CS783: Theoretical Foundations of Cryptography

Lecture 16 (04/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture

m Malicious-verifier perfect ZKP for Gl

‘m Simulator was expected polynomial-time
- m Takeaway: out of order sampling of transcript

b Qo, Ny

e
ﬁ<4/44jf :J€

U

1/16

Recall from Last Lecture

m Malicious-verifier perfect ZKP for Gl

‘m Simulator was expected polynomial-time
- m Takeaway: out of order sampling of transcript ...

. Oc% \

B Hj:&(ﬁﬁ)
ﬁ<4/44jf :J€

(ComputatLonal) ZKP for NP

m Blum’s protocol for Graph Hamtltomatg using lockers
m Locker computationally hides = ZK

1/16

Recall from Last Lecture

m Malicious-verifier perfect ZKP for Gl

‘m Simulator was expected polynomial-time
- m Takeaway: out of order sampling of transcript ...

. O(% \

B Hj:&(ﬁﬁ)
ﬁ<4/44jf :J€

(ComputatLonal) ZKP for NP

m Blum’s protocol for Graph Hamtltontatg using lockers
m Locker computationally hides = ZK
m What about perfect/statistical ZKP for NP?

ANot possible (unless polynomial hierarchy collapses)!

1/16

Recall from Last Lecture

m Malicious-verifier perfect ZKP for Gl

‘m Simulator was expected polynomial-time
- m Takeaway: out of order sampling of transcript ...

. OCL \

B Hj:&(ﬁﬁ)
ﬁ<4/44jf :Jg

(ComputatLonal) ZKP for NP

m Blum’s protocol for Graph Hamtltontatg using lockers
m Locker computationally hides = ZK
m What about perfect/statistical ZKP for NP?

ANot possible (unless polynomial hierarchy collapses)!

m Commitment schemes: digital lockers (@)(>

m Non-interactive constructions from PKE and OWP
m Two-message construction from PRG «— OWF

1/16

Commitment Schemes are Digital Lockers

Defintion 1

A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax:
béioﬂf

é&ﬂd@@

2/16

Commitment Schemes are Digital Lockers

Defintion 1

A (non-interactive) bit commitment scheme is a pair of algorithms

(S, R) with the following syntax:
béioﬂf @

(@, C
c=5("0;¢) @ —_—
Cender

2/16

Commitment Schemes are Digital Lockers

Defintion 1

A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax:

beso i

@,
Sender ‘ﬁa,r

Ru,r/b):‘%

2/16

Commitment Schemes are Digital Lockers

Defintion 1

A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax: —
bé%ﬂﬂf

(@, C
=50 0;6) @ —_—
Cender T

m Correctness: for all n € N and iﬁputs be {0,1}:
P (R(SC 0 50r) 1)

m Computational hiding: PPT adversary cannot distinguish
commitment to O from commitment to 1

2/16

Commitment Schemes are Digital Lockers

Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax: e
/7 beSol . \ sl RLL,C@’@
((= SQH/ b/() ° @ . C I/ S | \\1\///
Sender er fecener

m Correctness: for all n € N and iﬁputs be {0,1}:
Pr [R(S(o50)re) 1))
m Computational hiding: PPT adversary cannot distinguish
commitment to O from commitment to 1

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings ry, r1 € {0,1}" such that R(c, ry,0) = R(c, r, 1) =1

2/16

Commitment Schemes are Digital Lockers

Defintion 1
A (non-interactive) bit commitment scheme is a pair of algorithms
(S, R) with the following syntax: —
besort \ | QL@,QB‘@
) < \\\» -

(@, C R
c=5("0;¢) @ f— & —
Cender %r Pecenex

m Correctness: for all n € N and iﬁputs be {0,1}:
Prr [R(S@")b)-r))r/b) - 1}:)

m Computational hiding: PPT adversary cannot distinguish
commitment to O from commitment to 1

m Perfect binding: for any ¢ € {0,1}", there do not exist
openings ry, r1 € {0,1}" such that R(c, ry,0) = R(c, r, 1) =1

m In general the commit phase can be interactive —

2/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}

besonk

Cender fecoier

3/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
befons

reSou”

Co= (hC(€)BD, £41)

Cender fecoier

3/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
befons

reSou”

Co= (hC(€)BD, £41)

Cender fecoier

3/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
besort

reSou”

Co= (hC(€)BD, £41)

Cender Peceex

3/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
befons

reSou”

Co= (hC(€)BD, £41)

Cender fecoier

m Security of hard-core predicate hc = computational hiding
m f, permutation = perfect binding

3/16

Bit Commitment < OWP

Construction 1 (OWP f, : {0,1}" — {0,1}" — bit-commitment L)

m Recall: every (leaky) f, has hard-core predicate
hc:{0,1}" — {0,1}
befons

resoi”

L~.:@\c(r)eab,¥,w>

Cender fecoier

m Security of hard-core predicate hc = computational hiding
m f, permutation = perfect binding

Exercise 1

1 Formally describe the construction, and write down the proof

2 Given a bit-commitment, construct a commitment for {O, 1}€
3/16

m Proof of knowledge (PoK): soundness 5 knowledge soundness

4/16

Plan for Today's Lecture

m Proof of knowledge (PoK): soundness 5 knowledge soundness

m We have captured “gaining knowledge” via simulator
m How to capture “knowledge” itself?

R
olated View

B

4/16

Plan for Today's Lecture

m Proof of knowledge (PoK): soundness i knowledge soundness

m We have captured “gaining knowledge” via simulator
m How to capture “knowledge” itself?

‘ —
: PLNG —_—
e) v calwewee TS
m /ero-knowledge PoK for ar—
2 7~ 6 —(5
1 Graph Isomorphism 3%6 = | 98
AN
4 5 2]

2 Discrete-log problem: Schnorr's protocol

4/16

Plan for Today's Lecture

m Proof of knowledge (PoK): soundness i knowledge soundness

m We have captured “gaining knowledge” via simulator
m How to capture “knowledge” itself?

(3 Ay calview
m Zero-knowledge PoK for bye € g
2) b — &
1 Graph Isomorphism sié = i@
+ D3 2 |

2 Discrete-log problem: Schnorr's protocol

m Fiat-Shamir Transform

m Interactive protocol non-interactive protocol
m Digital signature from Schnorr's protocol

Random Oracle
B

4/16

1 Zero-Knowledge Proof of Knowledge
2 Examples

3 Fiat-Shamir Transform

4/16

1 Zero-Knowledge Proof of Knowledge
2 Examples

3 Ftat-Shamir Transform

4/16

Recall Definition of Zero-Knowledge Proof (for NP)

m Completeness
m Soundness
m Zero-knowledge (ZK)

5/16

Recall Definition of Zero-Knowledge Proof (for NP)

m Completeness
m Soundness
m Zero-knowledge (ZK)

m In some situations, stronger guarantee is needed: V should be
convinced that P knows a witness

m |dentification, e.g, for ElGamal PKE in cyclic group G

m Public key is h := g2 and secret key is the discrete log a
m Owner has to prove they possess a (such an a always exists)

5/16

Recall Definition of Zero-Knowledge Proof (for NP)

m Completeness
m Soundness
m Zero-knowledge (ZK)

m In some situations, stronger guarantee is needed: V should be
convinced that P knows a witness
m |dentification, e.g, for ElGamal PKE in cyclic group G

m Public key is h := g2 and secret key is the discrete log a
m Owner has to prove they possess a (such an a always exists)

Y.

Alicé :
Bob R e R
m TFNP problems: for every instance there exists a solution”
m Smith: given 3-reqular graph with a Ham. cycle, find one more
m Solver wants to prove they have found the second Ham. cycle

© 3 7. (3)
N 10 TN aE
A e —E0 o —E -

5/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”

m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

6/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x

6/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x

@ How would you quantify ‘knowledge” itself?

6/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”
m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it
m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x
@ How would you quantify ‘knowledge” itself?

m For a student: get hold of student, hold viva, extract answers

6/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”

m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x

@Hovv would you quantify “knowledge” itself?
m For a student: get hold of student, hold viva, extract answers

ACLEPT IF

T form.on () ‘
(=)

H= T (&)

et -0
Y= Lo ko=

m For Pinllg?

6/16

How to Quantify Knowledge?

m For defining ZK, we only quantified “gain of knowledge”

m 'V gains no knowledge” if anything V can compute after the
interaction with P, it could have computed without it

m Formalised via “simulation paradigm”: V's view can be
efficiently simulated given only the instance x

@Hovv would you quantify “knowledge” itself?

m For a student: get hold of student, hold viva, extract answers

ACLEPT IF

T borm.on (1)
th=p(G)

H= T (&)

et -0
Y= Lo ko=

m For P in g ? Should be possible to efficiently extract
isomorphism 7 given access to P
m In general, for NP: should be possible to extract a witness w

6/16

Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete

2 Zero knowledge

7116

Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete %O

2 Zero knowledge

3 Knowledge sound:

m 3 expected polynomial-time extractor Ext such that
m VY prover P* and instance x:

Pr [w is a witness for x] > Pr[1 « (P*, V)(x)] — ex

w—ExtP"(x)

7116

Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete %O

2 Zero knowledge

3 Knowledge sound:

m 3 expected polynomial-time extractor Ext such that
m VY prover P* and instance x: N i«naw\zdg(, occor”

T

Pr [w is a witness for x] > Pr[1 « (P*, V)(x)] — ex

w—ExtP"(x)

7116

Let's Define Zero-Knowledge Proof of Knowledge

Defintion 2 (ZKPoK)

An interactive protocol 1 = (P, V) for an NP language L is a
zero-knowledge proof of knowledge if it is

1 Complete <:)
2 Zero knowledge @Oo“ 0

3 Knowledge sound:

m 3 expected polynomial-time extractor Ext such that
m VY prover P* and instance x: N i«naw\zdg(, occor”

T

Pr [w is a witness for x] > Pr[1 « (P*, V)(x)] — ex

w—ExtP"(x)

.. . . . /{ﬂ ‘h!
=~ ® Trivial if we omit either of 2 or 3 *_*)

M m Ext must do something more than V, e.q. “rewind” P*

7116

Let's Define Zero-Knowledge Proof of Knowledge..

Exercise 2 (PoK implies soundness)
Show that if an IP has knowledge error at most €y then its

soundness error €s < €.

Exercise 3

Does this notion make sense beyond NP?

{1
Np-(omplete

7116

1 Zero-Knowledge Proof of Knowledge
2 Examples

3 Ftat-Shamir Transform

7116

w Observation: transitivity of isomorphism
mGEG = if G EHthen Gg = H

8/16

Recall l¢g: ZKP for Gl

@3 Observation: transitivity of isomorphism
mGEG = if G EHthen Gg = H

Protocol 1 (Mg = (P, V): IP for Lg)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” ¢ st. Gy = H
3 V accepts if Y(Gp) = H

8/16

Recall l¢g: ZKP for Gl

@3 Observation: transitivity of isomorphism
mGEG = if G EHthen Gg = H

Protocol 1 (Mg = (P, V): IP for Lg)

1 P “commits” by sending a random H st Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” ¢ st. Gy = H
3 V accepts if Y(Gp) = H

8/16

Recall l¢g: ZKP for Gl

@Jj Observation: transitivity of isomorphism
] G();Gl:>lf61;chen GO;H

Protocol 1 (Mg = (P, V): IP for Lgy)

1 P “commits” by sending a random H s.t. Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” s.t. G, = H
3 V accepts if Y(Gp) = H

8/16

Recall l¢g: ZKP for Gl

@Jj Observation: transitivity of isomorphism
] G();Gl:>lf61;chen GO;H

Protocol 1 (Mg = (P, V): IP for Lgy)

1 P “commits” by sending a random H s.t. Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” s.t. G, = H
3 V accepts if Y(Gp) = H

8/16

Recall l¢g: ZKP for Gl

@Jj Observation: transitivity of isomorphism
] G();Gl:>lf61;chen GO;H

Protocol 1 (Mg = (P, V): IP for Lgy)

(OmPJk v Olf\’\@lcb

T Rerrn.o0 (A=)
ot fb=0
Y= le b=

1 P “commits” by sending a random H s.t. Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” s.t. G, = H
3 V accepts if Y(Gp) = H

8/16

Recall l¢g: ZKP for Gl

@Jj Observation: transitivity of isomorphism
] G();Gl:>lf61;chen GO;H

Protocol 1 (Mg = (P, V): IP for Lgy)

(OmPJk v Olf\’\@lcb

ACCEPT IF

T Rerrn.o0 (A=)
ot fb=0
Y= le b=

1 P “commits” by sending a random H s.t. Gy = H
2 For b« {0,1}, V challenges P to ‘reveal” s.t. G, = H
3 V accepts if Y(Gp) = H

8/16

Mg is a ZKPoK for Lg) with €, < 1/2

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s deilenje0
Proof (of PoK) Hint yloyy=0tocomr =

(orﬂpql(m: Q‘:W(QQ

e forra.n (A= TG)
_ WW fo=0
Y= ¢ it o=t

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s CileNgeo
Proof (of PoK) Hint yloyy=0tocomr =

exvadion swdveay €%,)
Dlewdke P on (G, ,G) @ dotatn i

Carnpak 10 (=G

e ferra.m (A =T
_ va d-b=0
Y= ¢ it o=t

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s deilenje0
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy Ext%,,,o.)

Dimdke P on (g, ,G) b dotatn i
2) Cnallenge on 0 D get .

Carnpak 10 (=G

e ferra.m (A =T
_ va d-b=0
Y= ¢ it o=t

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s deilenje0
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy Ext%,,,o.)

Dinidke B on (G,) b dotan
2) Cuallenge on 0 get 4,

3 Rewind PEo 20 0 1
—{ OOO o

Carnpak 10 (=G

e ferra.m (A =T
_ va fo=0
Y= e it o=t

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s CileNgeo
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy M?}@MGD

Dinwdke P on (G, Gy o detain
2) Cuallenge on 0 get 4,

3) Reand Peo end of 1)
4) Crallene on\ o get oy
_l éé:!IIHIIIHIII!DCL) rg

(omqu m: Q‘:W(QQ

e ferra.m (A =T
_ va fo=0
Y= e it o=t

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s CileNgeo
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy M?}@MGD

Dinwdke P on (G, Gy o detain
2) Cuallenge on 0 get 4,

3) Reand Peo end of 1)
4) Crallene on\ o get oy
_l éé:!IIHIIIHIII!DCL) rg

(omqu m: Q‘:W(QQ

e ferra.m (A =T
_ va fo=0
Y= e it o=t

5) OupX Wi,

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s CileNgeo
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy M?}@MGD

Dinwdke P on (G, Gy o detain
2) Cuallenge on 0 get 4,

3) Reand Peo end of 1)
4) Crallene on\ o get oy
_l 55:!IIHI||!|||!>CL) rg

(omqu m: Q\:W(QQ

e ferra.m (A =T
_ va fo=0
Y= e it o=t

L SN Nt 13/ ¢ 4)
¢« — vl
\,x(ﬁ/wﬁ A JyW-)

G W Yo &) 0O

9/16

How to Extract st from P*?

Theorem 1

Mg is a ZKPoK for Lg) with €, < 1/2

1esense £ Calenge 16y s dale0ge0
Proof (of PoK) Hint yloyy=0tocomr =

taadion stvegy Ext%,,,@.)

Dinidke P7on (G,) b dotan
2) Cnallenge on 0 D et ,

3) Fevsind Pto end of 1)
4) Crallenge on \ o get
—‘ OOO OOG

Carnpak 10 (=G

T ferm.on (1 A=)
_ WW &o=0
Y= ¢ tf o=t

R AN Nadphs 1& & 4)
o O
PX(/—/'WT’_} H /'{\YD(O D) \E/’W \KCH)

G= P e) O
Exercise 4

Analyse strategy for P* with Pr[1 « (P*,V)(Gy, G1)| = 1/2 4 1/n

9/16

/KPoK for DLog: Schnorr’s Protocol

O:}\/ylﬂ']_ k:qlﬁgl—‘)gl
B Recall ,i.“e .‘(/ qu r\.'.eg\/

Defintion 3 (DLog problem in prime-order G w.rto S)

m /nput:
1 (G, p, g) sampled by a group sampler S(1")
2 h:=g?fora—17Z,

m Solution: a

10/16

/KPoK for DLog: Schnorr’s Protocol

L/> l—2 =gk 9 g-
<?§*) I) ﬂz‘ G . :
m Recall: Q... ./ Oy ® g

Defintion 3 (DLog problem in prtme—order G w.rto S)

m Input:
1 (G, p,g) sampled by a group sampler S(1")
2 h:=g? fora<7Z,

m Solution: a

/(J(*Z’p
m ElGamal PKE: ‘“Pﬁfhfﬁ/go)

m Public key: h = g° G=k-m [y 0\
m Secret key:@a \

10/16

/KPoK for DLog: Schnorr’s Protocol

D e ! lfrqlﬁglﬁg%
gﬂ[(?1}) f . ﬂl% G) :
m Recall: R _ i oWy R gt

Defintion 3 (DLog problem in prime-order G w.rto S)

m /nput:
1 (G, p, g) sampled by a group sampler S(1")
2 h:=g?fora—17Z,

m Solution: a

(@
m ElGamal PKE: ==
m Public key: h = g°

m Secret key:@a

m |dentification protocol for ElGamal P

m ZKP: owner of h proves possession of a without revealing it
m PoK: without knowledge of a, verifier cannot be convinced

10/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - @)L-qr B o S GV arioms)

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - @)L-qr B o S GV arioms)
m Honest-verifier ZK: out of order sampling, again

|
Oo,
XN

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - @)L-qr B o S GV arioms)
m Honest-verifier ZK: out of order samplmg again

11/16

/KPoK for DLog: Schnorr's Protocol...

Protocol 2 (IpLog: Schnorr’s protocol)

m Completeness: h°.y - (90) g o gt (by yoop arioms)
m Honest-verifier ZK: out of order samplmg again

(tribuked L\(ﬂbm\j o
gy Sne

§ER qkrat is condom

11/16

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

r Z U
‘““’“

@/ﬁ?

P _//—“7 \

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)
Dinidke Pon N o getatn U

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)

Dlnvdke P on N to getain U
2) (nillenge ON ¢ &% o g t,

12/16

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

bebiadion ctfategy e ()
Dlnvdke P on N to getain U
2) (nillenge ON ¢ &2 o g t,
3 ReLsnd P o 1)

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)

Diwdke P on N o dotain W

2) (nillenge ON ¢ &2 o g t,
3) Rewsind P Lo 1)

4) (nillenge ON G <2p to g t,

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)

Dlnvdke P on N to getain U

2) (nillenge ON ¢ &2 o g t,
3) Rewsind P Lo 1)

4) (nillenge ON < 2p to g t,
9) Odk‘eu% k\‘b'/c\‘(;_

. ko (S
V otepts b et k0ns 5 Four & gtuh
S gkftbjh("‘b Sa-t 4L

ZT«Z_

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)

Dlnvdke P on N to getain U

2) (nillenge ON ¢ &2 o g t,
3) Rewsind P Lo 1)

4) (nillenge ON < 2p to g t,
9) Odk‘eu% k\‘b'/c\‘(;_

. by ¢
V atepts bt eAL&ONS S gh\zwh* & o*-uh l
7 ot GG, = A
Gltadonerrr Y e rals 1fa=q <= grtepi=e 5 a st L

ZT«Z_

12116

How to Extract a from P*?

Theorem 2
[MNpLog is a PoK for Lpioq with ex < 1/p

Proof (of PoK) Hint Obtain two eqgns of form t = r 4+ ca mod p.

Cbacion Stidbegy Ex (1)

Dinidke Pon N o getain U

2) (dlenge oN <% ko g &
3 Reind P to 1)

4) (nilenge NG o 9 &
g) Ouk?u% -t /e,

C ko (S
V otepts b et k0ns 5 Four & gtuh }
b X,

GG

7. ket G=¢
Evfraton ecror Vp & Fails (H@(L <=9 b

Exercise 5 (“Rewinding lemma”)

Analyse strategy for P* with Pr[1 « (P*,V)(h)]=1/p+ 1/n

12116

1 Zero-Knowledge Proof of Knowledge
2 Examples

3 Fiat-Shamir Transform

12/16

Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)

If L has a non-interactive ZKP 1 = (P, V) then L € BPP

13/16

Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)

If L has a non-interactive ZKP 1 = (P, V) then L € BPP

m One way around: NIZK in random oracle model (ROM)
m ROM: All parties P, V, Sim and Ext can access to random
function H in the sky
m Sim and Ext can program H

13/16

NIZK in ROM via Fiat-Shamir TransforrTL

\

L . ROM ‘ . ¢
m Public-coin interactive protocol ——— non-interactive protocol
m Public coin: verifier's messages are just random coins

m E.g, [pLeg (Schnorr’s protocol) and I

14/16

NIZK in ROM via Fiat-Shamir Transform\

-

‘ o . ROM . .
m Public-coin interactive protocol ——— non-interactive protocol
m Public coin: verifier's messages are just random coins

m E.g, [pLeg (Schnorr’s protocol) and I
m Idea: “replace” verifier with random oracle H =‘;OQ€°
(Cl —— o

14/16

NIZK in ROM via Fiat-Shamir Transform\

‘ o . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random co}n/ﬁ e\q
m E.g, [pLeg (Schnorr’s protocol) and I A

m |dea: “replace” verifier with random oracle H @ QO

cabe R)P

14/16

NIZK in ROM via Fiat-Shamir Transform\

. . . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random coins SN2 q
| BERR
m E.g, [pLeg (Schnorr’s protocol) and I A
m |dea: “replace” verifier with random oracle H @ QO

_aoc

Construction 2 (Schnorr’s non-interactive protocol Npjg)

et v

14/16

NIZK in ROM via Fiat-Shamir Transform\

. . . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random coins & ¢
| ok 25 N
m E.g, [pLeg (Schnorr’s protocol) and I A g
m |dea: “replace” verifier with random oracle H @po@oc

_aoc

fe]

Construction 2 (Schnorr’s non-interactive protocol Npjg)

14/16

NIZK in ROM via Fiat-Shamir Transform\

‘ o . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random co}n/ﬁ
b

m E.g, [pLeg (Schnorr’s protocol) and I Q
0,

m NpLog can be shown to be NIZK(PoK) in ROM

14/16

NIZK in ROM via Fiat-Shamir Transform\

‘ o . ROM . .
m Public-coin interactive protocol —— non-interactive procol
m Public coin: verifier's messages are just random C% iy
m E.g, [pLeg (Schnorr’s protocol) and I //b o>
Com

m NpLog can be shown to be NIZK(PoK) in ROM
m Tweak Npioq to get signature: include messagedm in hash
m Closely-related to DSA

14/16

m Quantified what "knowing something” means via extractors

15/16

m Quantified what "knowing something” means via extractors
m Examples

1 ZKPoK for Graph Isomorphism (Cl)
2 ZKPoK for the discrete-log problem: Schnorr's protocol
3 Key tool: rewinding the prover

15/16

m Quantified what "knowing something” means via extractors
m Examples

1 ZKPoK for Graph Isomorphism (Cl)
2 ZKPoK for the discrete-log problem: Schnorr's protocol
3 Key tool: rewinding the prover

m Fiat-Shamir Transform

m NIZK in random oracle model (ROM)
m Digital signature from DLog in ROM

15/16

Next Lecture

Task 6: private computation of two-party functions
Security: extending the simulation paradigm
Perfectly-secure private computation of linear functions

Impossibility of perfect security for general functions

16/16

References

[Gol01, §4.7] for details of today's lecture

[GMR89] for definitional and philosophical discussion on ZK
NIZK was introduced [BFM88]

Fiat-Shamir Transform was introduced in [FS87]

The constructions of commitment scheme from OWP and PRG
is from [GMW91] and [Nao90)]

16/16

@ Manuel Blum, Paul Feldman, and Silvio Micali.
Non-interactive zero-knowledge and its applications (extended abstract).
In 20th ACM STOC, pages 103-112. ACM Press, May 1988.

@ Amos Fiat and Adi Shamir.

How to prove yourself: Practical solutions to identification and signature
problems.

In Andrew M. Odlyzko, editor, CRYPTO'86, volume 263 of LNCS, pages
186-194. Springer, Heidelberg, August 1987.

@ Shaft Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput,, 18(1):186-208, 1989.

@ Oded Goldreich, Silvio Micali, and Avi Wigderson.

Proofs that yield nothing but their validity for all languages in NP have
zero-knowledge proof systems.

J. ACM, 38(3):691-729, 1991.

[Oded Goldreich.
The Foundations of Cryptography - Volume 1: Basic Techniques.

Cambridge University Press, 2001.
16/16

@ Moni Naor.
Bit commitment using pseudo-randomness.

In Gilles Brassard, editor, CRYPTO'89, volume 435 of LNCS, pages 128-136.
Springer, Heidelberg, August 1990.

16/16

	Zero-Knowledge Proof of Knowledge
	Examples
	Fiat-Shamir Transform

