CS783: Theoretical Foundations of Cryptography

Lecture 17 (08/Oct/24)

Instructor: Chethan Kamath

Recall from Last Three Lectures

m Interactive proof
m Zero knowledge (ZK) proof
m /K proof of knowledge

1/14

Recall from Last Three Lectures

m Interactive proof
m Zero knowledge (ZK) proof
m /K proof of knowledge

1/14

Recall from Last Three Lectures

m Interactive proof
m Zero knowledge (ZK) proof
m /K proof of knowledge

m Simulators and extractors
m Key tools: out-of-order sampling and rewinding

1/14

Plan for Today's Lecture

m Main topic of Module Ill: private computation of functions

2114

Plan for Today's Lecture

m Main topic of Module Ill: private computation of functions

1ok
N {

VAN

m Define syntax and security for the two-party case (2PC)
m Extends the simulation paradigm

2114

Plan for Today's Lecture

m Main topic of Module Ill: private computation of functions

m Define syntax and security for the two-party case (2PC)
m Extends the simulation paradigm

m Perfectly-private 2PC for linear functions

m Key tool: threshold secret sharing (TSS
m Shamir's TSS

(2 Z“Oo

(aeser

Plan for Today's Lecture

General template:
e
1 ldentify the task
2 Come up with precise threat model M (a.k.a security model)

(Vate wmﬁmb@n of- funccions

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2114

Plan for Today's Lecture

General template: P”M&Q @m?o%(xb’oﬂ D% fonciions
1 Identify the ‘[askf7 s Comi-none mMdel

2 Come up with precise threat model M (a.k.a security model)
m Adversary/Attack: What are the adversary's capabllltles?—j

m Security Goal: What does it mean to be secure? \‘gkd;c CO(TU?ED{{
3 Construct a scheme T1 L’\\W& pry’”

4 Formally prove that I in secure in model M

2114

Plan for Today's Lecture

Linest
General template: o Wate @m?o%ab'oﬂ D%A{q)ncboﬁs
1 Identify the ‘[ask/7 i cemi-noned madel

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabllltles?—j
U

m Security Goal: What does it mean to be secure? o LO(TUF\)ID’{

3 Construct a scheme 1 Su(et «é‘ﬂbr'\ﬂ(ybmtc\ L perfe WNM”
4 Formally prove that I in secure in model M
(, Longtule Simdalor

2114

Private computation

of functions is useful!

Apple’s PSI

The Apple PSI System

Abhishek Bhowmick

Dan Boneh
Apple Inc.

Steve Myers
Stanford University

Apple Inc.

Kunal Talwar
Apple Inc.

Karl Tarbe
Apple Inc.

July 29, 2021 2

Mozilla's private aggregation

Mozilla Security Blog

Next steps in privacy-
preserving Telemetry with
Prio

Steven Englehardt | June 6,2019

3/14

Private computation of functions is useful!

Apple's PSI Mozilla's private aggregation

Mozilla Security Blog

The Apple PSI System

Abhishek Bhowmick DanBonch Steve Myers . .
Apple Inc Stanford University Apple Inc. Next steps in privacy-
. .
Kunal Talwar Karl Tarbe preserving Telemetry with
Apple Inc. Apple Inc.

P Prio

' Steven Englehardt | June 6,2019

Microsoft's EzPZ MP-SPDZ

July 29, 2021

EzPC system
\/u:ability \/s«.umy o9

{%}@}@ @ forked from

Automatic compilation Mathematical guarantees

« Fom TensorFlow/ONNX code | |
10 MPC protocols

+ Nocryptography expertise
required

3/14

Plan for Today's Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

3/14

1 Private Computation of Functions
2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

3/14

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

m Correctness: V4,16 D, Prl (P&u‘), ?, (11)7 —7@@,,13} {

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

m Correctness: \ix,,1,¢ b, PP, ? ()7 —7@@,,11)]: \

m Can be more general: P, 0w
. . 257

m Parties can have common input .0

! i N P PG

m Each party’s output can be different) P () WG

m Two parties — n parties (MPC)

Pa (kn\)‘

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

a —>
m Correctness: y«,1,¢ b e Ry, 2 0a)7 —7@@,,13}: \

m Can be more general: P, 0
m Parties can have common input / - \\
m Each party's output can be different ¢) \“ P i00)
m Two parties — n parties (MPC) / \
Pn@n

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

m Correctness: iz ,1,¢ b, Pr{<\°;L1§),%(11)7—ﬂ(x,mﬁ:\
m Can be more general: PO Y%
m Parties can have common input T \
N\ R00) =

m Each party’s output can be different N (
ye () P L)
m Two parties — n parties (MPC) EASICUAR /‘/’

Pa (Ln\) -0

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

m Correctness: V4,16 D, Prl QO*UD/ ?, (17_)7 —7@@,,13} \

m Can be more general: - pED Y
m Parties can have common input N N
m Fach party’s output can be different N () | B0)
. . Y« () Py)
m Two parties — n parties (MPC) ! //'

@How to frame ZKP as a 2PC protocol? ¢
Paltn) =90

4114

Syntax of Two-Party Computation (2PC)

Defintion 1 (2PC protocol I1 for f : D? — R)

A p-round protocol T1 = (P1, P2) between two parties P1 and P,
with private input x1 € D and xo € D and common output y € R

m Correctness: \j, 1,6 B, Pe((i), 0a) —H(x,2) =

m Can be more general: - pED Y
m Parties can have common input NN S N
m Fach par'tg's output can be different s () P () ‘ £,0G) =i
m Two parties — n parties (MPC) ! //
@How to frame ZKP as a 2PC protocol? £/
m Py ;=P (prover) and Py :=V (verifier) Pnta) ~n
m f =R, the NP relation = common input=x, x; = w, xp = |
4114

.What are the requirements intuitively from P;'s perspective?

6; Q Co. (@)

=N n‘ N
< (1 0)
—— 2

2

5/14

Let's Define Security

@What are the requirements intuitively from P;'s perspective?
m P, should not learn anything about P;'s input xj...

5/14

Let's Define Security

@What are the requirements intuitively from P;'s perspective?
m P, should not learn anything about P;'s input xj...

m .. other than what she learns from output y @ @
m How to formalise this? 3 Q . (B

5/14

Let's Define Security

@What are the requirements intuitively from P;'s perspective?
m P, should not learn anything about P;'s input xj...

m .. other than what she learns from output y @ @
m How to formalise this? As in ZK 0 Q %. B
<«)

S ‘.

| here eXlStS a S[muthOI for SiIIIQVS VleW
[{ P
[y

5/14

Let's Define Security

@What are the requirements intuitively from P;'s perspective?
m P, should not learn anything about P;'s input xj...

m .. other than what she learns from output y @ @
m How to formalise this? As in ZK 0 Q %. B
«—)

t \

m There exists a simulator for Simy's view @
) ~ —
m Same from Py perspective { ’

5/14

Let's Define Security

@What are the requirements intuitively from P;'s perspective?

m P, should not learn anything about P;'s input xj...

m .. other than what she learns from output y @
m How to formalise this? As in ZK 3

m There exists a simulator for Simy's view

m Same from P, perspective (i

Defintion 2 (Semi-honest perfect security for 2PC) @

St
[computes f with perfect privacy if there exists 1) a PPT simulator
Simy such that for all distinguishers D and for all x1, x2 € D, the
following is zero

PriD(Viewp, ((P1(x1), P2(x2)) = 1] — Pr[D(Simz)(x2, y)) = 1]

and 2) a PPT simulator Simy such that...

5/14

Let's Define Security...

Defintion 2 (Semi-honest perfect security for 2PC)

[T computes t with perfect privacy if there exists 1) a PPT simulator
Simgy such that for all distinguishers D and for all x1, xo € D, the
following is zero

PrD(Viewp, ((P1(x1), P2(x2)) = 1] = Pr[D(Simz)(x2, y)) = 1]
and 2) a PPT simulator Simy such that...
m Extending the definition:

m Semi-honest — malicious
m Honest P»/P; — any malicious P3/P; (just as in ZK)

6/14

Let's Define Security...

Defintion 2 (Semi-honest perfect security for 2PC)

[T computes t with perfect privacy if there exists 1) a PPT simulator
Simgy such that for all distinguishers D and for all x1, xo € D, the
following is zero

PrD(Viewp, ((P1(x1), P2(x2)) = 1] = Pr[D(Simz)(x2, y)) = 1]
and 2) a PPT simulator Simy such that...

m Extending the definition:
m Semi-honest — malicious
m Honest P»/P; — any malicious P3/P; (just as in ZK)
m Two parties — n parties (MPC)

6/14

Let's Define Security...

Defintion 2 (Semi-honest perfect security for 2PC)

[T computes t with perfect privacy if there exists 1) a PPT simulator
Simgy such that for all distinguishers D and for all x1, xo € D, the
following is zero

PrD(Viewp, ((P1(x1), P2(x2)) = 1] = Pr[D(Simz)(x2, y)) = 1]
and 2) a PPT simulator Simy such that...

m Extending the definition:
m Semi-honest — malicious
m Honest P»/P; — any malicious P3/P; (just as in ZK)
o m Two parties — n parties (MPC): t-privacy (for t < n)
/ P?_(m\ﬁz\ = Any fixed (t — 1)-sized subset of parties P* C [n] can be corrupt
/ W () ?:0) m There exists Simp+ that simulates views of all parties in P* given

J their inputs {x;};.p- and the output y
" Ryan)

6/14

1 Private Computation of Functions
2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

6/14

Finite Fields

Addition modulo prime p
9 “P 7 [— 2

o=

-{

4 +) R e
Lf - <

{o... P-i} 3(*5;:9;+91(m0d9)
o order p @ yclic

Multiplication modulo prime p

\!
\= q?”m;dp =9 md{

@) gty ¢
J
b 90929, 9(modp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08

7114

Finite Fields

Addition modulo prime p
9 y\)/? [— 2

—~

-{

~

4 +) R -
Lf - <

{o... P-i} gl*g;:9;+g£m0dp)
o order p @ yclic

Multiplication modulo prime p

\!
\= qu\m;dp =9 md{

@) gty ¢
J
b 90929, 9(modp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08

m + and - are “‘compatible” with each other:
m Foranya b c€Z, wehavea-(b+c)=a-b+a-c

Finite Fields

Addition modulo prime p
9 y\)/? [— 2

—~

-{

~

4 +) R -
Lf - <

{o... P-i} gl*g;:9;+9£m0dp)
o order p @ yclic

Multiplication modulo prime p

\!
\= qu\m;dp =9 md{

%) s Gencp ¢
J
{1 pap - 9r9:=9; 9fmodp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08
m + and - are “‘compatible” with each other:
m Foranya b c€Z, wehavea-(b+c)=a-b+a-c

m Can be combined to get a "field" Fp, = (Zp, +,)

Finite Fields

Addition modulo prime p
9 y\)/? [— 2

—~

-{

~

4 +) R -
Lf - <

{o... P-i} g(+g;:q\+gl(m0dp)
o order p @ yclic

Multiplication modulo prime p

\!
\= qu\m;dp =9 md{

@) gy ¢
J
{1 pap - 9r9:=9; 9fmodp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08
m + and - are “‘compatible” with each other:
m Foranya b c€Z, wehavea-(b+c)=a-b+a-c
m Can be combined to get a "field" Fp, = (Zp, +,)
m Finite counterpart of real numbers R
m (R, +) and (R\ {0},) are groups

m + and - are distributive

Finite Fields

Addition modulo prime p
9 “P 7 [— 2

—~

-{

~

4 +) R -
Lf - <

{o... P-i} g(+g;:q\+gl(m0dp)
o order p @ yclic

Multiplication modulo prime p

\!
\= qu\m;dp =9 md{

@) gty ¢
J
b 90929, 9(modp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08
m + and - are “‘compatible” with each other:
m Foranya b c€Z, wehavea-(b+c)=a-b+a-c
m Can be combined to get a "field" Fp, = (Zp, +,)
m Finite counterpart of real numbers R

m (R, +) and (R\ {0},) are groups
m + and - are distributive

m [= (Zy, +, -) corresponds to @

7114

Finite Fields

Addition modulo prime p

O:P/?LﬂI
r

O
@P,_U P\—-.e l /

4
{o,... P-i 3#’3;:9,*910“0‘1?)
o order p @ yclic

Multiplication modulo prime p

— g\ onod p

= q?y\m;dp N
@) Sgmap ¢
A) \

-
{1 pap 90929, 9{modp)
& order p- @ ydlic

m Recall groups (Zp, +) and (Z,,) from Lecture 08
m + and - are “‘compatible” with each other:
m Foranya b c€Z, wehavea-(b+c)=a-b+a-c
m Can be combined to get a "field" Fp, = (Zp, +,)
m Finite counterpart of real numbers R
m (R, +) and (R\ {0},) are groups

m + and - are distributive

m [y = (Zy, +,) corresponds to Boolean algebra ({F, T}, &, A)

(t, n)-Threshold Secret Sharing (TSS)

Vealee
m Goal: share s € F, among n shares [s]i, ..., [s]n such that:

8/14

(t, n)-Threshold Secret Sharing (TSS)

Vealer
m Goal: share s € F, among n shares [s;

.....

[s]n such that:

8/14

(t, n)-Threshold Secret Sharing (TSS)

Ot “ﬁ@
Dea\er
m Goal: share s € F, among n shares [s]i, ..., [s]n such that:

8/14

(t, n)-Threshold Secret Sharing (TSS)

T (B)
N IO

L 2)——

?
Dealer

m Goal: share s € F, among n shares [s]i, ..., [s], such that:

1 s can efficiently “reconstructed” given any subset of > t shares
2 s is perfectly hidden given any subset of < t shares

8/14

(t, n)-Threshold Secret Sharing (TSS)

@ (D g ()

L 2)——

Vealee
m Goal: share s € F, among n shares [s]i, ..., [s], such that:

1 s can efficiently “reconstructed” given any subset of > t shares
2 s is perfectly hidden given any subset of < t shares

@Let's construct TSS for F,. Can you come up with
1 a(1,2)TSS?

{

8/14

(t, n)-Threshold Secret Sharing (TSS)

@ (D g ()

L 2)——

Vealee
m Goal: share s € F, among n shares [s]i, ..., [s], such that:
1 s can efficiently “reconstructed” given any subset of > t shares
2 s is perfectly hidden given any subset of < t shares
@Let's construct TSS for F,. Can you come up with
1 a(1,2)-TSS? Trivial: set [s]y =[s] :=s
2 a(2,2)-TSS using &7

{

8/14

(t, n)-Threshold Secret Sharing (TSS)

), (BY g ()

L 2)——

Vealee

m Goal: share s € F, among n shares [s]i, ..., [s], such that:

1 s can efficiently “reconstructed” given any subset of > t shares

2 s is perfectly hidden given any subset of < t shares
@Let's construct TSS for F,. Can you come up with

1 a(1,2)-TSS? Trivial: set [s]y =[s] :=s

2 a(2,2)-TSS using &7

m Set[s]; ;== k and [s} := k@ s for k — {0,1}
3 a (2,n)-TSS using (2,2)-TSS?

{

8/14

(t, n)-Threshold Secret Sharing (TSS)

L 2)——
— \\\x\\ P
Deglex —
m Goal: share s € F, among n shares [s]i, ..., [s], such that:
1 s can efficiently “reconstructed” given any subset of > t shares
2 s is perfectly hidden given any subset of < t shares
@Let's construct TSS for F,. Can you come up with
1 a(1,2)-TSS? Trivial: set [s]y =[s] :=s
2 a(2,2)-TSS using &7
m Set[s]; ;== k and [s} := k@ s for k — {0,1}
3 a (2,n)-TSS using (2,2)-TSS?

Exercise 1

What happens when you extend 3 to construct (t, n)-TSS for
arbitrary n and t < n?

8/14

Shamir's (t, n)-TSS

(aeser Geerel
m Recall construction of pairwise-independent hash function 0 - £(z)
m Key is a “random line" ¢ over F, and hash is evaluation on ¢ -7

9/14

Shamir's (t, n)-TSS

(aeser Generd]
m Recall construction of pairwise-independent hash function 0 - £(z)
m Key is a “random line" ¢ over F, and hash is evaluation on ¢ -7
m Output is uniformly random over F, as long as ¢ is evaluated at
< 2 points

9/14

Shamir's (t, n)-TSS

¢
Coecer General Denler \

m Recall construction of pairwise-independent hash function 0 - £(z)
m Key is a “random line" ¢ over F, and hash is evaluation on ¢ -7
m Output is uniformly random over F, as long as ¢ is evaluated at
< 2 points
@ can you construct a (2, n)-TSS using ideas above?
m Sharing s € Fy:

9/14

Shamir's (t, n)-TSS

¢
Checer General Denler \

m Recall construction of pairwise-independent hash function 0 - £(z)

m Key is a “random line" ¢ over F, and hash is evaluation on ¢ -7
m Output is uniformly random over F, as long as ¢ is evaluated at

< 2 points
@) Can you construct a (2, n)-TSS using ideas above?
m Sharing s € Fy: G e ,

1 Sample a random line over F, with £(0) :==s ()| ...
2 Share [s]; of party P; is [s]; :== €(i) € F,,
m Reconstruction from [s]; and [s]; (i # j)

9/14

Shamir's (t, n)-TSS

g o,
9 . oy
’ ! @ —%
¢ —
_ ?
Checer General Denler

m Recall construction of pairwise-independent hash function 0 - £(z)

m Key is a “random line" ¢ over F, and hash is evaluation on ¢ -7
m Output is uniformly random over F, as long as ¢ is evaluated at

< 2 points
@ cCan you construct a (2, n)-TSS using ideas above?
m Sharing s € Fy: G e ,

1 Sample a random line over F, with £(0) :==s ()| ...

2 Share [s]; of party P; is [s]; :== €(i) € F,,
m Reconstruction from [s]; and [s]; (i # j)

1 Reconstruct ¢ by drawing line through (i,[s];) and (j,[s];)

2 Output ¢(0)

[A

9/14

.Whg does reconstruction work?

9/14

Shamir’s (t, n)-TSS..
@Whg does reconstruction work? Two points uniquely determine

a line (even in Fp)

@Whg is it perfectly hiding given only one share?

9/14

Shamir’s (t, n)-TSS..

@ Why does reconstruction work? Two points uniquely determine
a line (even in Fp)

@V\/hg is it perfectly hiding given only one share? One point
doesn’t determine a line (even in IFp) = Evaluation at 0 random

9/14

Shamir’s (t, n)-TSS..

@Whg does reconstruction work? Two points uniquely determine
a line (even in Fp)

@Whg is it perfectly hiding given only one share? One point
doesn’t determine a line (even in IFp) = Evaluation at 0 random

- The construction is “linear”:
m ([s1)1,[s1]2) shares of s and ([sz]1, [s2]2) shares of s, =
([s1h + [s2]1 mod p,[s1]2 + [s2]2 mod p) shares of s; + s, mod p
m (sl [s]) shares of s = for ¢ € Fp, (c-[s]y mod p, ¢ - [s]> mod p)
shares of s- ¢ mod p

9/14

Shamir’s (t, n)-TSS..

®Whg does reconstruction work? Two points uniquely determine
a line (even in Fp)

@Whg is it perfectly hiding given only one share? One point
doesn’t determine a line (even in IFp) = Evaluation at 0 random

- The construction is “linear”:
m ([s1)1,[s1]2) shares of s and ([sz]1, [s2]2) shares of s, =
([s1h + [s2h mod p,[s1]2 + [s2]o mod p) shares of s; + s, mod p
m (sl [s]) shares of s = for ¢ € Fp, (c-[s]y mod p, ¢ - [s]> mod p)
shares of s- ¢ mod p

m All of the above ideas extend to arbitrary nand t < n

Exercise 2 (Hint: use a degree-t polynomial instead of line)

Formally describe and prove Shamir's (t, n)-TSS

9/14

1 Private Computation of Functions
2 New Tool: (Threshold) Secret Sharing

'3 Computing Any Linear Function with Perfect Privacy

9/14

How to Privately Compute Linear Functions?

Defintion 3
A function f : F5 — Fp (s linear if Va, be F7f(a+ b) = f(a) + f(b)
=VeceFpacF, flc a)=c {3

10/14

How to Privately Compute Linear Functions?

Defintion 3
A function f : F5 — Fp (s linear if Va, be F7f(a+ b) = f(a) + f(b)
=VeceFpacF, flc a)=c {3

Exercise 3

Show that any linear function f can be computed using a circuit C

with addition gates & and multiply- b@y constant gates O¢
N__—~—_overfp —m 7

10/14

How to Privately Compute Linear Functions?

Defintion 3
A function f : F5 — Fp (s linear if Va, be F7f(a+ b) = f(a) + f(b)
=VeceFpacF, flc a)=c {3

Exercise 3

Show that any linear function f can be computed using a circuit C

with addition gates & and multiply- b@y constant gates O¢
N__—~—_overfp —m 7

9 |dea: each party P; secret- shares its input x; with all other
parties and everyone computes locally “over shares’

10/14

How to Privately Compute Linear Functions?

Defintion 3
A function f : F5 — Fp (s linear if Va, be F7f(a+ b) = f(a) + f(b)
=VeceFpacF, flc a)=c {3

Exercise 3

Show that any linear function f can be computed using a circuit C
with addition gates & and multiply-by-constant gates O

N .) .
Q ldea: each party P; secret-shares its input x; with all other
parties and everyone computes locally “over shares’
5,0, W Invariant: every party P will have secret share [swli of wire w

GG To generate shares of output of @, add shares of input wires

" \/C(m To generate shares of output of O, multiply share with ¢

|os
@M’Jx ¥ \éV/J |

R
Sul, ¥ lsv), 10/14

How to Privately Compute Linear Functions?

Defintion 3
A function f : F5 — Fp (s linear if Va, be F7f(a+ b) = f(a) + f(b)
=VeceFpacF, flc a)=c {3

Exercise 3

Show that any linear function f can be computed using a circuit C
with addition gates & and multiply-by-constant gates O

\\@/’Idea: each party P; secret-shares its input x; with all other
parties and everyone computes locally “over shares’
5,0, W Invariant: every party P will have secret share [swli of wire w
\q Colde To generate shares of output of @, add shares of input wires
é’q m To generate shares of output of O, multiply share with ¢

|os

Gu) v (s o

K‘5"‘*%'{1- Warm-up: let's privately compute & over
Gu), v,

10/14

How to Privately Compute Linear Functions?..

Protocol 1 (Protocol 1 for linear f : Fp — Fp)

1 Secret-share input:

1 Each P; chooses random degree-t polynomial q; with g;(0) = x;
2 Each P; sends share [x;]j := qi(j) to P; (for all j # i)

11/14

How to Privately Compute Linear Functions?..

Protocol 1 (Protocol 1 for linear f : Fp — Fp)

1 Secret-share input:

1 Each P; chooses random degree-t polynomial q; with g;(0) = x;

2 Each P; sends share [x;]j := qi(j) to P; (for all j # i)
2 Emulate circuit: for each gate Gg with in topological order,
GO, each P does the following
Bud g”Ll If Gk = @ define share of Gi's output wire to be sum of P;’s
% shares of Gi's input wires
w L If Gk = ©¢: define share of Gy's output wire to be ¢ times
Bu) (5,6 J, share of Gi's input wire

11/14

How to Privately Compute Linear Functions?..

Protocol 1 (Protocol 1 for linear f : Fp — Fp)

1 Secret-share input:
1 Each P; chooses random degree-t polynomial q; with g;(0) = x;
2 Each P; sends share [x;]j := qi(j) to P; (for all j # i)
2 Emulate circuit: for each gate Gg with in topological order,
GO, each P does the following
Bud g”Ll If Gk = @ define share of Gi's output wire to be sum of P;’s
% shares of Gi's input wires
w m /f Gy = Oc: define share of Gi's output wire to be c times
Bl + (5, Cu) *L% _share of Gi's input wire
3 Reconstruct output: each party P;
1 Broadcasts its share of output wire to parties Pj, j # i
2 Reconstructs g from all shares of output wire
3 Outputs g;i(0)

11/14

[T Computes f with Perfect Secrecy

Theorem 1

Assuming (t, n)-linear TSS, 'l computes { with t-privacy

Proof (Sketch).

m |dea: < t parties P* corrupt = inputs of [n]\ P* perfectly
hidden by security of TSS

12/14

[T Computes f with Perfect Secrecy

Theorem 1

Assuming (t, n)-linear TSS, 'l computes { with t-privacy

Proof (Sketch).

m |dea: < t parties P* corrupt = inputs of [n]\ P* perfectly
hidden by security of TSS
m Simulator Sim(P*, {x;};cp-, ¥)
m Share input:
1 For every i € P* sample random g; with g;(0) = x; (as in [1)
2 For every i ¢ P*, sample random g; with g;(0) = 0

12/14

[T Computes f with Perfect Secrecy

Theorem 1

Assuming (t, n)-linear TSS, 'l computes { with t-privacy

Proof (Sketch).

m |dea: < t parties P* corrupt = inputs of [n]\ P* perfectly
hidden by security of TSS
m Simulator Sim(P*, {x;};cp-, ¥)
m Share input:
1 For every i € P* sample random g; with g;(0) = x; (as in [1)
2 For every i ¢ P*, sample random g; with g;(0) = 0
m Emulate circuit: for each non-output gate G in top. order

m Cenerate shares of Gi's output wire as in 1

12/14

[T Computes f with Perfect Secrecy

Theorem 1

Assuming (t, n)-linear TSS, 'l computes { with t-privacy

Proof (Sketch).

m |dea: < t parties P* corrupt = inputs of [n]\ P* perfectly
hidden by security of TSS
m Simulator Sim(P*, {x;};cp-, ¥)
m Share input:
1 For every i € P* sample random g; with g;(0) = x; (as in [1)
2 For every i ¢ P*, sample random g; with g;(0) = 0
m Emulate circuit: for each non-output gate G in top. order
m Cenerate shares of Gi's output wire as in 1
m Program output:

m Set polynomial g, of output gate consistently with its input
wires and with g,(0) = y (]

12/14

To Recap Today's Lecture

m Task 6: Private computation of functions

G

13/14

To Recap Today's Lecture

m Task 6: Private computation of functions

m Defined syntax and security for the two-party case (2PC)
m Extends the simulation paradigm

13/14

To Recap Today's Lecture

m Task 6: Private computation of functions

m Defined syntax and security for the two-party case (2PC)
m Extends the simulation paradigm
m Perfectly-private MPC for linear functions

m Key tool: threshold secret sharing (TSS)
m Shamir's TSS

m Key idea: “compute over shares” ¢

3 R - :
[?31""" '

13/14

m Continue with Task 6
/A Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

14114

Next Lecture

m Continue with Task 6
A\ Perfectly-private 2PC for general functions is impossible! 5
(

m Counter-example: A
m What do we do? Relax to computational privacy l
m New tool: oblivious transfer

m Oblivious transfer from trapdoor permutations N

14/14

Next Lecture

m Continue with Task 6
A\ Perfectly-private 2PC for general functions is impossible! 5
(

m Counter-example: A
m What do we do? Relax to computational privacy l
m New tool: oblivious transfer

m Oblivious transfer from trapdoor permutations N

m GMW protocol: computationally-private MPC for general t
functions

14/14

References

1 MPC was first studied in [GMW87], building on [GMR89]
2 Shamir's TSS is from [Sha79]

3 The perfectly-secure MPC protocol for linear functions
described here is taken from [AL17, §4.2]

14/14

@ Gilad Asharov and Yehuda Lindell.
A full proof of the BGW protocol for perfectly secure multiparty computation.
Journal of Cryptology, 30(1):58-151, January 2017.

@ Shaft Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput,, 18(1):186-208, 1989.

@ Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game or A completeness theorem for protocols with
honest majority.

In Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May
1987.

@ Adi Shamir.
How to share a secret.
Commun. ACM, 22(11):612-613, 1979.

14/14

	Private Computation of Functions
	New Tool: (Threshold) Secret Sharing
	Computing Any Linear Function with Perfect Privacy

