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Recall from Last Lecture
Malicious-verifier perfect ZKP for GI

Simulator was expected polynomial-time
Takeaway: out of order sampling of transcript

(Computational) ZKP for ��
Blum’s protocol for Graph Hamiltonicity using lockers
Locker computationally hides ⇒ ZKWhat about perfect/statistical ZKP for ��?

Not possible (unless polynomial hierarchy collapses)!

Commitment schemes: digital lockers
Non-interactive constructions from PKE and OWP
Two-message construction from PRG ← OWF
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(�,�) with the following syntax:

Correctness: for all � ∈ N and inputs � ∈ {�, �}:

Computational hiding: PPT adversary cannot distinguish
commitment to � from commitment to �

Perfect binding: for any � ∈ {�, �}∗, there do not exist
openings ��, �� ∈ {�, �}∗ such that �(�, ��, �) = �(�, ��, �) = �

In general the commit phase can be interactive
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Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}
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Bit Commitment ← OWP
Construction 1 (OWP f� : {�, �}� → {�, �}� → bit-commitment Σ)

Recall: every (leaky) f� has hard-core predicate
hc : {�, �}� → {�, �}

Security of hard-core predicate hc ⇒ computational hiding
f� permutation ⇒ perfect binding

Exercise 1
1 Formally describe the construction, and write down the proof
2 Given a bit-commitment, construct a commitment for {�, �}ℓ
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We have captured “gaining knowledge” via simulator
How to capture “knowledge” itself?

Zero-knowledge PoK for
1 Graph Isomorphism
2 Discrete-log problem: Schnorr’s protocol

Fiat-Shamir Transform
Interactive protocol Random Oracle−−−−−−−−→ non-interactive protocol
Digital signature from Schnorr’s protocol
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Completeness
Soundness
Zero-knowledge (ZK)

In some situations, stronger guarantee is needed: � should beconvinced that � knows a witness
Identification, e.g., for ElGamal PKE in cyclic group G

Public key is � := �� and secret key is the discrete log �

Owner has to prove they possess � (such an � always exists)

���� problems: for every instance there exists a solution
Smith: given �-regular graph with a Ham. cycle, find one more
Solver wants to prove they have found the second Ham. cycle
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How to Quantify Knowledge?
For defining ZK, we only quantified “gain of knowledge”

“� gains no knowledge” if anything � can compute after the
interaction with �, it could have computed without it
Formalised via “simulation paradigm”: �’s view can be
efficiently simulated given only the instance �

How would you quantify “knowledge” itself?
For a student: get hold of student, hold viva, extract answers

For � in ΠGI? Should be possible to efficiently extract
isomorphism π given access to �

In general, for ��: should be possible to extract a witness �
6 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is
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7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

7 / 16



Let’s Define Zero-Knowledge Proof of Knowledge...
Defintion 2 (ZKPoK)
An interactive protocol Π = (�,�) for an �� language L is a
zero-knowledge proof of knowledge if it is

1 Complete
2 Zero knowledge
3 Knowledge sound:

∃ expected polynomial-time extractor ��� such that
∀ prover �∗ and instance �:

Pr
�←���

�∗ (�)
[� is a witness for �] ≥ Pr[� ← ⟨�∗,�⟩(�)] − ε�

Trivial if we omit either of 2 or 3
��� must do something more than �, e.g. “rewind” �∗
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Let’s Define Zero-Knowledge Proof of Knowledge...

Exercise 2 (PoK implies soundness)
Show that if an IP has knowledge error at most ε� then its
soundness error ε� ≤ ε� .
Exercise 3
Does this notion make sense beyond ��?
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2 Examples

3 Fiat-Shamir Transform

7 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



Recall ΠGI: ZKP for GI...
Observation: transitivity of isomorphism

��
∼= �� ⇒ if ��

∼= � then ��
∼= �

Protocol 1 (ΠGI = (�,�): IP for LGI)

1 � “commits” by sending a random � s.t. ��
∼= �

2 For � ← {�, �}, � challenges � to “reveal” ψ s.t. �� ∼= �

3 � accepts if ψ(�� ) = �

8 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

9 / 16



How to Extract π from �
∗?

Theorem 1
ΠGI is a ZKPoK for LGI with ε� ≤ �/�
Proof (of PoK) Hint ψ−�

�
◦ ψ� = σ−� ◦ σ ◦ π = π .

Exercise 4
Analyse strategy for �∗ with Pr[� ← ⟨�∗,�⟩(��,��)] = �/� + �/� 9 / 16



ZKPoK for DLog: Schnorr’s Protocol...
Recall:

Defintion 3 (DLog problem in prime-order G w.r.to �)
Input:

1 (G,�,�) sampled by a group sampler �(��)
2 � := �� for � ← Z�

Solution: �
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ZKPoK for DLog: Schnorr’s Protocol...
Recall:

Defintion 3 (DLog problem in prime-order G w.r.to �)
Input:

1 (G,�,�) sampled by a group sampler �(��)
2 � := �� for � ← Z�

Solution: �

ElGamal PKE:
Public key: � := ��

Secret key: �
Identification protocol for ElGamal PKE:

ZKP: owner of � proves possession of � without revealing it
PoK: without knowledge of �, verifier cannot be convinced
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How to Extract � from �
∗?

Theorem 2
ΠDLog is a PoK for LDLog with ε� ≤ �/�
Proof (of PoK) Hint Obtain two eqns of form � = � + �� mod �.

Exercise 5 (“Rewinding lemma”)
Analyse strategy for �∗ with Pr[� ← ⟨�∗,�⟩(�)] = �/� + �/� 12 / 16



Plan for Today’s Lecture
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Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)
If L has a non-interactive ZKP Π = (�,�) then L ∈ ���
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Non-Interactive Zero-Knowledge (NIZK)

Exercise 6 (Exercise 5, Lecture 14)
If L has a non-interactive ZKP Π = (�,�) then L ∈ ���

One way around: NIZK in random oracle model (ROM)
ROM: All parties �, �, ��� and ��� can access to random
function H in the sky
��� and ��� can program H
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NIZK in ROM via Fiat-Shamir Transform
Public-coin interactive protocol ���−−−→ non-interactive protocol

Public coin: verifier’s messages are just random coins
E.g., ΠDLog (Schnorr’s protocol) and ΠGI

Idea: “replace” verifier with random oracle H
Construction 2 (Schnorr’s non-interactive protocol NDLog)

NDLog can be shown to be NIZK(PoK) in ROM
Tweak NDLog to get signature: include message � in hash

Closely-related to DSA
14 / 16
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Quantified what “knowing something” means via extractors

Examples
1 ZKPoK for Graph Isomorphism (GI)
2 ZKPoK for the discrete-log problem: Schnorr’s protocol
3 Key tool: rewinding the prover

Fiat-Shamir Transform
NIZK in random oracle model (ROM)
Digital signature from DLog in ROM
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Next Lecture

Task 6: private computation of two-party functions
Security: extending the simulation paradigm
Perfectly-secure private computation of linear functions
Impossibility of perfect security for general functions
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