

CS783: Theoretical Foundations of Cryptography

Lecture 17 (08/Oct/24)

Instructor: Chethan Kamath

Recall from Last Three Lectures

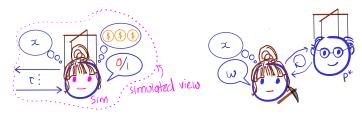
- Interactive proof
- Zero knowledge (ZK) proof
- ZK proof of knowledge

Recall from Last Three Lectures

- Interactive proof
- Zero knowledge (ZK) proof
- ZK proof of knowledge

Recall from Last Three Lectures

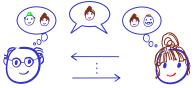
- Interactive proof
- Zero knowledge (ZK) proof
- ZK proof of knowledge



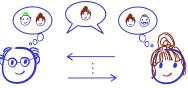
Simulators and extractors

■ Key tools: out-of-order sampling and rewinding

■ Main topic of Module III: private computation of functions

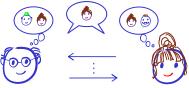


■ Main topic of Module III: private computation of functions



- Define syntax and security for the *two-party* case (2PC)
 - Extends the simulation paradigm

■ Main topic of Module III: private computation of functions



■ Define syntax and security for the *two-party* case (2PC)

- Extends the simulation paradigm
- Perfectly-private 2PC for *linear* functions
 - Key tool: threshold secret sharing (TSS)
 - Shamir's TSS

General *template*: 1 Identify the task private wmputation of functions

- 2 Come up with precise threat model *M* (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

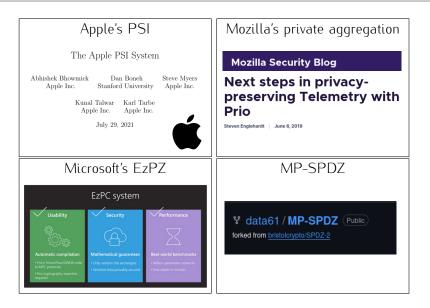
General *template*: private wmputation of functions
1 Identify the task semi-nonest model
2 Come up with precise threat model M (a.k.a security model)
Adversary/Attack: What are the adversary's capabilities?
Becurity Goal: What does it mean to be secure? "stocic corruption"
3 Construct a scheme Π , "perfect privay"
4 Formally prove that Π in secure in model M

linear General template: I Identify the task private unputation of functions Semi-nonest model 2 Come up with precise threat model \dot{M} (a.k.a security model) Adversary/Attack: What are the adversary's capabilities?
Security Goal: What does it mean to be secure? "static corruption" , "perfect privacy" 3 Construct a scheme $\Pi \rightarrow Sucret - sharing - based$ 4 Formally prove that Π in secure in model M Gionstruct simulator

Private computation of functions is useful!

Apple's PSI Mozilla's private aggregation The Apple PSI System **Mozilla Security Blog** Abhishek Bhowmick Dan Boneh Steve Myers Next steps in privacy-Apple Inc. Stanford University Apple Inc. preserving Telemetry with Kunal Talwar Karl Tarbe Prio Apple Inc. Apple Inc. July 29, 2021 Steven Englehardt June 6, 2019

Private computation of functions is useful!



1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

1 Private Computation of Functions

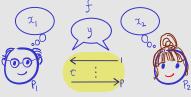
2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

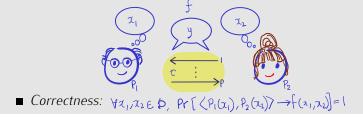
Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)



Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)



Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

A ρ -round protocol $\Pi = (P_1, P_2)$ between two parties P_1 and P_2 with private input $x_1 \in D$ and $x_2 \in D$ and common output $y \in R$

• Correctness: $\forall \alpha_1, \alpha_2 \in \mathcal{D}$, $\Pr[\langle \mathcal{P}_1(\alpha_1), \mathcal{P}_2(\alpha_2) \rangle \rightarrow f(\alpha_1, \alpha_2)] = 1$

- Can be more general:
 - Parties can have common input
 - Each party's output can be different
 - Two parties $\rightarrow n$ parties (MPC)

 $P_2(x_1)$ (x) P_1 (x) $P_1(x_1)$

Pn(In)

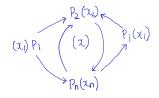
Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

A ρ -round protocol $\Pi = (P_1, P_2)$ between two parties P_1 and P_2 with private input $x_1 \in D$ and $x_2 \in D$ and common output $y \in R$

• Correctness: $\forall a_1, x_2 \in \mathcal{D}$, $\Pr[\langle P_1(x_1), P_2(x_2) \rangle \rightarrow f(x_1, x_2)] = 1$

■ Can be more general:

- Parties can have common input
- Each party's output can be different
- Two parties $\rightarrow n$ parties (MPC)



Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

A ρ -round protocol $\Pi = (P_1, P_2)$ between two parties P_1 and P_2 with private input $x_1 \in D$ and $x_2 \in D$ and common output $y \in R$

• Correctness: $\forall \alpha_1, \alpha_2 \in \mathcal{D}$, $\Pr[\langle \mathcal{P}_1(\alpha_1), \mathcal{P}_2(\alpha_2) \rangle \rightarrow f(\alpha_1, \alpha_2)] = 1$

■ Can be more general:

- Parties can have common input
- Each party's output can be different $y \in (x_i)$ Pi
- Two parties $\rightarrow n$ parties (MPC)

 $y_{i} \in (x_{i}) \xrightarrow{P_{1}} (x_{i}) \xrightarrow{P_{2}} (x_{i}) \xrightarrow{P_{2}} (x_{i}) \xrightarrow{P_{3}} (x_{i}) \xrightarrow{Y_{2}} (x_{i}) \xrightarrow{P_{3}} (x_{i}) \xrightarrow{P_{$

Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

A ρ -round protocol $\Pi = (P_1, P_2)$ between two parties P_1 and P_2 with private input $x_1 \in D$ and $x_2 \in D$ and common output $y \in R$

• Correctness: $\forall \alpha_1, \alpha_2 \in \mathcal{D}$, $\Pr[\langle \mathcal{P}_1(\alpha_1), \mathcal{P}_2(\alpha_2) \rangle \rightarrow f(\alpha_1, \alpha_2)] = 1$

- Can be more general:
 - Parties can have common input
 - Each party's output can be different $y_i \in (x_i) P_i$
 - Two parties $\rightarrow n$ parties (MPC)

Provide the second state of the second stat

(x)

*Pn(2n)-

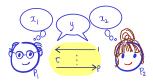
Definition 1 (2PC protocol Π for $f : \mathcal{D}^2 \to \mathcal{R}$)

A ρ -round protocol $\Pi = (P_1, P_2)$ between two parties P_1 and P_2 with private input $x_1 \in D$ and $x_2 \in D$ and common output $y \in R$

• Correctness: $\forall \alpha_1, \alpha_2 \in \mathcal{D}$, $\Pr[\langle \mathcal{P}_1(\alpha_1), \mathcal{P}_2(\alpha_2) \rangle \rightarrow f(\alpha_1, \alpha_2)] = 1$

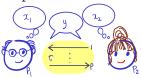
Can be more general: Parties can have common input Each party's output can be different Two parties $\rightarrow n$ parties (MPC) How to frame ZKP as a 2PC protocol? $P_1 := P$ (prover) and $P_2 := V$ (verifier) $f := \mathcal{R}$, the NP relation \Rightarrow common input=x, $x_1 = w$, $x_2 = \bot$

What are the requirements intuitively from P_1 's perspective?



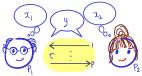
What are the requirements intuitively from P_1 's perspective?

• P_2 should not learn anything about P_1 's input $x_{1...}$



What are the requirements intuitively from P_1 's perspective?

- P_2 should not learn anything about P_1 's input $x_{1...}$
- \blacksquare ... other than what she learns from output y
- How to formalise this?



 \bigcirc What are the requirements intuitively from P_1 's perspective?

 \mathfrak{X}_{1}

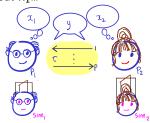
ά,

u

- P_2 should not learn anything about P_1 's input $x_{1...}$
- \blacksquare ... other than what she learns from output y
- \blacksquare How to formalise this? As in ZK
 - There exists a *simulator* for Sim₂'s view

 \bigcirc What are the requirements intuitively from P_1 's perspective?

- P_2 should not learn anything about P_1 's input $x_{1...}$
- \blacksquare ... other than what she learns from output y
- How to formalise this? As in ZK
 - There exists a *simulator* for Sim₂'s view
- Same from P_2 perspective



 \bigcirc What are the requirements intuitively from P_1 's perspective?

 \mathfrak{X}_{1}

- P_2 should not learn anything about P_1 's input $x_{1...}$
- \blacksquare ... other than what she learns from output y
- How to formalise this? As in ZK
 - There exists a *simulator* for Sim₂'s view
- Same from P_2 perspective

Defintion 2 (Semi-honest perfect security for 2PC) 🙋

 \sqcap computes f with perfect privacy if there exists 1) a PPT simulator Sim₂ such that for all distinguishers D and for all $x_1, x_2 \in D$, the following is zero

 $\Pr[D(View_{P_2}(\langle P_1(x_1), P_2(x_2) \rangle = 1] - \Pr[D(Sim_2)(x_2, y)) = 1]$

and 2) a PPT simulator Sim₁ such that....

Definition 2 (Semi-honest perfect security for 2PC)

 \sqcap computes f with perfect privacy if there exists 1) a PPT simulator Sim₂ such that for all distinguishers D and for all $x_1, x_2 \in D$, the following is zero

 $\Pr[D(View_{P_2}(\langle P_1(x_1), P_2(x_2) \rangle = 1] - \Pr[D(Sim_2)(x_2, y)) = 1]$

and 2) a PPT simulator Sim₁ such that....

- Extending the definition:
 - Semi-honest → malicious
 - Honest $P_2/P_1 \rightarrow$ any malicious P_2^*/P_1^* (just as in ZK)

Definition 2 (Semi-honest perfect security for 2PC)

 \sqcap computes f with perfect privacy if there exists 1) a PPT simulator Sim₂ such that for all distinguishers D and for all $x_1, x_2 \in D$, the following is zero

 $\Pr[D(View_{P_2}(\langle P_1(x_1), P_2(x_2) \rangle = 1] - \Pr[D(Sim_2)(x_2, y)) = 1]$

and 2) a PPT simulator Sim₁ such that....

- Extending the definition:
 - Semi-honest → malicious
 - Honest $P_2/P_1 \rightarrow$ any malicious P_2^*/P_1^* (just as in ZK)
 - Two parties $\rightarrow n$ parties (MPC)

Definition 2 (Semi-honest perfect security for 2PC)

 \sqcap computes f with perfect privacy if there exists 1) a PPT simulator Sim₂ such that for all distinguishers D and for all $x_1, x_2 \in D$, the following is zero

 $\Pr[D(View_{P_2}(\langle P_1(x_1), P_2(x_2) \rangle = 1] - \Pr[D(Sim_2)(x_2, y)) = 1]$

and 2) a PPT simulator Sim₁ such that....

Extending the definition:

P2 (2)

Pr(In

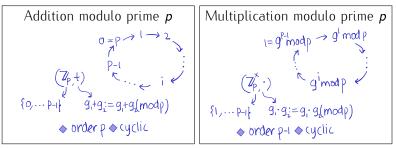
- Semi-honest → malicious
 - Honest $P_2/P_1 \rightarrow$ any malicious P_2^*/P_1^* (just as in ZK)
- Two parties $\rightarrow n$ parties (MPC): *t*-privacy (for $t \leq n$)
 - \blacksquare Any fixed (t-1)-sized subset of parties $\mathcal{P}^* \subset [n]$ can be corrupt
- $\mathfrak{P}_{\mathfrak{f}}(\mathfrak{x}_{\mathfrak{i}})$ There exists $\operatorname{Sim}_{\mathcal{P}^*}$ that simulates views of all parties in \mathcal{P}^* given their inputs $\{\mathfrak{x}_i\}_{i\in\mathcal{P}^*}$ and the output y

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

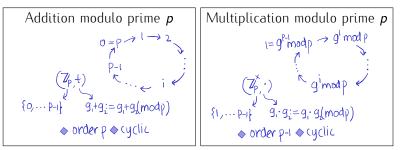
3 Computing Any Linear Function with Perfect Privacy

Finite Fields



■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

Finite Fields

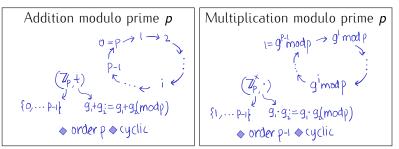


■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

 \blacksquare + and \cdot are "compatible" with each other:

For any $a, b, c \in \mathbb{Z}_p$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

Finite Fields



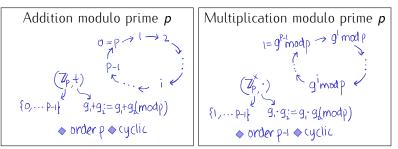
■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

 \blacksquare + and \cdot are "compatible" with each other:

For any $a, b, c \in \mathbb{Z}_p$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

• Can be combined to get a "field" $\mathbb{F}_{p} = (\mathbb{Z}_{p}, +, \cdot)$

Finite Fields



■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

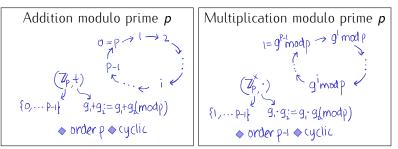
 \blacksquare + and \cdot are "compatible" with each other:

• For any $a, b, c \in \mathbb{Z}_p$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

• Can be combined to get a "field" $\mathbb{F}_{p} = (\mathbb{Z}_{p}, +, \cdot)$

- \blacksquare Finite counterpart of real numbers $\mathbb R$
 - $(\mathbb{R}, +)$ and $(\mathbb{R} \setminus \{0\}, \cdot)$ are groups
 - \blacksquare + and \cdot are distributive

Finite Fields



■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

 \blacksquare + and \cdot are "compatible" with each other:

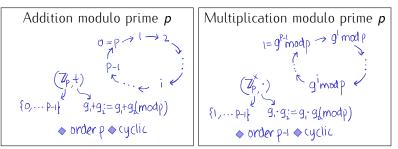
• For any $a, b, c \in \mathbb{Z}_p$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

• Can be combined to get a "field" $\mathbb{F}_{p} = (\mathbb{Z}_{p}, +, \cdot)$

- \blacksquare Finite counterpart of real numbers $\mathbb R$
 - \blacksquare $(\mathbb{R},+)$ and $(\mathbb{R}\setminus\{0\},\cdot)$ are groups
 - \blacksquare + and \cdot are distributive

•
$$\mathbb{F}_2 = (\mathbb{Z}_2, +, \cdot)$$
 corresponds to \mathbb{Q}

Finite Fields



■ Recall groups $(\mathbb{Z}_{p}, +)$ and $(\mathbb{Z}_{p}^{\times}, \cdot)$ from Lecture 08

 \blacksquare + and \cdot are "compatible" with each other:

• For any $a, b, c \in \mathbb{Z}_p$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

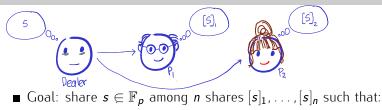
• Can be combined to get a "field" $\mathbb{F}_{p} = (\mathbb{Z}_{p}, +, \cdot)$

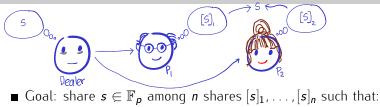
- \blacksquare Finite counterpart of real numbers $\mathbb R$
 - $(\mathbb{R}, +)$ and $(\mathbb{R} \setminus \{0\}, \cdot)$ are groups
 - \blacksquare + and \cdot are distributive

• $\mathbb{F}_2 = (\mathbb{Z}_2, +, \cdot)$ corresponds to Boolean algebra $(\{F, T\}, \oplus, \wedge)$

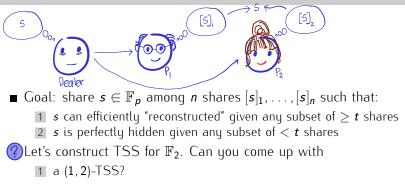
• Goal: share $s \in \mathbb{F}_p$ among *n* shares $[s]_1, \ldots, [s]_n$ such that:

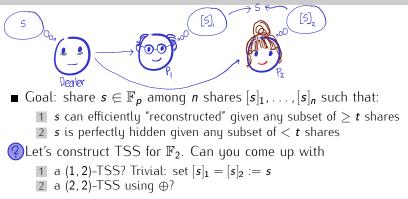
• Goal: share $s \in \mathbb{F}_p$ among *n* shares $[s]_1, \ldots, [s]_n$ such that:

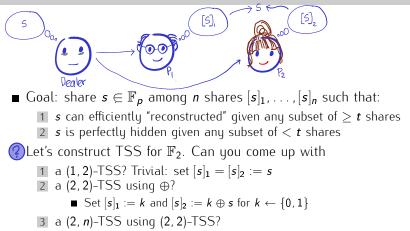


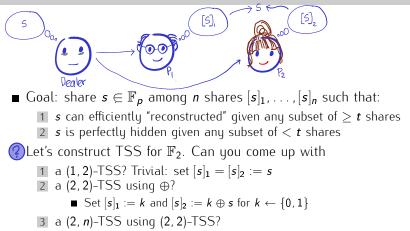


- **1** *s* can efficiently "reconstructed" given any subset of $\geq t$ shares
- **2** *s* is perfectly hidden given any subset of < t shares



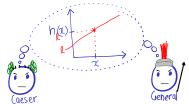




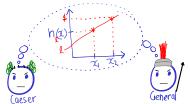


Exercise 1

What happens when you extend 3 to construct (t, n)-TSS for arbitrary n and $t \le n$?

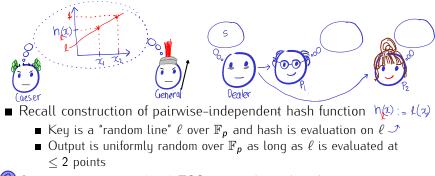


Recall construction of pairwise-independent hash function h(ℓ) := l(𝔅)
 Key is a "random line" l over F_p and hash is evaluation on l

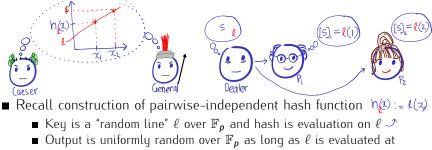


Recall construction of pairwise-independent hash function h(x) := k(x)

- Key is a "random line" ℓ over \mathbb{F}_p and hash is evaluation on $\ell \checkmark$
- \blacksquare Output is uniformly random over \mathbb{F}_p as long as ℓ is evaluated at ≤ 2 points



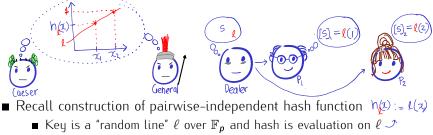
- (?) Can you construct a (2, *n*)-TSS using ideas above?
 - Sharing $s \in \mathbb{F}_p$:



 ≤ 2 points

Can you construct a (2, *n*)-TSS using ideas above?

- Sharing $s \in \mathbb{F}_p$:
 - 1 Sample a random line ℓ over \mathbb{F}_p with $\ell(0) := s$
 - 2 Share $[s]_i$ of party P_i is $[s]_i := \ell(i) \in \mathbb{F}_p$
- Reconstruction from $[s]_i$ and $[s]_j$ $(i \neq j)$



• Output is uniformly random over \mathbb{F}_p as long as ℓ is evaluated at ≤ 2 points

(Can you construct a (2, *n*)-TSS using ideas above?

- Sharing $s \in \mathbb{F}_p$:
 - 1 Sample a random line ℓ over \mathbb{F}_p with $\ell(0) := s$
 - 2 Share $[s]_i$ of party P_i is $[s]_i := \ell(i) \in \mathbb{F}_p$
- Reconstruction from $[s]_i$ and $[s]_j$ $(i \neq j)$
 - **1** Reconstruct ℓ by drawing line through $(i, [s]_i)$ and $(j, [s]_j)$
 - 2 Output ℓ(0)

(Sh

[S]

Why does reconstruction work? Two points uniquely determine a line (even in \mathbb{F}_p)

Why is it perfectly hiding given only one share?

Why does reconstruction work? Two points uniquely determine a line (even in \mathbb{F}_p)

Why is it perfectly hiding given only one share? One point doesn't determine a line (even in \mathbb{F}_p) \Rightarrow Evaluation at 0 random

Why does reconstruction work? Two points uniquely determine a line (even in \mathbb{F}_p)

Why is it perfectly hiding given only one share? One point doesn't determine a line (even in \mathbb{F}_p) \Rightarrow Evaluation at 0 random

+ The construction is "linear":

- $([s_1]_1, [s_1]_2)$ shares of s_1 and $([s_2]_1, [s_2]_2)$ shares of $s_2 \Rightarrow$ $([s_1]_1 + [s_2]_1 \mod p, [s_1]_2 + [s_2]_2 \mod p)$ shares of $s_1 + s_2 \mod p$
- $([s]_1, [s]_2)$ shares of $s \Rightarrow$ for $c \in \mathbb{F}_p$, $(c \cdot [s]_1 \mod p, c \cdot [s]_2 \mod p)$ shares of $s \cdot c \mod p$

Why does reconstruction work? Two points uniquely determine a line (even in F_p)

Why is it perfectly hiding given only one share? One point doesn't determine a line (even in \mathbb{F}_p) \Rightarrow Evaluation at 0 random

+ The construction is "linear":

- $([s_1]_1, [s_1]_2)$ shares of s_1 and $([s_2]_1, [s_2]_2)$ shares of $s_2 \Rightarrow$ $([s_1]_1 + [s_2]_1 \mod p, [s_1]_2 + [s_2]_2 \mod p)$ shares of $s_1 + s_2 \mod p$
- $([s]_1, [s]_2)$ shares of $s \Rightarrow$ for $c \in \mathbb{F}_p$, $(c \cdot [s]_1 \mod p, c \cdot [s]_2 \mod p)$ shares of $s \cdot c \mod p$
- All of the above ideas extend to arbitrary n and $t \leq n$

Exercise 2 (Hint: use a degree-t polynomial instead of line)

Formally describe and prove Shamir's (t, n)-TSS

Plan for Today's Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

Defintion 3

 $\begin{array}{l} A \ function \ f : \mathbb{F}_p^n \to \mathbb{F}_p \ is \ linear \ if \ \forall \bar{a}, \ \bar{b} \in \mathbb{F}_p^n : f(\bar{a} + \bar{b}) = f(\bar{a}) + f(\bar{b}) \\ \Rightarrow \ \forall c \in \mathbb{F}_p, \ \bar{a} \in \mathbb{F}_p^n : f(c \cdot \bar{a}) = c \cdot f(\bar{a}) \end{array}$

Definition 3 A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is linear if $\forall \bar{a}, \bar{b} \in \mathbb{F}_p^n : f(\bar{a} + \bar{b}) = f(\bar{a}) + f(\bar{b})$ $\Rightarrow \forall c \in \mathbb{F}_p, \bar{a} \in \mathbb{F}_p^n : f(c \cdot \bar{a}) = c \cdot f(\bar{a})$

Exercise 3

Show that any linear function f can be computed using a circuit C with addition gates \oplus and multiply-by-constant gates \odot_c

Definition 3 A function $f: \mathbb{F}_p^n \to \mathbb{F}_p$ is linear if $\forall \bar{a}, \bar{b} \in \mathbb{F}_p^n$: $f(\bar{a} + \bar{b}) = f(\bar{a}) + f(\bar{b})$ $\Rightarrow \forall c \in \mathbb{F}_p, \bar{a} \in \mathbb{F}_p^n : f(c \cdot \bar{a}) = c \cdot f(\bar{a})$

Exercise 3

Show that any linear function f can be computed using a circuit C with addition gates \oplus and multiply-by-constant gates \odot_c < OVER FP

🎬 Idea: each party P; secret-shares its input x; with all other parties and everyone computes locally "over shares"

Definition 3 A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is linear if $\forall \bar{a}, \bar{b} \in \mathbb{F}_p^n : f(\bar{a} + \bar{b}) = f(\bar{a}) + f(\bar{b})$ $\Rightarrow \forall c \in \mathbb{F}_p, \bar{a} \in \mathbb{F}_p^n : f(c \cdot \bar{a}) = c \cdot f(\bar{a})$

Exercise 3

Show that any linear function f can be computed using a circuit C with addition gates \oplus and multiply-by-constant gates \odot_c

Idea: each party P_i secret-shares its input x_i with all other parties and everyone computes locally "over shares"
 Invariant: every party P_i will have secret share [s_w]_i of wire w
 Sv₂ To generate shares of output of ⊕, add shares of input wires
 To generate shares of output of ⊙_c, multiply share with c
 (Su)_i + (Si)₁

Definition 3 A function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is linear if $\forall \bar{a}, \bar{b} \in \mathbb{F}_p^n : f(\bar{a} + \bar{b}) = f(\bar{a}) + f(\bar{b})$ $\Rightarrow \forall c \in \mathbb{F}_p, \bar{a} \in \mathbb{F}_p^n : f(c \cdot \bar{a}) = c \cdot f(\bar{a})$

Exercise 3

Show that any linear function f can be computed using a circuit C with addition gates \oplus and multiply-by-constant gates \odot_c

Idea: each party P_i secret-shares its input x_i with all other parties and everyone computes locally "over shares"
 Invariant: every party P_i will have secret share [s_w]_i of wire w
 [Sv].[Sv]₂ To generate shares of output of ⊕, add shares of input wires
 To generate shares of output of ⊙_c, multiply share with c
 (Su)₁+(Si)₁ Warm-up: let's privately compute ⊕ over F₂

Protocol 1 (Protocol Π for linear $f : \mathbb{F}_p^n \to \mathbb{F}_p$)

1 Secret-share input:

- **1** Each P_i chooses random degree-t polynomial q_i with $q_i(0) = x_i$
- 2 Each P_i sends share $[x_i]_j := q_i(j)$ to P_j (for all $j \neq i$)

Protocol 1 (Protocol Π for linear $f : \mathbb{F}_p^n \to \mathbb{F}_p$)

1 Secret-share input:

1 Each P_i chooses random degree-t polynomial q_i with $q_i(0) = x_i$

2 Each P_i sends share $[x_i]_j := q_i(j)$ to P_j (for all $j \neq i$)

2 Emulate circuit: for each gate G_k with in topological order, each P_i does the following

 $\begin{array}{ccc} & & \text{each } P_i \text{ aces the following} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

If $G_k = \odot_c$: define share of G_k 's output wire to be c times the share of G_k 's input wire

 $(S_u)_{(+}(S_v)_{(S_u)_{(+}(S_v)_{$

Protocol 1 (Protocol Π for linear $f : \mathbb{F}_p^n \to \mathbb{F}_p$)

1 Secret-share input:

1 Each P_i chooses random degree-t polynomial q_i with $q_i(0) = x_i$

2 Each P_i sends share $[x_i]_j := q_i(j)$ to P_j (for all $j \neq i$)

2 Emulate circuit: for each gate G_k with in topological order, each P_i does the following

 $\begin{array}{ccc} & & \text{each } P_i \text{ aces the following} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

• If $G_k = \odot_c$: define share of G_k 's output wire to be c times

 $(S_u)_1 + (S_v)_1 (S_u)_2 + (S_v)_2$ share of G_k 's input wire

3 Reconstruct output: each party P_i

- 1 Broadcasts its share of output wire to parties P_j , $j \neq i$
- 2 Reconstructs **q**_i from all shares of output wire
- 3 Outputs $q_i(0)$

Theorem 1

Assuming (t, n)-linear TSS, Π computes f with t-privacy

Proof (Sketch).

■ Idea: < t parties \mathcal{P}^* corrupt ⇒ inputs of $[n] \setminus \mathcal{P}^*$ perfectly hidden by security of TSS

Theorem 1

Assuming (t, n)-linear TSS, Π computes f with t-privacy

Proof (Sketch).

■ Idea: < t parties \mathcal{P}^* corrupt ⇒ inputs of $[n] \setminus \mathcal{P}^*$ perfectly hidden by security of TSS

• Simulator $Sim(\mathcal{P}^*, \{x_i\}_{i \in \mathcal{P}^*}, y)$

Share input:

- **1** For every $i \in \mathcal{P}^*$, sample random q_i with $q_i(0) = x_i$ (as in Π)
- 2 For every $i \notin \mathcal{P}^*$, sample random q_i with $q_i(0) = 0$

Theorem 1

Assuming (t, n)-linear TSS, Π computes f with t-privacy

Proof (Sketch).

- Idea: < t parties \mathcal{P}^* corrupt ⇒ inputs of $[n] \setminus \mathcal{P}^*$ perfectly hidden by security of TSS
- Simulator $Sim(\mathcal{P}^*, \{x_i\}_{i \in \mathcal{P}^*}, y)$

Share input:

- 1 For every $i \in \mathcal{P}^*$, sample random q_i with $q_i(0) = x_i$ (as in Π)
- 2 For every $i \notin \mathcal{P}^*$, sample random q_i with $q_i(0) = 0$
- Emulate circuit: for each non-output gate G_k in top. order

• Generate shares of G_k 's output wire as in Π

Theorem 1

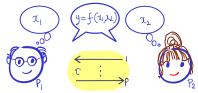
Assuming (t, n)-linear TSS, Π computes f with t-privacy

Proof (Sketch).

- Idea: < t parties \mathcal{P}^* corrupt ⇒ inputs of $[n] \setminus \mathcal{P}^*$ perfectly hidden by security of TSS
- Simulator $Sim(\mathcal{P}^*, \{x_i\}_{i \in \mathcal{P}^*}, y)$
 - Share input:
 - 1 For every $i \in \mathcal{P}^*$, sample random q_i with $q_i(0) = x_i$ (as in Π)
 - 2 For every $i \notin \mathcal{P}^*$, sample random q_i with $q_i(0) = 0$
 - Emulate circuit: for each non-output gate G_k in top. order
 - Generate shares of G_k 's output wire as in Π
 - Program output:
 - Set polynomial q_o of output gate consistently with its input wires and with $q_o(0) = y$

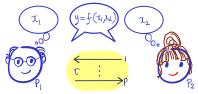
To Recap Today's Lecture

■ Task 6: Private computation of functions



To Recap Today's Lecture

■ Task 6: Private computation of functions

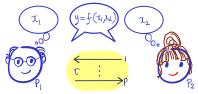


Defined syntax and security for the *two-party* case (2PC)

Extends the simulation paradigm

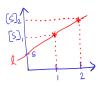
To Recap Today's Lecture

■ Task 6: Private computation of functions



Defined syntax and security for the *two-party* case (2PC)

- Extends the simulation paradigm
- Perfectly-private MPC for *linear* functions
 - Key tool: threshold secret sharing (TSS)
 - Shamir's TSS
 - Key idea: "compute over shares"



Next Lecture

■ Continue with Task 6

A Perfectly-private 2PC for *general* functions is impossible!

■ Counter-example: ∧

Next Lecture

■ Continue with Task 6

Perfectly-private 2PC for *general* functions is impossible!

- \blacksquare Counter-example: \land
- What do we do? Relax to computational privacy
- New tool: oblivious transfer
 - Oblivious transfer from trapdoor permutations

Next Lecture

■ Continue with Task 6

Perfectly-private 2PC for *general* functions is impossible!

- Counter-example: ∧
- What do we do? Relax to computational privacy
- New tool: oblivious transfer
 - Oblivious transfer from trapdoor permutations
- GMW protocol: computationally-private MPC for general functions

ti

X

References

- 1 MPC was first studied in [GMW87], building on [GMR89]
- 2 Shamir's TSS is from [Sha79]
- **3** The perfectly-secure MPC protocol for linear functions described here is taken from [AL17, §4.2]

Gilad Asharov and Yehuda Lindell.

A full proof of the BGW protocol for perfectly secure multiparty computation. *Journal of Cryptology*, 30(1):58–151, January 2017.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. *SIAM J. Comput.*, 18(1):186–208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority.

In Alfred Aho, editor, *19th ACM STOC*, pages 218–229. ACM Press, May 1987.

Adi Shamir.

How to share a secret.

Commun. ACM, 22(11):612-613, 1979.