

CS783: Theoretical Foundations of Cryptography

Lecture 18 (11/Oct/24)

Instructor: Chethan Kamath

■ Task 6: Private computation of functions

■ Task 6: Private computation of functions

■ Task 6: Private computation of functions

- Defined syntax and security for the two-party case (2PC)
 - Special case of 2PC: ZK proof
 - Extends the simulation paradigm

- Defined syntax and security for the two-party case (2PC)
 - Special case of 2PC: ZK proof
 - Extends the simulation paradigm

■ What about perfectly-private MPC for *general* functions?

What about perfectly-private MPC for general functions?
 Perfectly-private 2PC for general functions is impossible!

■ Counter-example: ∧

What about perfectly-private MPC for *general* functions?
 ▲ Perfectly-private 2PC for *general* functions is impossible!
 ■ Counter-example: ∧

What do we do?

What about perfectly-private MPC for general functions? A Perfectly-private 2PC for *general* functions is impossible! ■ Counter-example: ∧

OT X

■ What do we do? Relax to *computational* privacy ▶ New cryptographic primitive: oblivious transfer (OT)

■ Trapdoor permutation (TDP) \rightarrow OT

What about perfectly-private MPC for *general* functions?
 ▲ Perfectly-private 2PC for *general* functions is impossible!
 ■ Counter-example: ∧

What about perfectly-private MPC for *general* functions?
 ▲ Perfectly-private 2PC for *general* functions is impossible!
 ■ Counter-example: ∧

- Note: perfectly-private MPC for general functions *is* possible with honest majority, i.e., if t < n/2 (BGW protocol)
 - E.g., three-input ∧ can be computed with perfect privacy if only one of the parties corrupt

General *template*:

- 1 Identify the task
- **2** Come up with precise threat model *M* (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

(orbitrary) General *template*: 1 Identify the task private wmputation of functions for two parties

- 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

(orbitrary)
 General template: private computation of functions for two parties
 Identify the task security model
 Come up with precise threat model M (a.k.a security model)
 Adversary/Attack: What are the adversary's capabilities?
 Security Goal: What does it mean to be secure? "stocic corruption"
 Construct a scheme Π " computational privay"

4 Formally prove that Π in secure in model M

(orbitrary)
 General template: private computation of functions for two parties
 1 Identify the task private computation of functions for two parties
 2 Come up with precise threat model M (a.k.a security model)
 a Adversary/Attack: What are the adversary's capabilities?
 a Security Goal: What does it mean to be secure? "stocic corruption"
 3 Construct a scheme Π→ GMW protocol , "computational privay"
 4 Formally prove that Π in secure in model M

1 Computing \land with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

■ Need to deal with \land over \mathbb{F}_2 /multiplication over \mathbb{F}_p

■ Need to deal with \land over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

There does not exist a perfectly-private 2PC protocol Π for \wedge

Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Prover wins of Π ($(r_1, ..., r_p)$) Prover wins r_1 ($r_1, ..., r_p$) Prover wins r_1 ($r_1, ..., r_p$) Prover wins r_1 (r_1 (r_1 (r_1 (r_1 (r_2))) Prover wins r_p (r_1 (r_1 (r_2))) Prover wins r_p (r_1 (r_2)) Prove r_1 (r_2)) Prove r_1 (r_2) Prove r_2 (r_1 (r_2)) Prove r_2 (r_1 (r_2)) Prove r_2 (r_2)) Prove r_2 (r_1 (r_2)) Prove r_2 (r_1 (r_2)) Prove r_2 (r_2)) Prove r_2 (r_1 (r_2)) Prove r_2 (r_2)) Prove r_2 (r_1 (r_2)) Prove r_2 (r_2))

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

There does not exist a perfectly-private 2PC protocol Π for \wedge

Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly perfec

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
 $P_{x_{1}x_{2}}(c) := \operatorname{Prob}$ that transcript is c on inputs $x_{1} \notin x_{2}$
Subclaim: For any $\Pi_{9} P_{x_{1}x_{2}}(c) := \alpha(c,x_{1}) \cdot \beta(c,x_{2})$
for some α, β
 $\frac{\operatorname{Proof}}{\operatorname{Proof}}: P_{x_{1}x_{2}}(c) = \prod_{r=1}^{P} \operatorname{Pr} [\operatorname{Tr}|\operatorname{Tr}_{r_{1}}, \dots, \operatorname{Tr}_{r_{r_{1}}}x_{2}] \cdot \prod_{r=1}^{P} \operatorname{Pr} [\operatorname{Tr}|\operatorname{Tr}_{r_{1}}, \dots, \operatorname{Tr}_{r_{r_{r_{1}}}}x_{2}]$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof: $P_{2_{1}2_{2}}(c) := Prode that transcript is T on inputs $z_{1} \notin z_{2}$
Subclaim: For any $\Pi_{9} P_{2_{1}2_{2}}(c) := \alpha(c,z_{1}) \cdot \beta(c,z_{2})$
for some α, β
Proof: $P_{1} = Pr[T_{r-1} Pr[T_{r-1}, \dots, T_{1}, z_{1}, z_{2}]$
 $= \prod_{r=1}^{P} Pr[T_{r}|T_{r-1}, \dots, T_{1}, z_{1}, z_{2}] \cdot \prod_{r=1}^{P} Pr[T_{r}|T_{r-1}, \dots, T_{1}, z_{1}, z_{2}]$
 $revenz P_{2}$ speaks$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof: $P_{2_{1}2_{2}}(c) := Prdb. that trans(ript is c on inputs $z_{1} \notin z_{2}$
Subclaim: For any Π_{9} $P_{2_{1}2_{2}}(c) := \alpha(c, z_{1}) \cdot \beta(c, z_{2})$
for some α, β
Proof: $P_{2_{1}2_{2}}(c) := \prod_{r=1}^{P} Pr[c_{r}|c_{r_{1}}, ..., c_{1}, z_{1}, z_{2}]$
 $= \prod_{r=1}^{P} Pr[c_{r}|c_{r_{1}}, ..., c_{1}, z_{1}, z_{2}] \cdot \prod_{r=1}^{P} Pr[c_{r}|c_{r_{1}}, ..., c_{1}, z_{1}, z_{2}]$
 $revence - P_{2}$ speaks$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
P₂(c):= prob. that transcript is c on inputs $z_1 \notin z_2$
Subclaim: For any Π_9 $P_{2}(c) = \alpha(c,z_1) \cdot \beta(c,z_2)$
for some α, β
Proof:
 $P_{2}(z_1)(c) = \prod_{r=1}^{P} Pr[Cr|C_{r-1}, \dots, c_1, z_1, z_2]$
 $= \prod_{r=1}^{P} Pr[Cr|C_{r-1}, \dots, c_1, z_1, z_2]$
 $r = \sum_{r=1}^{P} Pr[Cr|C_{r-1}, \dots, c_1, z_1, z_2]$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

There does not exist a perfectly-private 2PC protocol Π for \wedge

Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Prover wins $0^{\downarrow} \Pi$ ($c_{1,...,c_{p}}$) Prover wins $0^{\downarrow} \Pi$ ($c_{1,...,c_{p}}$) Prover wins $0^{\downarrow} \Pi$ ($c_{1,...,c_{p}}$) Prover wins $1^{\downarrow} r$ (α_{1}) Subclaim: For any Π_{g} Prover (c_{1}, α_{1}) · β (c_{1}, α_{2}) for some α_{1}, β By perfect privacy, $\forall \tau$ Pro (τ) = Poo(τ) = Poi(τ)

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

There does not exist a perfectly-private 2PC protocol Π for \wedge

Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect). Proof ($\Box_{1,1}, \Box_{1,2}(C) := Proof (\Box_{1,1}, \Box_{1,2}) = \alpha(\Box, z_{1}) \cdot \beta(\Box, z_{2})$ For some α, β By perfect privacy, $\forall T = P_{10}(T) = P_{00}(T) = P_{01}(T)$ $\alpha(\tau, 1) \cdot \beta(\tau, 0) = \alpha(\tau, 0) \cdot \beta(\tau, 0) = \alpha(\tau, 0) \cdot \beta(\tau, 1)$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
The incorrect is $\Pi = (c_1, c_1) + \beta(c_1, c_2)$
For some α, β
By perfect private $\Pi = P_{10}(\tau) = P_{00}(\tau) = P_{01}(\tau)$
 $\alpha(\tau, 1) + \beta(T_{10}) = \alpha(\tau, 0) + \beta(\tau_{10}) = \alpha(\tau, 0) + \beta(\tau_{11})$
 $\alpha(\tau, 1) = \alpha(\tau, 0) + \beta(\tau_{10}) = \beta(\tau_{11})$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Subclaim: For any Π_{9} $P_{x_{1},x_{1}}(c) = \alpha(c,a_{1}) \cdot \beta(c,a_{2})$
for some α, β
By perfect privacy, $\forall T = P_{10}(\tau) = P_{00}(\tau) = P_{01}(\tau)$
 $\psi *$
 $\alpha(\tau, 1) \cdot \beta(\tau, 0) = \alpha(\tau, 0) \cdot \beta(\tau, 0) = \alpha(\tau, 0) \cdot \beta(\tau, 1)$
 $\alpha(\tau, 1) = \alpha(\tau, 1)\beta(\tau, 1) = \alpha(\tau, 0)\beta(\tau, 0) = P_{00}(\tau)$

■ Need to deal with \land over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
The proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Subclaim: For any Π_9 $P_{2,1,2,1}(c) = \alpha(c, \alpha_1) \cdot \beta(c, \alpha_2)$
for some α, β
By perfect privacy, $\forall T = P_{10}(c) = P_{00}(c) = P_{01}(c)$
 $\forall *$
 $\alpha(c, 1) \cdot \beta(t, 0) = \alpha(c, 0) \cdot \beta(t, 0) = \alpha(c, 0) \cdot \beta(t, 1)$
 $\alpha(c, 1) = \alpha(c, 0) \notin \beta(t, 0) = \beta(c, 1)$
 $P_{11}(c) = \alpha(c, 1)\beta(t, 1) = \alpha(c, 0)\beta(t, 0) = P_{00}(c) \Rightarrow TI incorrect (2)$

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Subclaim: For any Π_9 $P_{2,7,2}(c) = \alpha(c,z_1) \cdot \beta(c,z_2)$
for some α, β
By perfect privacy, $\forall c = P_{10}(c) = P_{00}(c) = P_{01}(c)$
 $\alpha(c,1) \cdot \beta(r,0) = \alpha(r,0) \cdot \beta(r,0) = \alpha(c',0) \cdot \beta(r,1)$
 $\alpha(c,1) = \alpha(c,0) \notin \beta(r,0) = \beta(r,1)$
 $P_{11}(c) = \alpha(c,1)\beta(r,1) = \alpha(c,0)\beta(r,0) = P_{00}(c) \Rightarrow \Pi incorrect$
Where does this argument fail for \oplus ?

• Need to deal with \wedge over \mathbb{F}_2 /multiplication over \mathbb{F}_p

Claim 1

Proof (Idea:
$$\exists$$
 perfectly private $\Pi \implies \Pi$ incorrect).
Proof (Idea: \exists perfectly private $\Pi \implies \Pi$ incorrect).
Prover coins $0 \vdash \Pi$ ($(c_1, ..., c_p)$)
Prover coins $0 \vdash \Pi$ ($(c_1, ..., c_p)$)
Subclaim: For any Π_9 $P_{2q,21}(c) = \alpha(c, \alpha_1) \cdot \beta(c, \alpha_2)$
for some α, β
By perfect privacy, $\forall \tau : P_{10}(c) = P_{00}(c) = P_{01}(c)$
 $\alpha(c, 1) \cdot \beta(\tau, 0) = \alpha(c, 0) \cdot \beta(\tau, 0) = \alpha(c, 0) \cdot \beta(\tau, 1)$
 $\alpha(c, 1) = \alpha(c, 0) \notin \beta(\tau, 0) = \beta(c, 1)$
 $\alpha(c, 1) = \alpha(c, 0) \beta(\tau, 0) = P_{00}(c) \Rightarrow \pi incorrect I$
 \square
Where does this argument fail for \oplus ?

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol
■ Intuitively: 2PC protocol for "choice function/multiplexer" $\int_{b} (x_0, x_1) := x_0 = (1-b)x_0 + bx_1$

■ Intuitively: 2PC protocol for "choice function/multiplexer" $\int_{b} (x_0 x_1) := x_0 = (1-b)x_0 + bx_1$

■ Intuitively: 2PC protocol for "choice function/multiplexer" $\int_{b} (x_0 x_1) := x_0 = (1-b)x_0 + bx_1$

■ Intuitively: 2PC protocol for "choice function/multiplexer" $\int_{b} (x_0, x_1) := x_0 = (1-b)x_0 + bx_1$

Exercise 1 (Hint: Need to invoke OT multiple times)

Implement comparison operator \leq for *n*-bit integers using OT

Definiton 1 (Oblivious Transfer)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Definiton 1 (Oblivious Transfer)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Definiton 1 (Oblivious Transfer)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Definiton 1 (Oblivious Transfer)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Sender privacy: (honest) R should not learn input x_{1−b}
 ∃ simulator Sim_R that simulates View_R(⟨S(x₀, x₁), R(b)⟩)

Definiton 1 (Oblivious Transfer)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Sender privacy: (honest) R should not learn input x_{1−b}
 ∃ simulator Sim_R that simulates View_R(⟨S(x₀, x₁), R(b)⟩)
 Receiver privacy: (honest) S should not learn choice bit b
 ∃ simulator Sim_S that simulates View_S(⟨S(x₀, x₁), R(b)⟩)

Defintion 1 (Oblivious Transfer)

Views

Correctness: (?)

An interactive protocol $\Pi = (S, R)$ between a sender S with input bits $x_0, x_1 \in \{0, 1\}$ and receiver R with choice bit $b \in \{0, 1\}$, at the end of which R learns x_b

Sender privacy: (honest) R should not learn input x_{1−b}
 ∃ simulator Sim_R that simulates View_R(⟨S(x₀, x₁), R(b)⟩)
 Receiver privacy: (honest) S should not learn choice bit b
 ∃ simulator Sim_s that simulates View_s(⟨S(x₀, x₁), R(b)⟩)

Exercise 2 $S: x_0, x_1, x_2, x_3 \in \{9|\}$ $R: b \in \{0, \dots, 3\}$ Construct a 1-out-of-4 OT from a 1-out-of-2 OT.

BRIDINES

• One-way permutation that is easy to invert given a "trapdoor"

One-way permutation that is easy to invert given a "trapdoor"

Definiton 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations $f=\{f_i:\mathcal{D}_i\to\mathcal{D}_i\}_{i\in\mathcal{I}\subseteq\{0,1\}^*}$ is trapdoor one-way if

1 There is an efficient index+trapdoor sampling algorithm Index

One-way permutation that is easy to invert given a "trapdoor"

Definiton 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations $f=\{f_i:\mathcal{D}_i\to\mathcal{D}_i\}_{i\in\mathcal{I}\subseteq\{0,1\}^*}$ is trapdoor one-way if

- 1 There is an efficient index+trapdoor sampling algorithm Index
- 2 Each f_i , $i \in I$, is efficiently computable
- **3** For all PPT inverters **Inv**, the following is negligible:

$$p(n) := \Pr_{\substack{(i,\tau) \leftarrow \mathsf{Index}(1^n) \\ x \leftarrow \mathcal{D}_i}}[\mathsf{Inv}(\mathsf{f}_i(x)) \in \mathsf{f}_i^{-1}(\mathsf{f}_i(x))]$$

One-way permutation that is easy to invert given a "trapdoor"

Definiton 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations $f=\{f_i:\mathcal{D}_i\to\mathcal{D}_i\}_{i\in\mathcal{I}\subseteq\{0,1\}^*}$ is trapdoor one-way if

- 1 There is an efficient index+trapdoor sampling algorithm Index
- 2 Each f_i , $i \in I$, is efficiently computable
- **3** For all PPT inverters **Inv**, the following is negligible:

$$p(n) := \Pr_{\substack{(i,\tau) \leftarrow \mathsf{Index}(1^n) \\ x \leftarrow \mathcal{D}_i}}[\mathsf{Inv}(\mathsf{f}_i(x)) \in \mathsf{f}_i^{-1}(\mathsf{f}_i(x))]$$

4 f_i^{-1} can be efficiently computed given trapdoor τ for i

■ Example: RSA TDP $f_{N,e} : \mathbb{Z}_N^{\times} \to \mathbb{Z}_N^{\times}$ defined as

- $f_{N,e}$ is permutation when GCD(e, (p-1)(q-1)) = 1
- One-way by RSA assumption

• The trapdoor is
$$d := e^{-1} \mod (p-1)(q-1)$$

• Example: RSA TDP
$$f_{N,e} : \mathbb{Z}_N^{\times} \to \mathbb{Z}_N^{\times}$$
 defined as

 $f_{N,e}(x) := x^e \mod N$

■ $f_{N,e}$ is permutation when GCD(e, (p-1)(q-1)) = 1■ One-way by RSA assumption ■ The trapdoor is $d := e^{-1} \mod (p-1)(q-1)$ bit Construction 1 (PKE $\Pi = (\text{Gen}, \text{Enc}, \text{Dec}) \leftarrow \text{TDP } f_i : \mathcal{D}_i \to \mathcal{D}_i)$

■ Example: RSA TDP
$$f_{N,e} : \mathbb{Z}_N^{\times} \to \mathbb{Z}_N^{\times}$$
 defined as

• Example: RSA TDP
$$f_{N,e} : \mathbb{Z}_N^{\times} \to \mathbb{Z}_N^{\times}$$
 defined as

$$f_{N,e}(x) := x^e \mod N$$

■
$$f_{N,e}$$
 is permutation when $GCD(e, (p-1)(q-1)) = 1$
■ One-way by RSA assumption
■ The trapdoor is $d := e^{-1} \mod (p-1)(q-1)$
bit
Construction 1 (PKE $\Pi = (\text{Gen, Enc, Dec}) \leftarrow \text{TDP } f_i : \mathcal{D}_i \rightarrow \mathcal{D}_i$)
 $(i, r) \leftarrow \ln dex^{(r)}$
 $x := f_i^{-1}(y)$
 $m := h_r(x) \oplus c$
 $(y) = f_i(x)$
 $y := f_i(x)$

(?) How to tweak Construction 1 to get TDP \rightarrow OT?

Protocol 1 (OT $\Pi = (S, R) \leftarrow TDP f_i : \mathcal{D}_i \to \mathcal{D}_i)$

Where the tweak Construction 1 to get TDP \rightarrow OT? Protocol 1 (OT $\Pi = (S, R) \leftarrow TDP f_i : \mathcal{D}_i \rightarrow \mathcal{D}_i$) $(i_i r)_{\leftarrow} h A e x^{(1)}$

1 Sender: sample (f_i, f_i^{-1}) and send f_i to receiver

(?) How to tweak Construction 1 to get TDP \rightarrow OT?

Protocol 1 (OT $\Pi = (S, R) \leftarrow TDP f_i : \mathcal{D}_i \to \mathcal{D}_i)$

- **1** Sender: sample (f_i, f_i^{-1}) and send f_i to receiver
- 2 Receiver:
 - 1 Sample $r_b \leftarrow D_i$ and set $s_b := f_i(r_b)$; sample $s_{1-b} \leftarrow D_i$
 - 2 Send (s_0, s_1) to sender

(? How to tweak Construction 1 to get TDP \rightarrow OT?

Protocol 1 (OT $\Pi = (S, R) \leftarrow TDP f_i : \mathcal{D}_i \to \mathcal{D}_i)$

- **1** Sender: sample (f_i, f_i^{-1}) and send f_i to receiver
- 2 Receiver:
 - 1 Sample $r_b \leftarrow \mathcal{D}_i$ and set $s_b := f_i(r_b)$; sample $s_{1-b} \leftarrow \mathcal{D}_i$
 - 2 Send (s_0, s_1) to sender
- 3 Sender:
 - 1 Compute $r_0 := f_i^{-1}(s_0)$ and $r_1 := f_i^{-1}(s_1)$
 - 2 Send $(c_0 := x_0 \oplus hc(r_0), c_1 := x_1 \oplus hc(r_1))$

(?) How to tweak Construction 1 to get TDP \rightarrow OT?

Protocol 1 (OT $\Pi = (S, R) \leftarrow TDP f_i : \mathcal{D}_i \to \mathcal{D}_i)$

- **1** Sender: sample (f_i, f_i^{-1}) and send f_i to receiver
- 2 Receiver:
 - 1 Sample $r_b \leftarrow \mathcal{D}_i$ and set $s_b := f_i(r_b)$; sample $s_{1-b} \leftarrow \mathcal{D}_i$
 - 2 Send (s_0, s_1) to sender
- 3 Sender:
 - 1 Compute $r_0 := f_i^{-1}(s_0)$ and $r_1 := f_i^{-1}(s_1)$
 - 2 Send $(c_0 := x_0 \oplus hc(r_0), c_1 := x_1 \oplus hc(r_1))$

4 Receiver: Output $c_b \oplus hc(r_b)$

Theorem 1

If f_i is a secure TDP then Π is a secure OT.

Proof (of sender privacy). 1) (onstruct Simp 11) show real view ~ simulation

Theorem 1

If f_i is a secure TDP then Π is a secure OT.

Proof (of sender privacy). 1) (onstruct Sime 11) show real view = simulation

Theorem 1

Theorem 1

Theorem 1

Theorem 1

Theorem 1

$\mathsf{TDP} \to \mathsf{OT}_{\dots}$

Theorem 1

If f_i is a secure TDP then Π is a secure OT.

$\mathsf{TDP} \to \mathsf{OT}_{\dots}$

Theorem 1

If f_i is a secure TDP then Π is a secure OT.

$\mathsf{TDP} \to \mathsf{OT}_{\dots}$

Theorem 1

If f_i is a secure TDP then Π is a secure OT.

Exercise 3

What happens if the sender (resp., receiver) is malicious?

Plan for Today's Lecture

1 Computing ∧ with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol

• Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c $\stackrel{\rho_1 \sim \rightarrow}{\longrightarrow} \underset{\chi_1 \sim \chi_2}{\xrightarrow{}} \stackrel{\varphi_2}{\xrightarrow{}} \stackrel{\varphi_2}{\xrightarrow{}}$

• Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

$$r_{1} \Leftrightarrow \chi_{1} \xrightarrow{\chi_{1}} \xrightarrow{\chi_{2}} r_{2}$$

$$r_{1} \oplus \chi_{1} = [\chi_{1}]_{2}$$

$$r_{1} \oplus \chi_{1} = [\chi_{1}]_{2}$$

$$r_{2} = r_{2} \oplus \chi_{2}$$

$$r_{3} \xrightarrow{c}$$

$$r_{4} = r_{2}$$

- Summary of Π (simplified for 2PC over \mathbb{F}_2):
 - Each party secret-shares its input bits with the other party

Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

- Summary of Π (simplified for 2PC over \mathbb{F}_2):
 - Each party secret-shares its input bits with the other party
 - Invariant: each party P_i will have secret share $[y_w]_i$ of value y_w of wire w

Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

 $P_{1} \xrightarrow{\chi_{1}} \begin{array}{c} \chi_{2} \\ \chi_{1} \\ \chi_{2} \\ \chi_{2} \\ \chi_{1} \\ \chi_{2} \\ \chi_{3} \\ \chi_{3} \\ \chi_{4} \\$

• Summary of Π (simplified for 2PC over \mathbb{F}_2):

- Each party secret-shares its input bits with the other party
- Invariant: each party P_i will have secret share $[y_w]_i$ of value y_w of wire w
- Both parties compute locally "over shares"
 - $\blacksquare\ \oplus\ {\rm gate:}\ {\rm XOR}\ {\rm shares}\ {\rm of}\ {\rm i/p}\ {\rm wires}\ {\rm to}\ {\rm obtain}\ {\rm share}\ {\rm of}\ {\rm o/p}\ {\rm wire}$
 - $\blacksquare \ \wedge_{c}$ gate: AND share of i/p wire with c to get obtain of o/p of \wedge_{c}

Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

 $P_{1} \xrightarrow{\chi} \chi_{1} \xrightarrow{\chi} \sum_{1} P_{2}$ $r_{1} = [\chi_{1}]_{1} \xrightarrow{\chi} [\chi_{2}]_{1} = r_{2}$ $r_{1} \oplus \chi_{1} = [\chi_{1}]_{2} \xrightarrow{\chi} [\chi_{2}]_{2} = r_{2} \oplus \chi_{2}$ $P_{1}: r_{1} \oplus r_{2} = [\chi_{1}]_{1} \oplus [\chi_{2}]_{1} = [Y_{3}]_{1} \xrightarrow{\chi}$ $P_{2}: r_{1} \oplus r_{2} \oplus \chi_{1} \oplus \chi_{2} = [\chi_{1}]_{2} \oplus [\chi_{2}]_{2} = [Y_{3}]_{2} \xrightarrow{\chi}$

■ Summary of Π (simplified for 2PC over \mathbb{F}_2):

- Each party secret-shares its input bits with the other party
- Invariant: each party P_i will have secret share [y_w]_i of value y_w of wire w
- Both parties compute locally "over shares"
 - $\blacksquare\ \oplus\ {\rm gate:}\ {\rm XOR}\ {\rm shares}\ {\rm of}\ {\rm i/p}\ {\rm wires}\ {\rm to}\ {\rm obtain}\ {\rm share}\ {\rm of}\ {\rm o/p}\ {\rm wire}$
 - $\blacksquare \ \land_{c}$ gate: AND share of i/p wire with c to get obtain of o/p of \land_{c}

Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

 $P_{1} \xrightarrow{\chi_{1}} \chi_{2} \xrightarrow{\chi_{2}} P_{2}$ $r_{1} = (\chi_{1})_{1} \xrightarrow{\chi_{2}} (\chi_{2})_{1} = r_{2}$ $r_{1} \oplus \chi_{1} = (\chi_{1})_{2} \xrightarrow{\chi_{2}} (\chi_{2})_{2} = r_{2} \oplus \chi_{2}$ $P_{1}: r_{1} \oplus r_{2} = (\chi_{1})_{1} \oplus (\chi_{2})_{1} = (Y_{3})_{1} \xrightarrow{\zeta} (Y_{3})_{2} \xrightarrow{\zeta} ($

■ Summary of Π (simplified for 2PC over \mathbb{F}_2):

- Each party secret-shares its input bits with the other party
- Invariant: each party P_i will have secret share $[y_w]_i$ of value y_w of wire w
- Both parties compute locally "over shares"
 - \blacksquare \oplus gate: XOR shares of i/p wires to obtain share of o/p wire
 - $\blacksquare \ \land_{c}$ gate: AND share of i/p wire with c to get obtain of o/p of \land_{c}

Every linear function f over $\mathbb{F}_2 = (\mathbb{Z}_2, \oplus, \wedge)$ can be represented by a Boolean circuit consisting of \oplus and \wedge_c

 $P_{1} \xrightarrow{\sim} \chi_{1} \xrightarrow{\sim} \chi_{2} \xrightarrow{\sim} P_{2}$ $r_{1} = (\chi_{1})_{1} \xrightarrow{\sim} \chi_{1} \xrightarrow{\sim} \chi_{2} \xrightarrow{\sim} P_{2}$ $r_{1} = (\chi_{1})_{1} \xrightarrow{\sim} \chi_{1} \xrightarrow{\sim} \chi_{2} \xrightarrow{\sim} P_{2}$ $r_{1} \oplus \chi_{1} = (\chi_{1})_{2} \xrightarrow{\sim} P_{2} \xrightarrow{\sim} \chi_{2} \oplus \chi_{2}$ $P_{1} : r_{1} \oplus r_{2} = (\chi_{1})_{1} \oplus [\chi_{2})_{1} = [(y_{2})_{1} \xrightarrow{\sim} y_{3} \xrightarrow{\sim} Y_{2} \oplus \chi_{2}$ $P_{2} : r_{1} \oplus r_{2} \oplus \chi_{1} \oplus \chi_{2} = (\chi_{1})_{2} \oplus [\chi_{2})_{2} = [(y_{3})_{2} \xrightarrow{\sim} Y_{3} \oplus \chi_{3} \xrightarrow{\sim} Y_{3} \oplus \chi_{3} \xrightarrow{\sim} Y_{3} \oplus \chi_{3}$ $P_{2} : r_{1} \oplus r_{2} \oplus \chi_{1} \oplus \chi_{2} = (\chi_{1})_{2} \oplus [\chi_{2}]_{2} = [(y_{3})_{2} \xrightarrow{\sim} Y_{3} \oplus \chi_{3} \oplus \chi_{3}$

■ Summary of Π (simplified for 2PC over \mathbb{F}_2):

- Each party secret-shares its input bits with the other party
- Invariant: each party P_i will have secret share [y_w]_i of value y_w of wire w
- Both parties compute locally "over shares"
 - $\blacksquare\ \oplus\ {\rm gate}\colon {\rm XOR}$ shares of i/p wires to obtain share of o/p wire
 - $\blacksquare \ \land_{c}$ gate: AND share of i/p wire with c to get obtain of o/p of \land_{c}
- P_1 and P_2 use their shares of output wire to reconstruct output

■ Hurdle with extending Π to arbitrary functions?

 \blacksquare Need to deal with \wedge to maintain invariant

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

12

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

$$r_{1} \oplus \chi_{1} = (\chi_{1})_{1}$$

$$r_{1} \oplus \chi_{1} = (\chi_{1})_{2}$$

$$\chi_{1} = (\chi_{1})_{2}$$

$$\chi_{2} = r_{2} \oplus \chi_{2}$$

$$\chi_{2} = r_{2} \oplus \chi_{2}$$

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

$$r_{1} = (x_{1})_{1}$$

$$r_{1} = (x_{1})_{1}$$

$$r_{1} \oplus x_{1} = (x_{1})_{2}$$

$$r_{2} : (x_{1})_{1} (x_{2})_{1} = r_{1} r_{2}$$

$$r_{2} : (x_{1})_{2} (x_{2})_{2} = (r_{1} \oplus x_{1})(r_{2} \oplus x_{2})$$

$$r_{2} : (x_{1})_{2} (x_{2})_{2} = (r_{1} \oplus x_{1})(r_{2} \oplus x_{2})$$

$$= r_{1}(r_{2} \oplus x_{1}, x_{2} \oplus r_{2}, x_{1})$$

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

$$r_{1} = (x_{1})_{1}$$

$$r_{1} = (x_{1})_{1}$$

$$r_{1} = (x_{1})_{2}$$

$$r_{1} = (x_{1})_{2}$$

$$r_{2} = (x_{1})_{2} = (x$$

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

- \blacksquare Need to deal with \wedge to maintain invariant
- What happens when shares of input wires of ∧ locally ANDed?

GMW Protocol

Protocol 2 (for $f:\{0,1\}^{2n} \rightarrow \{0,1\}$ represented by circuit C)

1 Each party secret-shares its input bits with the other party

GMW Protocol

- **1** Each party secret-shares its input bits with the other party
- 2 Emulate circuit: for each gate $g \in C$ in topological order
 - if g = ⊕: P₁ locally XORs its shares of g's input wires to obtain its share of g's output wire; P₂ does the same
 - if $g = \wedge$: P_1 (sender) and P_2 (receiver) use 1-out-of-4 OT protocol to generate their shares of g's output wire

GMW Protocol

1 Each party secret-shares its input bits with the other party

2 Emulate circuit: for each gate $g \in C$ in topological order

- if g = ⊕: P₁ locally XORs its shares of g's input wires to obtain its share of g's output wire; P₂ does the same
- if $g = \wedge$: P_1 (sender) and P_2 (receiver) use 1-out-of-4 OT protocol to generate their shares of g's output wire

 \square P₁ and P₂ use their shares of output wire to reconstruct output

GMW Protocol...

Theorem 2

OT secure \Rightarrow *GMW* protocol computes f with computational privacy.

GMW Protocol...

Theorem 2

OT secure \Rightarrow GMW protocol computes f with computational privacy.

Exercise 4

- Prove P_1 's privacy: OT simulator \rightarrow simulator Sim_{P_2} for P_2 .
- Prove P_2 's privacy: simulator Sim_{P_1} for P_1 .

■ Perfectly-private 2PC for *general* functions is impossible!

 \blacksquare Counter-example: \land

- \blacksquare Counter-example: \land
- What did we do?

- \blacksquare Counter-example: \land
- What did we do? Relax to *computational* privacy
 - New cryptographic primitive: oblivious transfer (OT)
 - Trapdoor permutation (TDP) \rightarrow OT

- \blacksquare Counter-example: \land
- What did we do? Relax to *computational* privacy
 - New cryptographic primitive: oblivious transfer (OT)
 - Trapdoor permutation (TDP) \rightarrow OT
- \blacksquare GMW protocol: OT \rightarrow computationally-private 2PC for general functions over \mathbb{F}_2

- \blacksquare Counter-example: \land
- What did we do? Relax to *computational* privacy
 - New cryptographic primitive: oblivious transfer (OT)
 - Trapdoor permutation (TDP) \rightarrow OT
- \blacksquare GMW protocol: OT \rightarrow computationally-private 2PC for general functions over \mathbb{F}_2
 - Alternatively, Yao's garbling from OT and SKE
 - Can be extended to computationally-private MPC for general functions over \mathbb{F}_p

■ Perfectly-private 2PC for *general* functions is impossible!

 \blacksquare Counter-example: \land

- What did we do? Relax to *computational* privacy
 - New cryptographic primitive: oblivious transfer (OT)
 - Trapdoor permutation (TDP) \rightarrow OT
- \blacksquare GMW protocol: OT \rightarrow computationally-private 2PC for general functions over \mathbb{F}_2
 - Alternatively, Yao's garbling from OT and SKE
 - Can be extended to computationally-private MPC for general functions over \mathbb{F}_p
- For privacy against malicious parties, use zero knowledge proof (ZKP)

■ Semi-honest-secure MPC + ZKP → malicious-secure MPC

Next Two Lectures

■ Outsourcing in client-server model

Next Two Lectures

■ Outsourcing in client-server model

Next Two Lectures

- Outsourcing in client-server model
- Privacy-preserving outsourcing
 - Using fully homomorphic encryption (FHE)
 - LWE \rightarrow FHE (GSW construction)

Next Two Lectures

- Outsourcing in client-server model
- Privacy-preserving outsourcing
 - Using fully homomorphic encryption (FHE)
 - LWE \rightarrow FHE (GSW construction)
- Verifiable outsourcing
 - Using succinct non-interactive argument (SNARG)
 - SNARG for repeated squaring problem in ROM
 - Pietrzak's protocol
 - SNARG for NP in ROM (if time permits)
 - Kilian's protocol

References

- Most of this lecture is based on (slides of) Lecture 18 from Vinod Vaikuntanathan's MIT6875. For a more formal description of the protocols, see [Gol04, §7.3].
- Claim 1 is folklore. The proof presented here is due to Rotem Oshman (and taken from the slides above)
- Oblivious transfer was introduced by Rabin [Rab81] (although Wiesner introduced a similar primitive in [Wie83]). Its construction from TDP is from [EGL82].
- 4 The GMW protocol is from [GMW87]

Shimon Even, Oded Goldreich, and Abraham Lempel.

A randomized protocol for signing contracts.

In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, *CRYPTO'82*, pages 205–210. Plenum Press, New York, USA, 1982.

Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game or A completeness theorem for protocols with honest majority.

In Alfred Aho, editor, *19th ACM STOC*, pages 218–229. ACM Press, May 1987.

Oded Goldreich.

The Foundations of Cryptography – Volume 2: Basic Applications. Cambridge University Press, 2004.

Michael Rabin.

How to exchange secrets with oblivious transfer. Technical report, 1981.

Stephen Wiesner.

Conjugate coding.

SIGACT News, 15(1):78–88, January 1983.