
CS783: Theoretical Foundations of Cryptography
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Recall from Last Lecture
Task 6: Private computation of functions

Defined syntax and security for the two-party case (2PC)
Special case of 2PC: ZK proof
Extends the simulation paradigm

Extended to multi-party case (MPC)

Perfectly-private MPC for linear functions
Key tool: threshold secret sharing (TSS)

Construction: Shamir’s TSS
Linearity: “sum of shares → shares of sum”

Key idea: “compute over shares”
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Perfectly-private 2PC for general functions is impossible!
Counter-example: ∧

What do we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
OT → computationally-private 2PC for general functions over
F� (GMW protocol)

Note: perfectly-private MPC for general functions is possiblewith honest majority, i.e., if � < �/� (BGW protocol)
E.g., three-input ∧ can be computed with perfect privacy if only
one of the parties corrupt
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Oblivious Transfer (OT)
Intuitively: 2PC protocol for “choice function/multiplexer”

Why is it useful? E.g., can be used to privately compute ∧

Exercise 1 (Hint: Need to invoke OT multiple times)
Implement comparison operator ≤ for �-bit integers using OT
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An interactive protocol Π = (�,�) between a sender � with input
bits ��, �� ∈ {�, �} and receiver � with choice bit � ∈ {�, �}, at the
end of which � learns ��

Correctness:
Sender privacy: (honest) � should not learn input ��−�∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)Receiver privacy: (honest) � should not learn choice bit �

∃ simulator ���� that simulates View�(⟨�(��, ��),�(�)⟩)
Exercise 2
Construct a �-out-of-� OT from a �-out-of-� OT.
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3 For all PPT inverters ���, the following is negligible:

�(�) := Pr(� ,τ)←�����(��)
�←D�

[���(f� (� )) ∈ f−�

� (f� (� ))]

4 f−�

� can be efficiently computed given trapdoor τ for �
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How to tweak Construction 1 to get TDP → OT?

Protocol 1 (OT Π = (�,�) ← TDP f� : D� → D� )

1 Sender: sample (f� , f−�� ) and send f� to receiver
2 Receiver:

1 Sample �� ← D� and set �� := f� (��); sample ��−� ← D�

2 Send (��, ��) to sender
3 Sender:

1 Compute �� := f−�
�

(��) and �� := f−�
�

(��)
2 Send (�� := �� ⊕ hc(��), �� := �� ⊕ hc(��))

4 Receiver: Output �� ⊕ hc(��)
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TDP → OT...
Theorem 1
If f� is a secure TDP then Π is a secure OT.
Proof (of sender privacy).

Exercise 3
What happens if the sender (resp., receiver) is malicious?
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Summary of Π (simplified for 2PC over F�):
Each party secret-shares its input bits with the other party
Invariant: each party �� will have secret share [�� ]� of value ��of wire �Both parties compute locally “over shares”

⊕ gate: XOR shares of i/p wires to obtain share of o/p wire
∧� gate: AND share of i/p wire with � to get obtain of o/p of ∧�

�� and �� use their shares of output wire to reconstruct output
9 / 14
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GMW Protocol...

Protocol 2 (for f : {�, �}�� → {�, �} represented by circuit �)
1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate � ∈ � in topological order
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2 Emulate circuit: for each gate � ∈ � in topological order

if � = ⊕: �� locally XORs its shares of � ’s input wires to
obtain its share of � ’s output wire; �� does the same
if � = ∧: �� (sender) and �� (receiver) use �-out-of-� OT
protocol to generate their shares of � ’s output wire

3 �� and �� use their shares of output wire to reconstruct output
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Theorem 2
OT secure ⇒ GMW protocol computes f with computational privacy.
Exercise 4

Prove �� ’s privacy: OT simulator → simulator ����� for �� .
Prove �� ’s privacy: simulator ����� for �� .
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Counter-example: ∧

What did we do? Relax to computational privacy
New cryptographic primitive: oblivious transfer (OT)

Trapdoor permutation (TDP) → OT
GMW protocol: OT → computationally-private 2PC forgeneral functions over F�

Alternatively, Yao’s garbling from OT and SKE
Can be extended to computationally-private MPC for general
functions over F�

For privacy against malicious parties, use zero knowledgeproof (ZKP)
Semi-honest-secure MPC + ZKP → malicious-secure MPC

13 / 14
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Next Two Lectures
Outsourcing in client-server model

Privacy-preserving outsourcing
Using fully homomorphic encryption (FHE)
LWE→ FHE (GSW construction)

Verifiable outsourcing
Using succinct non-interactive argument (SNARG)SNARG for repeated squaring problem in ROM

Pietrzak’s protocol
SNARG for �� in ROM (if time permits)

Kilian’s protocol
14 / 14
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