
CS783: Theoretical Foundations of Cryptography
Lecture 18 (11/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture
Task 6: Private computation of functions

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

Extended to multi-party case (MPC)

1 / 14

Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

Extended to multi-party case (MPC)

Perfectly-private MPC for linear functions
Key tool: threshold secret sharing (TSS)

Construction: Shamir’s TSS
Linearity: “sum of shares → shares of sum”

Key idea: “compute over shares”
1 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

2 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

2 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

What do we do?

2 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

What do we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT

2 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

What do we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
OT → computationally-private 2PC for general functions over
F� (GMW protocol)

2 / 14

Plan for Today’s Lecture...
What about perfectly-private MPC for general functions?

Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

What do we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
OT → computationally-private 2PC for general functions over
F� (GMW protocol)

Note: perfectly-private MPC for general functions is possiblewith honest majority, i.e., if � < �/� (BGW protocol)
E.g., three-input ∧ can be computed with perfect privacy if only
one of the parties corrupt

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 14

Plan for Today’s Lecture

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

2 / 14

Plan for Today’s Lecture

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

2 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

Where does this argument fail for ⊕?
3 / 14

Can we Extend Π to Arbitrary Functions?
Need to deal with ∧ over F�/multiplication over F�

Claim 1
There does not exist a perfectly-private 2PC protocol Π for ∧
Proof (Idea: ∃ perfectly private Π =⇒ Π incorrect).

Where does this argument fail for ⊕?
3 / 14

Plan for Today’s Lecture

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

3 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

Why is it useful? E.g., can be used to privately compute ∧

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

Why is it useful? E.g., can be used to privately compute ∧

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

Why is it useful? E.g., can be used to privately compute ∧

4 / 14

Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

Why is it useful? E.g., can be used to privately compute ∧

Exercise 1 (Hint: Need to invoke OT multiple times)
Implement comparison operator ≤ for �-bit integers using OT

4 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

5 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

5 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

Correctness:

5 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

Correctness:
Sender privacy: (honest) � should not learn input ��−�∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)

5 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

Correctness:
Sender privacy: (honest) � should not learn input ��−�∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)Receiver privacy: (honest) � should not learn choice bit �

∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)

5 / 14

Syntax and Security of OT
Defintion 1 (Oblivious Transfer)
An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

Correctness:
Sender privacy: (honest) � should not learn input ��−�∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)Receiver privacy: (honest) � should not learn choice bit �

∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)
Exercise 2
Construct a �-out-of-� OT from a �-out-of-� OT.

5 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
One-way permutation that is easy to invert given a “trapdoor”

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

2 Each f� , � ∈ I , is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr(� ,τ)←�����(��)
�←D�

[���(f� (�)) ∈ f−�

� (f� (�))]

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)
A collection of permutations f = {f� : D� → D�}�∈I⊆{�,�}∗ is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm �����

2 Each f� , � ∈ I , is efficiently computable
3 For all PPT inverters ���, the following is negligible:

�(�) := Pr(� ,τ)←�����(��)
�←D�

[���(f� (�)) ∈ f−�

� (f� (�))]

4 f−�

� can be efficiently computed given trapdoor τ for �

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

6 / 14

Recall Trapdoor Permutation (TDP) from Lecture 13...
Example: RSA TDP f�,� : Z×

� → Z×
� defined as

f�,�(�) := �� mod �

f� ,� is permutation when ��� (� , (� − �)(� − �)) = �

One-way by RSA assumption
The trapdoor is � := �−� mod (� − �)(� − �)

Construction 1 (PKE Π = (���, ���,���) ← TDP f� : D� → D�)

6 / 14

TDP → OT...
How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D�)

7 / 14

TDP → OT...
How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D�)

1 Sender: sample (f� , f−��) and send f� to receiver

7 / 14

TDP → OT...
How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D�)

1 Sender: sample (f� , f−��) and send f� to receiver
2 Receiver:

1 Sample �� ← D� and set �� := f� (��); sample ��−� ← D�

2 Send (��, ��) to sender

7 / 14

TDP → OT...
How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D�)

1 Sender: sample (f� , f−��) and send f� to receiver
2 Receiver:

1 Sample �� ← D� and set �� := f� (��); sample ��−� ← D�

2 Send (��, ��) to sender
3 Sender:

1 Compute �� := f−�
�

(��) and �� := f−�
�

(��)
2 Send (�� := �� ⊕ hc(��), �� := �� ⊕ hc(��))

7 / 14

TDP → OT...
How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D�)

1 Sender: sample (f� , f−��) and send f� to receiver
2 Receiver:

1 Sample �� ← D� and set �� := f� (��); sample ��−� ← D�

2 Send (��, ��) to sender
3 Sender:

1 Compute �� := f−�
�

(��) and �� := f−�
�

(��)
2 Send (�� := �� ⊕ hc(��), �� := �� ⊕ hc(��))

4 Receiver: Output �� ⊕ hc(��)
7 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

8 / 14

TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

Exercise 3
What happens if the sender (resp., receiver) is malicious?

8 / 14

Plan for Today’s Lecture

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

8 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [��]� of value ��of wire �

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [��]� of value ��of wire �Both parties compute locally “over shares”

⊕ gate: XOR shares of i/p wires to obtain share of o/p wire
∧� gate: AND share of i/p wire with � to get obtain of o/p of ∧�

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [��]� of value ��of wire �Both parties compute locally “over shares”

⊕ gate: XOR shares of i/p wires to obtain share of o/p wire
∧� gate: AND share of i/p wire with � to get obtain of o/p of ∧�

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [��]� of value ��of wire �Both parties compute locally “over shares”

⊕ gate: XOR shares of i/p wires to obtain share of o/p wire
∧� gate: AND share of i/p wire with � to get obtain of o/p of ∧�

9 / 14

Recall Π (Protocol 1) from Last Lecture
Every linear function f over F� = (Z�, ⊕, ∧) can be represented
by a Boolean circuit consisting of ⊕ and ∧�

Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [��]� of value ��of wire �Both parties compute locally “over shares”

⊕ gate: XOR shares of i/p wires to obtain share of o/p wire
∧� gate: AND share of i/p wire with � to get obtain of o/p of ∧�

�� and �� use their shares of output wire to reconstruct output
9 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

Let’s use OT to Compute ∧ with Computational Privacy
Hurdle with extending Π to arbitrary functions?

Need to deal with ∧ to maintain invariant
What happens when shares of input wires of ∧ locally ANDed?

Can you reduce secret-shared ∧ to an OT?

10 / 14

GMW Protocol...

Protocol 2 (for f : {�, �}�� → {�, �} represented by circuit �)
1 Each party secret-shares its input bits with the other party

11 / 14

GMW Protocol...

Protocol 2 (for f : {�, �}�� → {�, �} represented by circuit �)
1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate � ∈ � in topological order

if � = ⊕: �� locally XORs its shares of � ’s input wires to
obtain its share of � ’s output wire; �� does the same
if � = ∧: �� (sender) and �� (receiver) use �-out-of-� OT
protocol to generate their shares of � ’s output wire

11 / 14

GMW Protocol...

Protocol 2 (for f : {�, �}�� → {�, �} represented by circuit �)
1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate � ∈ � in topological order

if � = ⊕: �� locally XORs its shares of � ’s input wires to
obtain its share of � ’s output wire; �� does the same
if � = ∧: �� (sender) and �� (receiver) use �-out-of-� OT
protocol to generate their shares of � ’s output wire

3 �� and �� use their shares of output wire to reconstruct output
11 / 14

GMW Protocol...

Theorem 2
OT secure ⇒ GMW protocol computes f with computational privacy.

12 / 14

GMW Protocol...

Theorem 2
OT secure ⇒ GMW protocol computes f with computational privacy.
Exercise 4

Prove �� ’s privacy: OT simulator → simulator ����� for �� .
Prove �� ’s privacy: simulator ����� for �� .

12 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

13 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

What did we do?

13 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

What did we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT

13 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

What did we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
GMW protocol: OT → computationally-private 2PC forgeneral functions over F�

13 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

What did we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
GMW protocol: OT → computationally-private 2PC forgeneral functions over F�

Alternatively, Yao’s garbling from OT and SKE
Can be extended to computationally-private MPC for general
functions over F�

13 / 14

To Recap Today’s Lecture
Perfectly-private 2PC for general functions is impossible!

Counter-example: ∧

What did we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
GMW protocol: OT → computationally-private 2PC forgeneral functions over F�

Alternatively, Yao’s garbling from OT and SKE
Can be extended to computationally-private MPC for general
functions over F�

For privacy against malicious parties, use zero knowledgeproof (ZKP)
Semi-honest-secure MPC + ZKP → malicious-secure MPC

13 / 14

Next Two Lectures
Outsourcing in client-server model

14 / 14

T

Next Two Lectures
Outsourcing in client-server model

14 / 14

T

Next Two Lectures
Outsourcing in client-server model

Privacy-preserving outsourcing
Using fully homomorphic encryption (FHE)
LWE→ FHE (GSW construction)

14 / 14

T

Next Two Lectures
Outsourcing in client-server model

Privacy-preserving outsourcing
Using fully homomorphic encryption (FHE)
LWE→ FHE (GSW construction)

Verifiable outsourcing
Using succinct non-interactive argument (SNARG)SNARG for repeated squaring problem in ROM

Pietrzak’s protocol
SNARG for �� in ROM (if time permits)

Kilian’s protocol
14 / 14

T

References

1 Most of this lecture is based on (slides of) Lecture 18 from
Vinod Vaikuntanathan’s MIT6875. For a more formal
description of the protocols, see [Gol04, §7.3].

2 Claim 1 is folklore. The proof presented here is due to Rotem
Oshman (and taken from the slides above)

3 Oblivious transfer was introduced by Rabin [Rab81] (although
Wiesner introduced a similar primitive in [Wie83]). Its
construction from TDP is from [EGL82].

4 The GMW protocol is from [GMW87]

14 / 14

Shimon Even, Oded Goldreich, and Abraham Lempel.
A randomized protocol for signing contracts.
In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82,
pages 205–210. Plenum Press, New York, USA, 1982.
Oded Goldreich, Silvio Micali, and Avi Wigderson.
How to play any mental game or A completeness theorem for protocols with
honest majority.
In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.
Oded Goldreich.
The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.
Michael Rabin.
How to exchange secrets with oblivious transfer.
Technical report, 1981.
Stephen Wiesner.
Conjugate coding.
SIGACT News, 15(1):78–88, January 1983.

14 / 14

	Computing with Perfect Privacy is Impossible
	New Cryptographic Primitive: Oblivious Transfer (OT)
	Goldreich-Micali-Wigderson (GMW) Protocol

