard-core predicate hc = computational hiding
m f, permutation = perfect binding

Exercise 1

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for {O, 1}€
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Plan for Today's Lecture

m Proof of knowledge (PoK): soundness i knowledge soundness

m We have captured “gaining knowledge” via simulator
m How to capture “knowledge” itself?

(3 Ay calview
m Zero-knowledge PoK for bye € g
2 ) b — &
1 Graph Isomorphism sié = i@
+ D3 2 |

2 Discrete-log problem: Schnorr's protocol

m Fiat-Shamir Transform

m Interactive protocol non-interactive protocol
m Digital signature from Schnorr's protocol

Random Oracle
B
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m Completeness
m Soundness
m Zero-knowledge (ZK)

m In some situations, stronger guarantee is needed: V should be
convinced that P knows a witness
m |dentification, e.g, for ElGamal PKE in cyclic group G

m Public key is h := g2 and secret key is the discrete log a
m Owner has to prove they possess a (such an a always exists)

Y.

Alicé :
Bob R e R
m TFNP problems: for every instance there exists a solution”
m Smith: given 3-reqular graph with a Ham. cycle, find one more
m Solver wants to prove they have found the second Ham. cycle

© 3 7. (3 )
N 10 TN aE
A e —E0 o —E -
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m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

m Formalised via “simulation paradigm”: V's view can be
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How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”

m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x

@Hovv would you quantify “knowledge” itself?

m For a student: get hold of student, hold viva, extract answers

ACLEPT IF

T borm.on (1)
th=p(G)

H= T (&)

et -0
Y= Lo ko=

m For P in g ? Should be possible to efficiently extract
isomorphism 7 given access to P
m In general, for NP: should be possible to extract a witness w
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Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete

2 Zero knowledge
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Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete <: )
2 Zero knowledge @Oo“ 0

3 Knowledge sound:

m 3 expected polynomial-time extractor Ext such that
m VY prover P* and instance x: N i«naw\zdg(, occor”

T

Pr  [w is a witness for x] > Pr[1 « (P*, V)(x)] — ex

w—ExtP"(x)

.. . . . /{ﬂ ‘h!
=~ ® Trivial if we omit either of 2 or 3 *_*)

M m Ext must do something more than V, e.q. “rewind” P*
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Let's Define Zero-Knowledge Proof of Knowledge..

Exercise 2 (PoK implies soundness)
Show that if an IP has knowledge error at most €y then its

soundness error €s < €.

Exercise 3

Does this notion make sense beyond NP?

{1
Np-(omplete
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2 Examples

3 Ftat-Shamir Transform
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Recall l¢g: ZKP for Gl

@Jj Observation: transitivity of isomorphism
] G();Gl:>lf61;chen GO;H

Protocol 1 (Mg = (P, V): IP for Lgy)

(OmPJk v Olf\’\@lcb

ACCEPT IF

T Rerrn.o0 (A=)
ot fb=0
Y= le b=

1 P “commits” by sending a random H s.t. Gy = H
2 For b« {0,1}, V challenges P to ‘reveal”  s.t. G, = H
3 V accepts if Y(Gp) = H
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How to Extract st from P*?
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How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s dale0ge0
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy Ext%,,,@.)

Dinidke P7on (G, ) b dotan
2) Cnallenge on 0 D et ,

3) Fevsind Pto end of 1)
4) Crallenge on \ o get
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Carnpak 10 (=G

T ferm.on (1 A=)
_ WW &o=0
Y= ¢ tf o=t

R AN Nadphs 1& & 4)
o O
PX( /—/'WT’_} H /'{\YD(O D) \E/’W \KCH)

G= P e) O
Exercise 4

Analyse strategy for P* with Pr[1 « (P*,V)(Gy, G1)| = 1/2 4 1/n
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/KPoK for DLog: Schnorr’s Protocol

O:}\/ylﬂ']_ k:qlﬁgl—‘)gl
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Defintion 3 (DLog problem in prime-order G w.rto S)
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m Solution: a
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L/> l—2 =gk 9 g-
<?§*) I ) ﬂz‘ G . :
m Recall: Q... ./ Oy ® g

Defintion 3 (DLog problem in prtme—order G w.rto S)

m Input:
1 (G, p,g) sampled by a group sampler S(1")
2 h:=g? fora<7Z,

m Solution: a

/(J(*Z’p
m ElGamal PKE: ‘“Pﬁfhfﬁ/go )

m Public key: h = g°  G=k-m [y 0\
m Secret key:@a \
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/KPoK for DLog: Schnorr’s Protocol

D e ! lfrqlﬁglﬁg%
gﬂ[ (?1}) f . ﬂl% G ) :
m Recall: R _ i oWy R gt

Defintion 3 (DLog problem in prime-order G w.rto S)

m /nput:
1 (G, p, g) sampled by a group sampler S(1")
2 h:=g?fora—17Z,

m Solution: a

(@
m ElGamal PKE: ==
m Public key: h = g°

m Secret key:@a

m |dentification protocol for ElGamal P

m ZKP: owner of h proves possession of a without revealing it
m PoK: without knowledge of a, verifier cannot be convinced
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Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - @)L-qr B o S GV arioms)
m Honest-verifier ZK: out of order sampling, again

|
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/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - (90) g o gt (by yoop arioms)
m Honest-verifier ZK: out of order samplmg again

(tribuked L\(ﬂbm\j o
gy Sne

§ER qkrat is condom
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How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

r Z U
‘““’“

@/ﬁ?

P _//—“7 \
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How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)
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Exercise 5 (“Rewinding lemma”)

Analyse strategy for P* with Pr[1 « (P*,V)(h)]=1/p+ 1/n
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Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)

If L has a non-interactive ZKP 1 = (P, V) then L € BPP

m One way around: NIZK in random oracle model (ROM)
m ROM: All parties P, V, Sim and Ext can access to random
function H in the sky
m Sim and Ext can program H
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NIZK in ROM via Fiat-Shamir Transform\

‘ o . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random C% iy
m E.g, [pLeg (Schnorr’s protocol) and I //b o>
Com

m NpLog can be shown to be NIZK(PoK) in ROM
m Tweak Npioq to get signature: include messagedm in hash
m Closely-related to DSA

14/16
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m Quantified what "knowing something” means via extractors
m Examples

1 ZKPoK for Graph Isomorphism (Cl)
2 ZKPoK for the discrete-log problem: Schnorr's protocol
3 Key tool: rewinding the prover

m Fiat-Shamir Transform

m NIZK in random oracle model (ROM)
m Digital signature from DLog in ROM
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Next Lecture

Task 6: private computation of two-party functions
Security: extending the simulation paradigm
Perfectly-secure private computation of linear functions

Impossibility of perfect security for general functions
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