
CS783: Theoretical Foundations of Cryptography
Lecture 16 (04/Oct/24)

Instructor: Chethan Kamath



Recall from Last Lecture
Malicious-verifier perfect ZKP for GI

Simulator was expected polynomial-time
Takeaway: out of order sampling of transcript

1 / 16



Recall from Last Lecture
Malicious-verifier perfect ZKP for GI

Simulator was expected polynomial-time
Takeaway: out of order sampling of transcript

(Computational) ZKP for ��
Blum’s protocol for Graph Hamiltonicity using lockers
Locker computationally hides ⇒ ZK

1 / 16



Recall from Last Lecture
Malicious-verifier perfect ZKP for GI

Simulator was expected polynomial-time
Takeaway: out of order sampling of transcript

(Computational) ZKP for ��
Blum’s protocol for Graph Hamiltonicity using lockers
Locker computationally hides ⇒ ZKWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

1 / 16



Recall from Last Lecture
Malicious-verifier perfect ZKP for GI

Simulator was expected polynomial-time
Takeaway: out of order sampling of transcript

(Computational) ZKP for ��
Blum’s protocol for Graph Hamiltonicity using lockers
Locker computationally hides ⇒ ZKWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

Commitment schemes: digital lockers
Non-interactive constructions from PKE and OWP
Two-message construction from PRG ← OWF

1 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

2 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

2 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

2 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}:

Computational hiding: PPT adversary cannot distinguish
commitment to � from commitment to �

2 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}:

Computational hiding: PPT adversary cannot distinguish
commitment to � from commitment to �

Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��, �) = �(�, ��, �) = �

2 / 16



Commitment Schemes are Digital Lockers
Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(�,�) with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}:

Computational hiding: PPT adversary cannot distinguish
commitment to � from commitment to �

Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��, �) = �(�, ��, �) = �

In general the commit phase can be interactive
2 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

3 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

3 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

3 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

3 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f� permutation ⇒ perfect binding

3 / 16



Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f� permutation ⇒ perfect binding

Exercise 1
1 Formally describe the construction, and write down the proof
2 Given a bit-commitment, construct a commitment for {�, �}ℓ

3 / 16



Plan for Today’s Lecture...
Proof of knowledge (PoK): soundness → knowledge soundness

4 / 16



Plan for Today’s Lecture...
Proof of knowledge (PoK): soundness → knowledge soundness

We have captured “gaining knowledge” via simulator
How to capture “knowledge” itself?

4 / 16



Plan for Today’s Lecture...
Proof of knowledge (PoK): soundness → knowledge soundness

We have captured “gaining knowledge” via simulator
How to capture “knowledge” itself?

Zero-knowledge PoK for
1 Graph Isomorphism
2 Discrete-log problem: Schnorr’s protocol

4 / 16



Plan for Today’s Lecture...
Proof of knowledge (PoK): soundness → knowledge soundness

We have captured “gaining knowledge” via simulator
How to capture “knowledge” itself?

Zero-knowledge PoK for
1 Graph Isomorphism
2 Discrete-log problem: Schnorr’s protocol

Fiat-Shamir Transform
Interactive protocol Random Oracle−−−−−−−−→ non-interactive protocol
Digital signature from Schnorr’s protocol

4 / 16



Plan for Today’s Lecture

1 Zero-Knowledge Proof of Knowledge

2 Examples

3 Fiat-Shamir Transform

4 / 16



Plan for Today’s Lecture

1 Zero-Knowledge Proof of Knowledge

2 Examples

3 Fiat-Shamir Transform

4 / 16



Recall Definition of Zero-Knowledge Proof (for ��)
Completeness
Soundness
Zero-knowledge (ZK)

5 / 16



Recall Definition of Zero-Knowledge Proof (for ��)
Completeness
Soundness
Zero-knowledge (ZK)

In some situations, stronger guarantee is needed: � should beconvinced that � knows a witness
Identification, e.g., for ElGamal PKE in cyclic group G

Public key is � := �� and secret key is the discrete log �

Owner has to prove they possess � (such an � always exists)

5 / 16



Recall Definition of Zero-Knowledge Proof (for ��)
Completeness
Soundness
Zero-knowledge (ZK)

In some situations, stronger guarantee is needed: � should beconvinced that � knows a witness
Identification, e.g., for ElGamal PKE in cyclic group G

Public key is � := �� and secret key is the discrete log �

Owner has to prove they possess � (such an � always exists)

���� problems: for every instance there exists a solution
Smith: given �-regular graph with a Ham. cycle, find one more
Solver wants to prove they have found the second Ham. cycle

5 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it

6 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

6 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

How would you quantify “knowledge” itself?

6 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

How would you quantify “knowledge” itself?
For a student: get hold of student, hold viva, extract answers

6 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

How would you quantify “knowledge” itself?
For a student: get hold of student, hold viva, extract answers

For � in ΠGI?

6 / 16



How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

How would you quantify “knowledge” itself?
For a student: get hold of student, hold viva, extract answers

For � in ΠGI? Should be possible to efficiently extract
isomorphism π given access to �

In general, for ��: should be possible to extract a witness �
6 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

Trivial if we omit either of 2 or 3
��� must do something more than �, e.g. “rewind” �∗

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...

Exercise 2 (PoK implies soundness)
Show that if an IP has knowledge error at most ε� then its
soundness error ε� ≤ ε� .
Exercise 3
Does this notion make sense beyond ��?

7 / 16



Plan for Today’s Lecture

1 Zero-Knowledge Proof of Knowledge

2 Examples

3 Fiat-Shamir Transform

7 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

Exercise 4
Analyse strategy for �∗ with Pr[� ← ⟨�∗,�⟩(��,��)] = �/� + �/� 9 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Recall:

Defintion 3 (DLog problem in prime-order G w.r.to �)
Input:

1 (G,�,�) sampled by a group sampler �(��)
2 � := �� for � ← Z�

Solution: �

10 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Recall:

Defintion 3 (DLog problem in prime-order G w.r.to �)
Input:

1 (G,�,�) sampled by a group sampler �(��)
2 � := �� for � ← Z�

Solution: �

ElGamal PKE:
Public key: � := ��

Secret key: �

10 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Recall:

Defintion 3 (DLog problem in prime-order G w.r.to �)
Input:

1 (G,�,�) sampled by a group sampler �(��)
2 � := �� for � ← Z�

Solution: �

ElGamal PKE:
Public key: � := ��

Secret key: �
Identification protocol for ElGamal PKE:

ZKP: owner of � proves possession of � without revealing it
PoK: without knowledge of �, verifier cannot be convinced

10 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

Completeness:

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

Completeness:
Honest-verifier ZK: out of order sampling, again

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

Completeness:
Honest-verifier ZK: out of order sampling, again

11 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Protocol 2 (ΠDLog: Schnorr’s protocol)

Completeness:
Honest-verifier ZK: out of order sampling, again

11 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

12 / 16



How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

Exercise 5 (“Rewinding lemma”)
Analyse strategy for �∗ with Pr[� ← ⟨�∗,�⟩(�)] = �/� + �/� 12 / 16



Plan for Today’s Lecture

1 Zero-Knowledge Proof of Knowledge

2 Examples

3 Fiat-Shamir Transform

12 / 16



Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)
If L has a non-interactive ZKP Π = (�,�) then L ∈ ���

13 / 16



Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)
If L has a non-interactive ZKP Π = (�,�) then L ∈ ���

One way around: NIZK in random oracle model (ROM)
ROM: All parties �, �, ��� and ��� can access to random
function H in the sky
��� and ��� can program H

13 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H
Construction 2 (Schnorr’s non-interactive protocol NDLog)

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H
Construction 2 (Schnorr’s non-interactive protocol NDLog)

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H
Construction 2 (Schnorr’s non-interactive protocol NDLog)

NDLog can be shown to be NIZK(PoK) in ROM

14 / 16



NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H
Construction 2 (Schnorr’s non-interactive protocol NDLog)

NDLog can be shown to be NIZK(PoK) in ROM
Tweak NDLog to get signature: include message � in hash

Closely-related to DSA
14 / 16



To Recap Today’s Lecture

Zero-knowledge proofs of knowledge (ZKPoK)
Quantified what “knowing something” means via extractors

15 / 16



To Recap Today’s Lecture

Zero-knowledge proofs of knowledge (ZKPoK)
Quantified what “knowing something” means via extractors

Examples
1 ZKPoK for Graph Isomorphism (GI)
2 ZKPoK for the discrete-log problem: Schnorr’s protocol
3 Key tool: rewinding the prover

15 / 16



To Recap Today’s Lecture

Zero-knowledge proofs of knowledge (ZKPoK)
Quantified what “knowing something” means via extractors

Examples
1 ZKPoK for Graph Isomorphism (GI)
2 ZKPoK for the discrete-log problem: Schnorr’s protocol
3 Key tool: rewinding the prover

Fiat-Shamir Transform
NIZK in random oracle model (ROM)
Digital signature from DLog in ROM

15 / 16



Next Lecture

Task 6: private computation of two-party functions
Security: extending the simulation paradigm
Perfectly-secure private computation of linear functions
Impossibility of perfect security for general functions

16 / 16



References

1 [Gol01, §4.7] for details of today’s lecture
2 [GMR89] for definitional and philosophical discussion on ZK
3 NIZK was introduced [BFM88]
4 Fiat-Shamir Transform was introduced in [FS87]
5 The constructions of commitment scheme from OWP and PRG

is from [GMW91] and [Nao90]

16 / 16



Manuel Blum, Paul Feldman, and Silvio Micali.
Non-interactive zero-knowledge and its applications (extended abstract).
In 20th ACM STOC, pages 103–112. ACM Press, May 1988.
Amos Fiat and Adi Shamir.
How to prove yourself: Practical solutions to identification and signature
problems.
In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.
Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.
Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.
J. ACM, 38(3):691–729, 1991.
Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

16 / 16



Moni Naor.
Bit commitment using pseudo-randomness.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 128–136.
Springer, Heidelberg, August 1990.

16 / 16


	Zero-Knowledge Proof of Knowledge
	Examples
	Fiat-Shamir Transform

