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Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

How to frame ZKP as a 2PC protocol?
�� := � (prover) and �� := � (verifier)
� := R, the �� relation ⇒ common input=�, �� = � , �� = ⊥
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and 2) a PPT simulator ���� such that....
Extending the definition:

Semi-honest → malicious
Honest ��/�� → any malicious �∗

�
/�∗

�
(just as in ZK)

Two parties → � parties (MPC): �-privacy (for � ≤ �)
Any fixed (� − �)-sized subset of parties P∗ ⊂ [�] can be corrupt
There exists ���P∗ that simulates views of all parties in P∗ given
their inputs {��}�∈P∗ and the output �
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Can be combined to get a “field” F� = (Z� , +, ·)
Finite counterpart of real numbers R

(R, +) and (R \ {�}, ·) are groups
+ and · are distributive

F� = (Z�, +, ·) corresponds to Boolean algebra ({� ,� }, ⊕, ∧)
7 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS?

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [� ]� = [� ]� := �
2 a (�, �)-TSS using ⊕?

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [� ]� = [� ]� := �
2 a (�, �)-TSS using ⊕?

Set [�]� := � and [�]� := � ⊕ � for � ← {�,�}
3 a (�, �)-TSS using (�, �)-TSS?

8 / 14



(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [� ]�, . . . , [� ]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [� ]� = [� ]� := �
2 a (�, �)-TSS using ⊕?

Set [�]� := � and [�]� := � ⊕ � for � ← {�,�}
3 a (�, �)-TSS using (�, �)-TSS?

Exercise 1
What happens when you extend 3 to construct (�, �)-TSS for
arbitrary � and � ≤ �?
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2 Share [�]� of party �� is [�]� := ℓ(� ) ∈ F�

Reconstruction from [� ]� and [� ]� (� ̸= �)
1 Reconstruct ℓ by drawing line through (� , [�]� ) and (� , [�]� )
2 Output ℓ(�)
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([��]� + [��]� mod �, [��]� + [��]� mod �) shares of �� + �� mod �

([� ]�, [� ]�) shares of � ⇒ for � ∈ F� , (� · [� ]� mod �, � · [� ]� mod �)
shares of � · � mod �

All of the above ideas extend to arbitrary � and � ≤ �

Exercise 2 (Hint: use a degree-� polynomial instead of line)
Formally describe and prove Shamir’s (�, �)-TSS
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Show that any linear function f can be computed using a circuit �
with addition gates ⊕ and multiply-by-constant gates ⊙�

Idea: each party �� secret-shares its input �� with all other
parties and everyone computes locally “over shares”
Invariant: every party �� will have secret share [�� ]� of wire �

To generate shares of output of ⊕, add shares of input wires
To generate shares of output of ⊙� , multiply share with �

Warm-up: let’s privately compute ⊕ over F�
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If �� = ⊙� : define share of �� ’s output wire to be � times
share of �� ’s input wire

3 Reconstruct output: each party ��

1 Broadcasts its share of output wire to parties �� , � ̸= �

2 Reconstructs �� from all shares of output wire
3 Outputs �� (�)
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hidden by security of TSS
Simulator ���(P∗, {��}�∈P∗ , � )

Share input:
1 For every � ∈ P∗ , sample random �� with �� (�) = �� (as in Π)
2 For every � ̸∈ P∗ , sample random �� with �� (�) = �

Emulate circuit: for each non-output gate �� in top. order
Generate shares of �� ’s output wire as in Π

Program output:
Set polynomial �� of output gate consistently with its input
wires and with ��(�) = �
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To Recap Today’s Lecture

Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Extends the simulation paradigm

Perfectly-private MPC for linear functions
Key tool: threshold secret sharing (TSS)
Shamir’s TSS
Key idea: “compute over shares”
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Next Lecture

Continue with Task 6
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧
What do we do? Relax to computational privacyNew tool: oblivious transfer

Oblivious transfer from trapdoor permutations
GMW protocol: computationally-private MPC for general
functions
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