([Pt;}x@@) /\’U 20 D)
(Ek&@i)\) NeEa® ) —

(Ca®ynE200)
(Ea®OAEa® 1)

CS783: Theoretical Foundations of Cryptography

Lecture 18 (11/Oct/24)

Instructor: Chethan Kamath



m Task 0: Private computation of functions

1114



Recall from Last Lecture

m Task 0: Private computation of functions

1/14



Recall from Last Lecture

m Task 0: Private computation of functions

m Defined syntax and security for the two-party case (2PC)

m Special case of 2PC: ZK proof
m Extends the simulation paradigm

1/14



Recall from Last Lecture
m Task 6: Private computation of functions

[or=)

R's view” .
(.

m Defined sgntaxandsecurttgfor t'HVe“t\-/\)br—'partg case (2PC)
m Special case of 2PC: ZK proof
m Extends the simulation paradigm

1/14



Recall from Last Lecture
m Task 6: Private computation of functions
/7:

R's View

m Defined sgntax ‘and securttg for the two- partg case (ZPC)

m Special case of 2PC: ZK proof
m Extends the simulation paradigm

1/14



Recall from Last Lecture
m Task 6: Private computation of functions
/7:

R's View

m Defined sgntax ‘and securttg for the two- partg case (ZPC)
m Special case of 2PC: ZK proof
m Extends the simulation paradigm

m Extended to multi-party case (MPC)

1/14



Recall from Last Lecture
m Task 6: Private computation of functions
/7:

R's View

m Defined sgntax ‘and securttg for the two- partg case (ZPC)

m Special case of 2PC: ZK proof
m Extends the simulation paradigm

m Extended to multi-party case (MPC)

m Perfectly-private MPC for linear functions @
Lo R < m Key tool: threshold secret sharing (TSS) 0 .

- A —
! @./\/\I Construction: Shamir's TSS ‘ u c

: m Linearity: “sum of shares — shares of sum’ 2
i . m Key idea: “compute over shares”

1/14



m What about perfectly-private MPC for general functions?

2[14



Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
APerfect[g—prlvate 2PC for general functions is impossible!
m Counter-example: A

2114



Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
APerfect[g—prlvate 2PC for general functions is impossible!
m Counter-example: A

m What do we do?

2114



Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

fi
m What do we do? Relax to computational privacy @la
0 p® New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT \‘m/ -
Lo

2114



Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
APerfect[g—prlvate 2PC for general functions is impossible!
m Counter-example: A

fi
m What do we do? Relax to computational privacy l
0 p® New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT N~ 7
- e . . . t
‘e OT — computationally-private 2PC for general functions over

Fo (GMW protocol)

2114



Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
&Perfect[g—prlvate 2PC for general functions is impossible!
m Counter-example: A

fi
m What do we do? Relax to computational privacy l
0 p® New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT N~ 7
- e . . . t
‘e OT — computationally-private 2PC for general functions over
Fo (GMW protocol)

m Note: perfectly-private MPC for general functions is possible
with honest majority, i.e., if t < n/2 (BGW protocol)

m E.g, three-input A can be computed with perfect privacy if only
one of the parties corrupt

2114



Plan for Today's Lecture

General template:

1 ldentify the task
2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2114



Plan for Today's Lecture

(orbittary)
General template: p(NGBVQ ww\f\ﬁ&boﬁ Dh\ﬁun&\oﬂs for bo Pa(‘ﬂeﬁ
1 ldentify the taskﬂ

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2114



Plan for Today's Lecture

(orbitary)
General template: p(NGBVQ @mf\ymbon Dh\ﬁun&\oﬂs for bo Pa(‘ﬂeﬁ
1 ldentify the task/ e Cepni-Nonesk nadel

2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilitles?ﬁ
m Security Goal: What does it mean to be secure? e Kion
J ‘ ' S ¢ (yrupin

31 Construct a scheme 1 S Lom?u‘co{"lo()a\ ?rkvmj’/
4 Formally prove that I in secure in model M

2114



Plan for Today's Lecture

(orbitary)
General template: p(NGBVQ @mf\ymb’on Dh\ﬁun&\oﬂs for bo Paﬁ\&
1 ldentify the task/ e Cepni-Nonesk nadel

2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilitles?ﬁ
m Security Goal: What does it mean to be secure? e Kion
J ‘ ' S ¢ (yrupin

3 Construct a scheme M- GMW PYU‘D@\ » L;m?u‘(oho()q) privay”

4 Formally prove that I in secure in model M
(, or = gmiasion

2114



Plan for Today's Lecture

1 Computing A with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

2114



1 Computing A with Perfect Privacy is Impossible
2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

2[14



m Need to deal with A over Fp/multiplication over F,

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol T1 for A

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol T1 for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

OV oINS Or G T~
P'LijC} P(d[) tnat kwﬂ&(f\\)k ST o mP C?%L @ e

50"

. \

o > 7 < 3

§ J%. T f DA

S = ® G ————> L
5 |

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol T1 for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp Ldy @

50" \
Supclpim: For any Ty p (c)=e.(ca) B (Cay : @ == (")
I — o) A % QL\————;——€>T
for some o, p B

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp Ldy @

50"

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ trp zcoeec]

Proof: ig
i @yx£f>: TT Pritrltpb" t\/IVXJX

Pl
P

e
ﬂ pe L’Cr‘ Ty, - Cx,"\ﬂ)} ’ Dt pe Etrlfm, - C(/x\/xﬂ

Y |
reven

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp Ldy @

50"

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ trp zcoeec]

Proof: ig
— P’Lll(]ﬂ_ T Pr [’C( [Ty, - T, )LLW

= T Pe [Tl . T mn, ) | T Pe[Teltry, o1, )

¥ 0dd <~ P, s:‘?eoks Fevene Py stb

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp HET, @

50"

Supclgimn. For ony Ty p_ ()=e(0x) B (Ca) : @ R\
o — o) LU~ Gy
for some o, p a__"}up%tﬂ_? ~"
Proof - &
el Plu@)_ T Pr Ltr |Cry, - Ty, 2 xﬁ @
= T Pe L'Cr Tr\ Ty 'M \ T pr Etr TH g r(/’h/llw
v « P sFeok& rr’ mnw Py S\)mb

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp HET, @

50"

Supdgim:. For any Ty P (0= AR ACEN @ Q;Q i \’
for some @, "\Q—T% "
ot Pmm@‘ % be Ltf T - T ’LA @
@ T Pe Ltr |y, - T iy \ T Pr Etr Tm ~V f&,”AlA
e 0dd & P, speaks N rwwv Ppspeaks gg .

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp Ldy @

50" \
Supclpiny: Foc ony Ty p_ (€)= (o) B (Ca) 3 @ Rmm—2 )\
I — o) A % QL\————;——€>T
for some o, p B

By pecfed privay, YT Pl = Pl = 6, ©

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
P, 1 (€)= Prob. Ena ransCripe | 5T on mp wén G

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ trp zcoeec]

By pecfed privay, YT Pl = Pl = 6,0
%
o (21)- p(T,0)= (2D p(r0)= (e pT)

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp RS @

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ ICTP zcoeec]

By pected privay, YT P = ?Do@)— By @©
(u-p0) 30 OCORETERCh
w(t)= OL(@O) ¢ p(r0)=pT)

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp RS @

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ ICTP zcoeec]

By pected privay, YT P = ?Do@)— By @©
- pER)- 30 - L8)= LD HCT)
o= OL(“LO) ¢ p(r0)=p(T)
3
Pu(® = o (T,Np(T) = (tD) (Z((,O); Poo(®)

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
Pm@) prob. bhal ransCripe ¢ 5T on mp RS @

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. d\/'/[; .."VVVP,\,.(‘P/‘ ICTP zcoeec]

By perfed privay, T P = vwcc)_ By @©
- pER)- 30 OCORETERCh
o(T,)= oc(@@ ¢ p(r,0)=p(T)
Pl = (T p(T,) = B{L\/(L,O) B(0,0)= Pool®) =2 Minoerect\ @

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
P, 1 (€)= Prob. Ena ransCripe | 5T on mp wén G

Subclgim: For 0y T, p,_(Q)=alca) plca) @ A
4‘0{ SomMe. 0\/'/[; .."VVVP,\,.(‘P/‘ ICTP zcoeec]

By perfed privay, T P = vwcc)_ By @©
- pER)- 30 OCORETERCh
o(T,)= oc(@@ ¢ p(r,0)=p(T)
P = o (T,)B(T) = i\“(t,@ B(T,0)= Pool®) = Tinacred! o

@ Where does this argument fail for &7

3/14



Can we Extend 1 to Arbitrary Functions?

m Need to deal with A over Fp/multiplication over F,

Claim 1
A There does not exist a perfectly-private 2PC protocol I for A

Proof (Idea: 3 perfectly private I_I = [ anorrect)

—Ovec woins Ok T s —
P, 1 (€)= Prob. Ena ransCripe | 5T on mp wén G

Subdpim:- For any Ty, (€) =0 (Ca)-f (O @ P
S (‘P/\——é ‘
for some Gv[% Pl CTP BT

w(t)- occ@@ ¢ WO) W,)
) .
P = oL (e )B(T) = a(en 3(2,0)= Pool0) = THinDeRect) ]

@ Where does this argument fail for &7

3/14



1 Computing A with Perfect Privacy is Impossible
2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

3/14



Tptol) =1 = (1H0)% +b3y
m Intuitively: 2PC protocol for “choice functio%uftlp exer”

4114



Oblivious Transfer (OT)

(LD X—D '.iib = Q‘b}’% +b R

]
m Intuitively: 2PC protocol for “choice functlo%uftipiexer"

2 OOc
<1
-
—_%P
Sender Reeivel

414



Oblivious Transfer (OT)

(LD X—D '.iib = Q‘b}’% +b R

]
m Intuitively: 2PC protocol for “choice functlo%uftipiexer"

2 OOc
<1
-
—_%P
Sender Reeivel

414



Oblivious Transfer (OT)

Tp(topt) =2t = (-4, +D3y
m Intuitively: 2PC protocol for “choice functw%urﬂp exer”

Ao b
| OF
£

4114



Oblivious Transfer (OT)

(LoD =Ly = (1), +o

]
m Intuitively: 2PC protocol for “choice functto%uftipiexer"

o OOe
& |
R
—_%P
ender Reeivel

m Why is it useful? E.g, can be used to privately compute A

414



Oblivious Transfer (OT)

§ (lD'KD =Yy = lejato o,
m Intuitively: 2PC protocol for “choice functlo%uftipiexer"

2 %,
<1
T ¢
s
ender Peeivel

m Why is it useful? E.g, can be used to privately compute A

4114



Oblivious Transfer (OT)

§ (lD'KD =Yy = lejato o,
m Intuitively: 2PC protocol for “choice functlo%uftip exer”

2 %,
<1
T ¢
s
ender Peeivel

m Why is it useful? E.g, can be used to privately compute A

4114



Oblivious Transfer (OT)

(Lo21) =Yy = (o)t +0 2
m Intuitively: 2PC protocol for “choice functloﬂw fttpiex

Sender Peeivel
m Why is it useful? E.g, can be used to privately compute A

Exercise 1 (Hint: Need to invoke OT multiple times)

Implement comparison operator < for n-bit integers using OT

4114



Syntax and Security of OT

Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xp, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the
end of which R learns x

Re1vel

5/14



Syntax and Security of OT

Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xp, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the
end of which R learns x

Reivel

5/14



Syntax and Security of OT

Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xp, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the
end of which R learns x

Sender Reeivel

m Correctness: @

5/14



Syntax and Security of OT

Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xp, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the
end of which R learns x :

‘.“/\{\QL)-\R

Snder

Peivel
m Correctness: @ L

m Sender privacy: (honest) R should not learn input x3_p
m 3 simulator Simg that simulates Viewgr((S(xo, x1), R(b)))

5/14



Syntax and Security of OT

Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xg, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the

“enderS

m Correctness: @
m Sender privacy: (honest) R should not learn input x3_p
m 3 simulator Simg that simulates Viewgr((S(xo, x1), R(b)))

m Receiver privacy: (honest) S should not learn choice bit b
m J simulator Simg that simulates Views((S(xo, x1), R(b)))

5/14



Syntax and Security of OT
I-WE-0f L

Defintion 1 (/\Obllvlous Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xg, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the

“enderS
m Correctness: @

m Sender privacy: (honest) R should not learn input x3_p

m 3 simulator Simg that simulates Viewgr((S(xo, x1), R(b)))
m Receiver privacy: (honest) S should not learn choice bit b

m J simulator Simg that simulates Views((S(xo, x1), R(b)))
Exercise 2~ Si%o sy Ribelo B) 4 or b
L4

7

Construct a 1-out-of-4 OT from a 1-out-of-2 OT. Xy : Lo

5/14



Recall Trapdoor Permutation (TDP) from Lecture 13

m One-way permutation that is easy to invert given a “trapdoor”

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13

m One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — u}iEIg{O,l}* is trapdoor
one-way if

1 There is an efficient index+trapdoor sampling algorithm Index

D o D,

J

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13

m One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — u}iEIg{O,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index

2 Eachf;, i €1, is efficiently computable 5 5
i } i

3 For all PPT inverters Inv, the following is negligible:
= P Inv(f; f(f
plmyi= e Tiv(fte) € 67 (500
x<D

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13

m One-way permutation that is easy to invert given a “trapdoor”

Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — u}iEIg{O,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index
2 Eachf;, i €1, is efficiently computable 5 ;B
3 For all PPT inverters Inv, the following is negligible:
pln) = Pr[inv(fi(x)) € {7 (fi(x))]

(i, 7)Index(1") N

x<D T

4 71 can be efficiently computed given trapdoor T for i

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..
m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumption
m The trapdoor is d := e~! mod (p — 1)(q — 1)

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..

m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumption
m The trapdoi)r isd:=elmod(p—1)(qg—1)
bi
Construction 1 (PKAE 1= (Gen, Enc, Dec) <~ TDP f; : D — D)

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..

m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumption
m The trapdoi)r isd:=elmod(p—1)(qg—1)
bi
Construction 1 (PKE 1= (Gen, Enc, Dec) <~ TDP f; : D — D)

(Lwe Indeyt L‘w b+ op

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..

m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumptlon
m The trapdoi)r isd:=elmod(p—1)(g—1)
bi
Construction 1 (PKE 1= (Gen, Enc, Dec «— TDP f; : D — D)

(e MULB \@N@@ b+ op

B

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..

m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumptlon
m The trapdoi)r isd:=elmod(p—1)(g—1)
bi
Construction 1 (PKE 1= (Gen, Enc, Dec «— TDP f; : D — D)

LQP MULB \@N@@ b b

<——__‘

6/14



Recall Trapdoor Permutation (TDP) from Lecture 13..

m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumption
m The trapdot)r isd:=elmod(p—1)(g—1)
bi
Construction 1 (PKE 1= (Gen, Enc, Dec «— TDP f; : D — D)

k/w@® b_Si, b
q SL(X) 1'|%E!iii;;;;i!!%||}

6/14



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f; : D© —» D)

7114



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f; : D© —» D)

M o
(e \nAuk\"D | LG
R

x P / §i

1 Sender: sample (f;,f71) and send f; to receiver

7114



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

L

0,11'\
(@e nder) fb*i: j;j,f@ Y

/—‘> T
Rl
S

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1 Sample r, < D and set sp, := f;(rp), sample s;_p «— D
2 Send (so, s1) to sender

7114



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

(¢ \j \Q) rb??\ Spi= l}(fb) ‘
‘,LO?GZ) et =) ‘w‘ Gpe&i D; i 00/,
10/\ oy 25 he(fy
P i O
5,51 AN
&~ i ‘
;/(W'L('\//} A

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1

Sample ry < D and set sp = f;(rp), sample s;_p < D

2 Send (sp, 51) to sender
3 Sender:

1

Compute ro := f;(so) and ry := f;*(s1)

2 Send (co := xo @ hc(r), €1 := x1 @ hc(r))

7114



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

ok

Q)e \OAUQ) rbe?» Cpi= &C&) D, ,Iﬁ o
| 6=k @0), - 6‘) Si-pe@i {
CD/‘ ,X%@ht (f% . ’)Lb ’Q;@NU\J

P §i Q

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1 Sample r, < D and set sp, := f;(rp), sample s;_p «— D
2 Send (sp, 51) to sender
3 Sender:
1 Compute ry .= f; *(so) and r, = f;(s1)
2 Send (co := xo ® hc(ro), €1 := x1 ® hc(ry))
4 Receiver: Output cp @ hc(rp)
7114



Iff; is a secure TDP then 1 is a secure OT.

O

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) shod aliebs sscimplation

O o
~ . fo <D, Sbi=Filf)
/Q,&)(_/ indeyt L\) \/ G _pePi

6= ?@g)/(‘:%\ )

. LD/ '77\0/\@ ht Lr"/ L %bi/’ﬁb@\{\c({h)
N4 -~ ~__ —

P fi
%0,51
— Gl 5
S

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) shod aliebs sscimplation

T T T R oW
| S 5000 000 60000008
P Q—«p\ Cp= ‘g(rb) % .
/&0(—’ (‘;:)Aﬁ‘l Ll )) . “/b & e pi . '.\ b)(&‘/ éo; S[ ’ [o 0 ( \\)7, rb ,15
\ \ [H =1 Pl \ Somecceos @o ©o000

\Lo/ x,,/@m@,/ \mb;/,gb@hccw
1 Z . T~

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) sholy 4l iebs sscimplation

- B //\oH\ ﬁ(’%é NV
/ ) jL\j:\ ) : /rb<~§>\ spi= )\ o T ). fb
\b%;}e,g ©) | S_pe—Pi b,(&,,g,s (a( b', ,
G =5 ), \

\_ Lo/ xﬂ/@ }\L (r(,/ / \\Mb',;gb@‘{\(‘({b)
1 Z _ T~

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) sholy 4l iebs sscimplation

) et e Vigw:
ek /r ep\b% %(rb)ﬁ-/vp O ORI
/La)% \r)a\u(‘4 ‘) " ° ¢ pe Pl v b,(§i, & 8 (a () b,1b
| (AT S T . \ 5 o .-
fio/ ‘i/)’@mcw L7\ ye0l) ) 5 (0%)

e ndex ()

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) sholy 4l iebs sscimplation

< T Re VoW :

e /rbe?\béb 3‘(’»)? 2R T . e
/La)% \na\u%) 0 " ¢ pePi b/@\/ %, S (a () b . 1b
\ —£. (% S N . \ : o
s ifémcw L paons) | (o)

e Index (")
[ b Bi, Sp=f), Sip

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).1)(onstruct Simg 1) sholy 4l iebs sscimplation

. L e Niew:

Tl /rbe?\béb 3‘(’»)? g Ean . o
/La)% \na\u%) 0 " ¢ pePi b/@\/ %, S (a () b . 1b
| (AR U] . \ : .-
fio/ ‘i/)’@mcw L\ aweond) ) | Gimg (03)

C e nder ()
_," f, < i, Qy,‘/fubj Sip &
Ll 6o e )
' Tolp ey co() Do, To

O

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).| }(onshuck Sma 1) show el & cinplation

ﬁﬁe NI

ﬁ > (f - /V? @ . ﬂ
@ MUQ%)i o r”d)‘ ;; g i (5i, w81 G, () o, Lo
et ’x\f‘b'ﬂﬂ»@“ﬁé,‘@ - simg (o)

e / 3. B C W ndex ) y
RTINS AL (T ¢
[ I NN ‘ o '1b®h“(@@
: JP ol o8t to() o, Lo

.Nh gls €5 view (ndiskin i shabde fFrom g\mﬁ@ ) 0

8/14



TDP — OT...

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).| }(onshuck Sirng, 1) 9L Al b s cinolation

ﬁﬁe NI

Lo, % - o T 7.
@ \n:\eib)g o rbd)‘ ;;f&) ‘ b/,(gx/ 511 o, () .b,%
o ‘f."féhirc,_.»* \eseonds) ) | Gy (b)

5 48 A (We ndert) J
5 l'["i f, < Pi, Sb /fubj S
. . ) G _%@ha(m) @/
: JP b,(g o, 51 o, (1), %, %o

.‘Nhg 15 €S view 1ndiskngishabe from sim,(b 1) 1 bordiote Prfo\

8/14



TDP — OT..

Theorem 1

Iff; is a secure TDP then 1 is a secure OT.

Proof (of sender privacy).| )(omhuck Sirng, 1) 9L Al b s cinolation

/\T ﬁﬁ NVNE

1_ 11 - . VP e "' ﬂ
r Spi— &(rb) 0 P
/QK)PC‘SZ)A?/Q&) ») . . /bei\\ _pe Q1 : b;(%,/ 9, S\ [O () b 0 7‘\)
R Y N e Simnp (/%)

fi § W nder ) J
50,51 { = Pi, Sp=fh), Sip < B
Gl - bi=%p@h(ry), @/

Tolp b)(g o, Sty Lo, (1), G, b

.‘Nhg 15 €S view 1ndiskngishabe from sim,(b 1) 1 hodiote ped

Exercise 3

What happens if the sender (resp., receiver) is malicious?
8/14



1 Computing A with Perfect Privacy is Impossible
2 New Cryptographic Primitive: Oblivious Transfer (OT)

'3 Goldreich-Micali-Wigderson (GMW) Protocol

8/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented

by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ

Y= 60, @W =0
(D1, 6, ek B 9%

Y=Y
m Summary of [1 (simplified for 2PC over [Fy):

m Each party secret-shares its input bits with the other party

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| "N,ﬁ\ ’lLNPZ
r=6g, ng}fﬁ
RO, - B, - 0%

Y=
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| "N,ﬁ\ ’lLNPZ
r=6g, ng}fﬁ
RO, - B, - 0%

Pl: ‘(\@(L = [’)(a\@r}'fm:@a],

Y=Y
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w
m Both parties compute locally “over shares”
m @ gate: XOR shares of i/p wires to obtain share of o/p wire
m /. gate: AND share of i/p wire with ¢ to get obtain of o/p of A

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ
r= tﬂa\
oYL= @@1

Pl: V\(‘Dﬁ, = b‘ﬁ\@ r}’lﬂjl: [\jg,
P 6®0Ou®@ = E)(‘Q”A@ Wa),= (4.

Y=Y
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w
m Both parties compute locally “over shares”
m @ gate: XOR shares of i/p wires to obtain share of o/p wire
m /. gate: AND share of i/p wire with ¢ to get obtain of o/p of A

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ

Y= 6 )= N
(D1, 6, ek B 9%

Pl: (o0 = @(G\C_Br}l]\:w%],
- = 0),® = e ,
P 600001, =0 ® b= | 8- [)AC
ﬂ%f% @‘Q‘ﬁ [‘53‘]1’“
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w
m Both parties compute locally “over shares”
m @ gate: XOR shares of i/p wires to obtain share of o/p wire
m /. gate: AND share of i/p wire with ¢ to get obtain of o/p of A

9/14



Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ
r= tﬂa\
oYL= Qigi

Pl: (\@(L = @(U\C_Br};)\:[\jg,

P 60001 ®, = 61, b= [, o (1,00,

(1), = (4], AC
Y=9F (9a= [yl ne
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w
m Both parties compute locally “over shares”
m @ gate: XOR shares of i/p wires to obtain share of o/p wire
m /. gate: AND share of i/p wire with ¢ to get obtain of o/p of A
m P; and P, use their shares of output wire to reconstruct output

9/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

m What happens when shares of input wires of A locally ANDed?
L Lo

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
1L
] G-
DL, = 60, )= D%

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

m What happens when shares of input wires of A locally ANDed?

Ly Lo
ri= G, =0
O, = 6L, )= D%
) . Py (g (L),= ((®1JO1)
P (b B =i 4 = 0L.OLL® \'\Xz@ﬁml

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

m What happens when shares of input wires of A locally ANDed?

Ly Lo
fi= G, =t
(O, = b, EBR Ak
: ) P ()= O WO
P (b B =i 4 = 0L.OLL® \'\Xz@l’)_th

ufga ke ron§

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
L Lo

@Law ),
b@;’; @’:Jz

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
L e

@ia\ Eﬁih
EXQZ E?ih

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

@LD, 2,

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
L e

@*D\ Eﬁih
Eiaz E‘ﬂz

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

Pls poknba\ dha(es
s
(@I NEa®0) 0

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
L e

@*D\ Eﬁih
Eiaz E‘ﬂz

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

Pis poknba dha(es
N“_\
(c0®9) A@w 0)

@I ) —
@ )@ N Ea®0)
i (@)@ )

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant
m What happens when shares of input wires of A locally ANDed?
L e

@*D\ Eﬁih
Eiaz E‘ﬂz

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

Pis poknba dha(es
N“_\
(c0®9) A@w 0)

@I ) —
@ )@ N Ea®0)
i (@)@ )

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

m What happens when shares of input wires of A locally ANDed?
L e

@*D\ Eﬁih
Eiaz E‘ﬂz

4 \-00k-0f 4
@Can you reduce secret-shared A to an OT?

Pis poltnial dhares
N
50 (0O ®0)
OO" "3@ @Q\@@/\@Aﬁa l) —7
@ S@le0®AEIB0)
(I N INESY)

10/14



Let's use OT to Compute A with Computational Privacy

m Hurdle with extending 1 to arbitrary functions?
m Need to deal with A to maintain invariant

m What happens when shares of input wires of A locally ANDed?

Ly Lo
@ia\ Eﬁih
E?Laz E?ilz
(y), | (4
Y \-00k-0f 4

@Can you reduce secret-shared A to an OT?
Pis poknba\ dha(es
% 60 (@@@Si@z@o}
u ® G@E@Q@A@@ )
! @ 6OE® A Ea®0)
(e CHCNINERICY)

10/14



GMW Protocol

€SS @Q}“

b,

i
ou

U
2

Protocol 2 (for f: {0,1}?" — {0, 1} represented by circuit C)

1 Each party secret-shares its input bits with the other party

11/14



GMW Protocol

7\\ X 15 Py
oW ), Gla),| ‘Yﬁqu
[’)‘LD,L @‘Jz @ k?:) E”L;)'z
- 5,) =6 @TA ~p) @0

’ [94,]1 U‘ﬂ @WJ'{:'

sk =0 P

e 4,
Protocol 2 (for f: {0,1}%" — {0, 1} represented by circuit C)

1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate g € C in topological order

m if g =@ P1 locally XORs its shares of g's input wires to
obtain its share of g's output wire; Py does the same

m if g = A\: Py (sender) and P, (receiver) use 1-out-of-4 OT
protocol to generate their shares of g's output wire

11/14



GMW Protocol

Ly, ™ 15 v
oW ), Gl (x4,
o, €87 Gl ik

g [,‘ ]@mm o
[gé]l [/‘ﬂ )haj

[95]\ [/L]@W&h N

sk = @]me_,

\M\ (Yl

Protocol 2 (for f : {0, 1}2n — {0, 1} represented by circuit C)

1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate g € C in topological order

m if g =@ P1 locally XORs its shares of g's input wires to
obtain its share of g's output wire; P does the same

m if g = A\: Py (sender) and P, (receiver) use 1-out-of-4 OT
protocol to generate their shares of g's output wire

3 Py and P» use their shares of output wire to reconstruct output

11/14



OT secure = GMW protocol computes f with computational privacy.

12/14



GMW Protocol...

Theorem 2
OT secure = GMW protocol computes f with computational privacy.

Exercise 4

m Prove Pi’s privacy: OT simulator — simulator Simp, for Ps.

m Prove Py's privacy: simulator Simp, for P;.

12/14



m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

13/14



To Recap Today's Lecture

m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do?

13/14



To Recap Today's Lecture

m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do? Relax to computational privacy
m New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT

13/14



To Recap Today's Lecture

m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do? Relax to computational privacy
m New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT

m GMW protocol: OT — computationally-private 2PC for
general functions over [,

13/14



To Recap Today's Lecture

m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do? Relax to computational privacy
m New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT
m GMW protocol: OT — computationally-private 2PC for
general functions over [,

m Alternatively, Yao's garbling from OT and SKE
m Can be extended to computationally-private MPC for general
functions over F,

13/14



To Recap Today's Lecture

m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do? Relax to computational privacy

m New cryptographic primitive: oblivious transfer (OT)

m Trapdoor permutation (TDP) — OT
m GMW protocol: OT — computationally-private 2PC for
general functions over [,
m Alternatively, Yao's garbling from OT and SKE
m Can be extended to computationally-private MPC for general
functions over F,

m For privacy against malicious parties, use zero knowledge
proof (ZKP)

m Semi-honest-secure MPC + ZKP — malicious-secure MPC

13/14



m Outsourcing in client-server model
'. : 5
N
e 2L
Ll «<——
=y

14114



(] Outsourcmg in clLent server model

& @\ o

—

14114



Next Two Lectures
m Outsourcing in client-server model
|7

£ .
@3@
e

m Privacy-preserving outsourcing

m Using fully homomorphic encryption (FHE)
m |[WE— FHE (GSW construction)

14/14



Next Two Lectures

(] Outsourcmg inc Lent server model

DDDD

m Privacy-preserving outsourcmg

m Using fully homomorphic encryption (FHE)
m |[WE— FHE (GSW construction)

m Verifiable outsourcing

m Using succinct non-interactive argument (SNARG)
m SNARG for repeated squaring problem in ROM

m Pietrzak's protocol
m SNARG for NP in ROM (if time permits)

m Kilian's protocol

14/14



References

Most of this lecture is based on (slides of) Lecture 18 from
Vinod Vaikuntanathan's MIT6875. For a more formal
description of the protocols, see [Gol04, §7.3]

Claim 1 is folklore. The proof presented here is due to Rotem
Oshman (and taken from the slides above)

Oblivious transfer was introduced by Rabin [Rab81] (although
Wiesner introduced a similar primitive in [Wie83)). Its
construction from TDP is from [EGL82]

The GMW protocol is from [GMW87]

14/14



Shimon Even, Oded Goldreich, and Abraham Lempel.
A randomized protocol for signing contracts.

In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO'82,
pages 205-210. Plenum Press, New York, USA, 1982.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game or A completeness theorem for protocols with
honest majority.

In Alfred Aho, editor, 19th ACM STOC, pages 218-229. ACM Press, May
1987.

Oded Goldreich.

The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press, 2004.

Michael Rabin.
How to exchange secrets with oblivious transfer.
Technical report, 1981.

Stephen Wiesner.
Conjugate coding.
SIGACT News, 15(1):78-88, January 1983.

14/14



	Computing  with Perfect Privacy is Impossible
	New Cryptographic Primitive: Oblivious Transfer (OT)
	Goldreich-Micali-Wigderson (GMW) Protocol

