
CS783: Theoretical Foundations of Cryptography
Lecture 17 (08/Oct/24)

Instructor: Chethan Kamath

Recall from Last Three Lectures

Interactive proof
Zero knowledge (ZK) proof
ZK proof of knowledge

1 / 14

Recall from Last Three Lectures

Interactive proof
Zero knowledge (ZK) proof
ZK proof of knowledge

1 / 14

Recall from Last Three Lectures

Interactive proof
Zero knowledge (ZK) proof
ZK proof of knowledge

Simulators and extractors
Key tools: out-of-order sampling and rewinding

1 / 14

Plan for Today’s Lecture...

Main topic of Module III: private computation of functions

2 / 14

Plan for Today’s Lecture...

Main topic of Module III: private computation of functions

Define syntax and security for the two-party case (2PC)
Extends the simulation paradigm

2 / 14

Plan for Today’s Lecture...

Main topic of Module III: private computation of functions

Define syntax and security for the two-party case (2PC)
Extends the simulation paradigm

Perfectly-private 2PC for linear functions
Key tool: threshold secret sharing (TSS)
Shamir’s TSS

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Private computation of functions is useful!
Apple’s PSI Mozilla’s private aggregation

3 / 14

Private computation of functions is useful!
Apple’s PSI Mozilla’s private aggregation

Microsoft’s EzPZ MP-SPDZ

3 / 14

Plan for Today’s Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

3 / 14

Plan for Today’s Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

3 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

How to frame ZKP as a 2PC protocol?

4 / 14

Syntax of Two-Party Computation (2PC)
Defintion 1 (2PC protocol Π for f : D � → R)
A ρ-round protocol Π = (��,��) between two parties �� and ��with private input �� ∈ D and �� ∈ D and common output � ∈ R

Correctness:
Can be more general:

Parties can have common input
Each party’s output can be different
Two parties → � parties (MPC)

How to frame ZKP as a 2PC protocol?
�� := � (prover) and �� := � (verifier)
� := R, the �� relation ⇒ common input=�, �� = � , �� = ⊥

4 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

5 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

�� should not learn anything about ��’s input ��...

5 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

�� should not learn anything about ��’s input ��...... other than what she learns from output �
How to formalise this?

5 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

�� should not learn anything about ��’s input ��...... other than what she learns from output �
How to formalise this? As in ZK

There exists a simulator for ����’s view

5 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

�� should not learn anything about ��’s input ��...... other than what she learns from output �
How to formalise this? As in ZK

There exists a simulator for ����’s view
Same from �� perspective

5 / 14

Let’s Define Security...
What are the requirements intuitively from �� ’s perspective?

�� should not learn anything about ��’s input ��...... other than what she learns from output �
How to formalise this? As in ZK

There exists a simulator for ����’s view
Same from �� perspective

Defintion 2 (Semi-honest perfect security for 2PC)
Π computes f with perfect privacy if there exists 1) a PPT simulator
���� such that for all distinguishers � and for all ��, �� ∈ D , the
following is zero

Pr[�(View��
(⟨��(��),��(��)⟩ = �] − Pr[�(����)(��, �)) = �]

and 2) a PPT simulator ���� such that....
5 / 14

Let’s Define Security...
Defintion 2 (Semi-honest perfect security for 2PC)
Π computes f with perfect privacy if there exists 1) a PPT simulator
���� such that for all distinguishers � and for all ��, �� ∈ D , the
following is zero

Pr[�(View��
(⟨��(��),��(��)⟩ = �] − Pr[�(����)(��, �)) = �]

and 2) a PPT simulator ���� such that....
Extending the definition:

Semi-honest → malicious
Honest ��/�� → any malicious �∗

�
/�∗

�
(just as in ZK)

6 / 14

Let’s Define Security...
Defintion 2 (Semi-honest perfect security for 2PC)
Π computes f with perfect privacy if there exists 1) a PPT simulator
���� such that for all distinguishers � and for all ��, �� ∈ D , the
following is zero

Pr[�(View��
(⟨��(��),��(��)⟩ = �] − Pr[�(����)(��, �)) = �]

and 2) a PPT simulator ���� such that....
Extending the definition:

Semi-honest → malicious
Honest ��/�� → any malicious �∗

�
/�∗

�
(just as in ZK)

Two parties → � parties (MPC)

6 / 14

Let’s Define Security...
Defintion 2 (Semi-honest perfect security for 2PC)
Π computes f with perfect privacy if there exists 1) a PPT simulator
���� such that for all distinguishers � and for all ��, �� ∈ D , the
following is zero

Pr[�(View��
(⟨��(��),��(��)⟩ = �] − Pr[�(����)(��, �)) = �]

and 2) a PPT simulator ���� such that....
Extending the definition:

Semi-honest → malicious
Honest ��/�� → any malicious �∗

�
/�∗

�
(just as in ZK)

Two parties → � parties (MPC): �-privacy (for � ≤ �)
Any fixed (� − �)-sized subset of parties P∗ ⊂ [�] can be corrupt
There exists ���P∗ that simulates views of all parties in P∗ given
their inputs {��}�∈P∗ and the output �

6 / 14

Plan for Today’s Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

6 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

7 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

+ and · are “compatible” with each other:
For any �,�, � ∈ Z�, we have � · (� + �) = � · � + � · �

7 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

+ and · are “compatible” with each other:
For any �,�, � ∈ Z�, we have � · (� + �) = � · � + � · �

Can be combined to get a “field” F� = (Z� , +, ·)

7 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

+ and · are “compatible” with each other:
For any �,�, � ∈ Z�, we have � · (� + �) = � · � + � · �

Can be combined to get a “field” F� = (Z� , +, ·)
Finite counterpart of real numbers R

(R, +) and (R \ {�}, ·) are groups
+ and · are distributive

7 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

+ and · are “compatible” with each other:
For any �,�, � ∈ Z�, we have � · (� + �) = � · � + � · �

Can be combined to get a “field” F� = (Z� , +, ·)
Finite counterpart of real numbers R

(R, +) and (R \ {�}, ·) are groups
+ and · are distributive

F� = (Z�, +, ·) corresponds to
7 / 14

Finite Fields
Addition modulo prime � Multiplication modulo prime �

Recall groups (Z� , +) and (Z×
� , ·) from Lecture 08

+ and · are “compatible” with each other:
For any �,�, � ∈ Z�, we have � · (� + �) = � · � + � · �

Can be combined to get a “field” F� = (Z� , +, ·)
Finite counterpart of real numbers R

(R, +) and (R \ {�}, ·) are groups
+ and · are distributive

F� = (Z�, +, ·) corresponds to Boolean algebra ({� ,� }, ⊕, ∧)
7 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS?

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [�]� = [�]� := �
2 a (�, �)-TSS using ⊕?

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [�]� = [�]� := �
2 a (�, �)-TSS using ⊕?

Set [�]� := � and [�]� := � ⊕ � for � ← {�,�}
3 a (�, �)-TSS using (�, �)-TSS?

8 / 14

(�, �)-Threshold Secret Sharing (TSS)

Goal: share � ∈ F� among � shares [�]�, . . . , [�]� such that:
1 � can efficiently “reconstructed” given any subset of ≥ � shares
2 � is perfectly hidden given any subset of < � shares

Let’s construct TSS for F� . Can you come up with
1 a (�, �)-TSS? Trivial: set [�]� = [�]� := �
2 a (�, �)-TSS using ⊕?

Set [�]� := � and [�]� := � ⊕ � for � ← {�,�}
3 a (�, �)-TSS using (�, �)-TSS?

Exercise 1
What happens when you extend 3 to construct (�, �)-TSS for
arbitrary � and � ≤ �?

8 / 14

Shamir’s (�, �)-TSS...

Recall construction of pairwise-independent hash function
Key is a “random line” ℓ over F� and hash is evaluation on ℓ

9 / 14

Shamir’s (�, �)-TSS...

Recall construction of pairwise-independent hash function
Key is a “random line” ℓ over F� and hash is evaluation on ℓ
Output is uniformly random over F� as long as ℓ is evaluated at
≤ � points

9 / 14

Shamir’s (�, �)-TSS...

Recall construction of pairwise-independent hash function
Key is a “random line” ℓ over F� and hash is evaluation on ℓ
Output is uniformly random over F� as long as ℓ is evaluated at
≤ � points

Can you construct a (�, �)-TSS using ideas above?
Sharing � ∈ F� :

9 / 14

Shamir’s (�, �)-TSS...

Recall construction of pairwise-independent hash function
Key is a “random line” ℓ over F� and hash is evaluation on ℓ
Output is uniformly random over F� as long as ℓ is evaluated at
≤ � points

Can you construct a (�, �)-TSS using ideas above?
Sharing � ∈ F� :

1 Sample a random line ℓ over F� with ℓ(�) := �

2 Share [�]� of party �� is [�]� := ℓ(�) ∈ F�

Reconstruction from [�]� and [�]� (� ̸= �)

9 / 14

Shamir’s (�, �)-TSS...

Recall construction of pairwise-independent hash function
Key is a “random line” ℓ over F� and hash is evaluation on ℓ
Output is uniformly random over F� as long as ℓ is evaluated at
≤ � points

Can you construct a (�, �)-TSS using ideas above?
Sharing � ∈ F� :

1 Sample a random line ℓ over F� with ℓ(�) := �

2 Share [�]� of party �� is [�]� := ℓ(�) ∈ F�

Reconstruction from [�]� and [�]� (� ̸= �)
1 Reconstruct ℓ by drawing line through (� , [�]�) and (� , [�]�)
2 Output ℓ(�)

9 / 14

Shamir’s (�, �)-TSS...
Why does reconstruction work?

9 / 14

Shamir’s (�, �)-TSS...
Why does reconstruction work? Two points uniquely determine
a line (even in F�)
Why is it perfectly hiding given only one share?

9 / 14

Shamir’s (�, �)-TSS...
Why does reconstruction work? Two points uniquely determine
a line (even in F�)
Why is it perfectly hiding given only one share? One point
doesn’t determine a line (even in F�) ⇒ Evaluation at � random

9 / 14

Shamir’s (�, �)-TSS...
Why does reconstruction work? Two points uniquely determine
a line (even in F�)
Why is it perfectly hiding given only one share? One point
doesn’t determine a line (even in F�) ⇒ Evaluation at � random

The construction is “linear”:
([��]�, [��]�) shares of �� and ([��]�, [��]�) shares of �� ⇒
([��]� + [��]� mod �, [��]� + [��]� mod �) shares of �� + �� mod �

([�]�, [�]�) shares of � ⇒ for � ∈ F� , (� · [�]� mod �, � · [�]� mod �)
shares of � · � mod �

9 / 14

Shamir’s (�, �)-TSS...
Why does reconstruction work? Two points uniquely determine
a line (even in F�)
Why is it perfectly hiding given only one share? One point
doesn’t determine a line (even in F�) ⇒ Evaluation at � random

The construction is “linear”:
([��]�, [��]�) shares of �� and ([��]�, [��]�) shares of �� ⇒
([��]� + [��]� mod �, [��]� + [��]� mod �) shares of �� + �� mod �

([�]�, [�]�) shares of � ⇒ for � ∈ F� , (� · [�]� mod �, � · [�]� mod �)
shares of � · � mod �

All of the above ideas extend to arbitrary � and � ≤ �

Exercise 2 (Hint: use a degree-� polynomial instead of line)
Formally describe and prove Shamir’s (�, �)-TSS

9 / 14

Plan for Today’s Lecture

1 Private Computation of Functions

2 New Tool: (Threshold) Secret Sharing

3 Computing Any Linear Function with Perfect Privacy

9 / 14

How to Privately Compute Linear Functions?...
Defintion 3
A function f : F�

� → F� is linear if ∀�̄, �̄ ∈ F�
� : f(�̄ + �̄) = f(�̄) + f(�̄)

⇒ ∀� ∈ F� , �̄ ∈ F�
� : f(� · �̄) = � · f(�̄)

10 / 14

How to Privately Compute Linear Functions?...
Defintion 3
A function f : F�

� → F� is linear if ∀�̄, �̄ ∈ F�
� : f(�̄ + �̄) = f(�̄) + f(�̄)

⇒ ∀� ∈ F� , �̄ ∈ F�
� : f(� · �̄) = � · f(�̄)

Exercise 3
Show that any linear function f can be computed using a circuit �
with addition gates ⊕ and multiply-by-constant gates ⊙�

10 / 14

How to Privately Compute Linear Functions?...
Defintion 3
A function f : F�

� → F� is linear if ∀�̄, �̄ ∈ F�
� : f(�̄ + �̄) = f(�̄) + f(�̄)

⇒ ∀� ∈ F� , �̄ ∈ F�
� : f(� · �̄) = � · f(�̄)

Exercise 3
Show that any linear function f can be computed using a circuit �
with addition gates ⊕ and multiply-by-constant gates ⊙�

Idea: each party �� secret-shares its input �� with all other
parties and everyone computes locally “over shares”

10 / 14

How to Privately Compute Linear Functions?...
Defintion 3
A function f : F�

� → F� is linear if ∀�̄, �̄ ∈ F�
� : f(�̄ + �̄) = f(�̄) + f(�̄)

⇒ ∀� ∈ F� , �̄ ∈ F�
� : f(� · �̄) = � · f(�̄)

Exercise 3
Show that any linear function f can be computed using a circuit �
with addition gates ⊕ and multiply-by-constant gates ⊙�

Idea: each party �� secret-shares its input �� with all other
parties and everyone computes locally “over shares”
Invariant: every party �� will have secret share [��]� of wire �

To generate shares of output of ⊕, add shares of input wires
To generate shares of output of ⊙� , multiply share with �

10 / 14

How to Privately Compute Linear Functions?...
Defintion 3
A function f : F�

� → F� is linear if ∀�̄, �̄ ∈ F�
� : f(�̄ + �̄) = f(�̄) + f(�̄)

⇒ ∀� ∈ F� , �̄ ∈ F�
� : f(� · �̄) = � · f(�̄)

Exercise 3
Show that any linear function f can be computed using a circuit �
with addition gates ⊕ and multiply-by-constant gates ⊙�

Idea: each party �� secret-shares its input �� with all other
parties and everyone computes locally “over shares”
Invariant: every party �� will have secret share [��]� of wire �

To generate shares of output of ⊕, add shares of input wires
To generate shares of output of ⊙� , multiply share with �

Warm-up: let’s privately compute ⊕ over F�
10 / 14

How to Privately Compute Linear Functions?...
Protocol 1 (Protocol Π for linear f : F�

� → F�)
1 Secret-share input:

1 Each �� chooses random degree-� polynomial �� with �� (�) = ��
2 Each �� sends share [��]� := �� (�) to �� (for all � ̸= �)

11 / 14

How to Privately Compute Linear Functions?...
Protocol 1 (Protocol Π for linear f : F�

� → F�)
1 Secret-share input:

1 Each �� chooses random degree-� polynomial �� with �� (�) = ��
2 Each �� sends share [��]� := �� (�) to �� (for all � ̸= �)

2 Emulate circuit: for each gate �� with in topological order,each �� does the following
If �� = ⊕: define share of �� ’s output wire to be sum of �� ’sshares of �� ’s input wires
If �� = ⊙� : define share of �� ’s output wire to be � times
share of �� ’s input wire

11 / 14

How to Privately Compute Linear Functions?...
Protocol 1 (Protocol Π for linear f : F�

� → F�)
1 Secret-share input:

1 Each �� chooses random degree-� polynomial �� with �� (�) = ��
2 Each �� sends share [��]� := �� (�) to �� (for all � ̸= �)

2 Emulate circuit: for each gate �� with in topological order,each �� does the following
If �� = ⊕: define share of �� ’s output wire to be sum of �� ’sshares of �� ’s input wires
If �� = ⊙� : define share of �� ’s output wire to be � times
share of �� ’s input wire

3 Reconstruct output: each party ��

1 Broadcasts its share of output wire to parties �� , � ̸= �

2 Reconstructs �� from all shares of output wire
3 Outputs �� (�)

11 / 14

Π Computes f with Perfect Secrecy
Theorem 1
Assuming (�, �)-linear TSS, Π computes f with �-privacy
Proof (Sketch).

Idea: < � parties P∗ corrupt ⇒ inputs of [�] \ P∗ perfectly
hidden by security of TSS

12 / 14

Π Computes f with Perfect Secrecy
Theorem 1
Assuming (�, �)-linear TSS, Π computes f with �-privacy
Proof (Sketch).

Idea: < � parties P∗ corrupt ⇒ inputs of [�] \ P∗ perfectly
hidden by security of TSS
Simulator ���(P∗, {��}�∈P∗ , �)

Share input:
1 For every � ∈ P∗ , sample random �� with �� (�) = �� (as in Π)
2 For every � ̸∈ P∗ , sample random �� with �� (�) = �

12 / 14

Π Computes f with Perfect Secrecy
Theorem 1
Assuming (�, �)-linear TSS, Π computes f with �-privacy
Proof (Sketch).

Idea: < � parties P∗ corrupt ⇒ inputs of [�] \ P∗ perfectly
hidden by security of TSS
Simulator ���(P∗, {��}�∈P∗ , �)

Share input:
1 For every � ∈ P∗ , sample random �� with �� (�) = �� (as in Π)
2 For every � ̸∈ P∗ , sample random �� with �� (�) = �

Emulate circuit: for each non-output gate �� in top. order
Generate shares of �� ’s output wire as in Π

12 / 14

Π Computes f with Perfect Secrecy
Theorem 1
Assuming (�, �)-linear TSS, Π computes f with �-privacy
Proof (Sketch).

Idea: < � parties P∗ corrupt ⇒ inputs of [�] \ P∗ perfectly
hidden by security of TSS
Simulator ���(P∗, {��}�∈P∗ , �)

Share input:
1 For every � ∈ P∗ , sample random �� with �� (�) = �� (as in Π)
2 For every � ̸∈ P∗ , sample random �� with �� (�) = �

Emulate circuit: for each non-output gate �� in top. order
Generate shares of �� ’s output wire as in Π

Program output:
Set polynomial �� of output gate consistently with its input
wires and with ��(�) = �

12 / 14

To Recap Today’s Lecture

Task 6: Private computation of functions

13 / 14

To Recap Today’s Lecture

Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Extends the simulation paradigm

13 / 14

To Recap Today’s Lecture

Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Extends the simulation paradigm

Perfectly-private MPC for linear functions
Key tool: threshold secret sharing (TSS)
Shamir’s TSS
Key idea: “compute over shares”

13 / 14

Next Lecture

Continue with Task 6
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

14 / 14

Next Lecture

Continue with Task 6
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧
What do we do? Relax to computational privacyNew tool: oblivious transfer

Oblivious transfer from trapdoor permutations

14 / 14

Next Lecture

Continue with Task 6
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧
What do we do? Relax to computational privacyNew tool: oblivious transfer

Oblivious transfer from trapdoor permutations
GMW protocol: computationally-private MPC for general
functions

14 / 14

References

1 MPC was first studied in [GMW87], building on [GMR89]
2 Shamir’s TSS is from [Sha79]
3 The perfectly-secure MPC protocol for linear functions

described here is taken from [AL17, §4.2]

14 / 14

Gilad Asharov and Yehuda Lindell.
A full proof of the BGW protocol for perfectly secure multiparty computation.
Journal of Cryptology, 30(1):58–151, January 2017.
Shafi Goldwasser, Silvio Micali, and Charles Rackoff.
The knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.
Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game or A completeness theorem for protocols with
honest majority.
In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.
Adi Shamir.
How to share a secret.
Commun. ACM, 22(11):612–613, 1979.

14 / 14

	Private Computation of Functions
	New Tool: (Threshold) Secret Sharing
	Computing Any Linear Function with Perfect Privacy

