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CS783: Theoretical Foundations of Cryptography

Lecture 18 (11/Oct/24)

Instructor: Chethan Kamath
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Recall from Last Lecture
m Task 6: Private computation of functions
/7:

R's View

m Defined sgntax ‘and securttg for the two- partg case (ZPC)

m Special case of 2PC: ZK proof
m Extends the simulation paradigm

m Extended to multi-party case (MPC)

m Perfectly-private MPC for linear functions @
Lo R < m Key tool: threshold secret sharing (TSS) 0 .

- A —
! @./\/\I Construction: Shamir's TSS ‘ u c

: m Linearity: “sum of shares — shares of sum’ 2
i . m Key idea: “compute over shares”
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Plan for Today's Lecture

m What about perfectly-private MPC for general functions?
&Perfect[g—prlvate 2PC for general functions is impossible!
m Counter-example: A

fi
m What do we do? Relax to computational privacy l
0 p® New cryptographic primitive: oblivious transfer (OT)
m Trapdoor permutation (TDP) — OT N~ 7
- e . . . t
‘e OT — computationally-private 2PC for general functions over
Fo (GMW protocol)

m Note: perfectly-private MPC for general functions is possible
with honest majority, i.e., if t < n/2 (BGW protocol)

m E.g, three-input A can be computed with perfect privacy if only
one of the parties corrupt
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Plan for Today's Lecture

General template:

1 ldentify the task
2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M
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1 ldentify the task/ e Cepni-Nonesk nadel

2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilitles?ﬁ
m Security Goal: What does it mean to be secure? e Kion
J ‘ ' S ¢ (yrupin

3 Construct a scheme M- GMW PYU‘D@\ » L;m?u‘(oho()q) privay”

4 Formally prove that I in secure in model M
(, or = gmiasion
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1 Computing A with Perfect Privacy is Impossible

2 New Cryptographic Primitive: Oblivious Transfer (OT)

3 Goldreich-Micali-Wigderson (GMW) Protocol
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Oblivious Transfer (OT)

(Lo21) =Yy = (o)t +0 2
m Intuitively: 2PC protocol for “choice functloﬂw fttpiex

Sender Peeivel
m Why is it useful? E.g, can be used to privately compute A

Exercise 1 (Hint: Need to invoke OT multiple times)

Implement comparison operator < for n-bit integers using OT
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Defintion 1 (Oblivious Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xp, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the
end of which R learns x
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Syntax and Security of OT
I-WE-0f L

Defintion 1 (/\Obllvlous Transfer)

An interactive protocol 1 = (S, R) between a sender S with input
bits xg, x1 € {0,1} and receiver R with choice bit b € {0,1}, at the

“enderS
m Correctness: @

m Sender privacy: (honest) R should not learn input x3_p

m 3 simulator Simg that simulates Viewgr((S(xo, x1), R(b)))
m Receiver privacy: (honest) S should not learn choice bit b

m J simulator Simg that simulates Views((S(xo, x1), R(b)))
Exercise 2~ Si%o sy Ribelo B) 4 or b
L4

7

Construct a 1-out-of-4 OT from a 1-out-of-2 OT. Xy : Lo
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Defintion 2 (Trapdoor (one-way) permutation (TDP) collection)

A collection of permutations f = {f; : D — u}iEIg{O,l}* is trapdoor
one-way if
1 There is an efficient index+trapdoor sampling algorithm Index
2 Eachf;, i €1, is efficiently computable 5 ;B
3 For all PPT inverters Inv, the following is negligible:
pln) = Pr[inv(fi(x)) € {7 (fi(x))]

(i, 7)Index(1") N

x<D T

4 71 can be efficiently computed given trapdoor T for i
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Recall Trapdoor Permutation (TDP) from Lecture 13..
m Example: RSA TDP fy e : Zpy — Zjp defined as
fne(x) .= x%mod N

m fy e is permutation when GCD(e, (p —1)(g—1)) =1
m One-way by RSA assumption
m The trapdoor is d := e~! mod (p — 1)(q — 1)
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M o
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x P / §i

1 Sender: sample (f;,f71) and send f; to receiver
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TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

L

0,11'\
(@e nder) fb*i: j;j,f@ Y

/—‘> T
Rl
S

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1 Sample r, < D and set sp, := f;(rp), sample s;_p «— D
2 Send (so, s1) to sender

7114



TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

(¢ \j \Q) rb??\ Spi= l}(fb) ‘
‘,LO?GZ) et =) ‘w‘ Gpe&i D; i 00/,
10/\ oy 25 he(fy
P i O
5,51 AN
&~ i ‘
;/(W'L('\//} A

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1

Sample ry < D and set sp = f;(rp), sample s;_p < D

2 Send (sp, 51) to sender
3 Sender:

1

Compute ro := f;(so) and ry := f;*(s1)

2 Send (co := xo @ hc(r), €1 := x1 @ hc(r))
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TDP — OT

@How to tweak Construction 1 to get TDP — OT?
Protocol 1 (OT 1= (S,R) « TDP f D — D)

ok

Q)e \OAUQ) rbe?» Cpi= &C&) D, ,Iﬁ o
| 6=k @0), - 6‘) Si-pe@i {
CD/‘ ,X%@ht (f% . ’)Lb ’Q;@NU\J

P §i Q

1 Sender: sample (f;,f71) and send f; to receiver
2 Receiver:

1 Sample r, < D and set sp, := f;(rp), sample s;_p «— D
2 Send (sp, 51) to sender
3 Sender:
1 Compute ry .= f; *(so) and r, = f;(s1)
2 Send (co := xo ® hc(ro), €1 := x1 ® hc(ry))
4 Receiver: Output cp @ hc(rp)
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Exercise 3

What happens if the sender (resp., receiver) is malicious?
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Recall I'T (Protocol 1) from Last Lecture

m Every linear function f over Fy = (Z2, @, A) can be represented
by a Boolean circuit consisting of @ and A
P| w,ﬁ\ ’lLNPZ
r= tﬂa\
oYL= Qigi

Pl: (\@(L = @(U\C_Br};)\:[\jg,

P 60001 ®, = 61, b= [, o (1,00,

(1), = (4], AC
Y=9F (9a= [yl ne
m Summary of [1 (simplified for 2PC over [Fy):
m Each party secret-shares its input bits with the other party
m Invariant: each party P; will have secret share [y, ; of value y,,
of wire w
m Both parties compute locally “over shares”
m @ gate: XOR shares of i/p wires to obtain share of o/p wire
m /. gate: AND share of i/p wire with ¢ to get obtain of o/p of A
m P; and P, use their shares of output wire to reconstruct output
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1 Each party secret-shares its input bits with the other party
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Protocol 2 (for f: {0,1}%" — {0, 1} represented by circuit C)

1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate g € C in topological order

m if g =@ P1 locally XORs its shares of g's input wires to
obtain its share of g's output wire; Py does the same

m if g = A\: Py (sender) and P, (receiver) use 1-out-of-4 OT
protocol to generate their shares of g's output wire
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GMW Protocol
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Protocol 2 (for f : {0, 1}2n — {0, 1} represented by circuit C)

1 Each party secret-shares its input bits with the other party
2 Emulate circuit: for each gate g € C in topological order

m if g =@ P1 locally XORs its shares of g's input wires to
obtain its share of g's output wire; P does the same

m if g = A\: Py (sender) and P, (receiver) use 1-out-of-4 OT
protocol to generate their shares of g's output wire

3 Py and P» use their shares of output wire to reconstruct output
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OT secure = GMW protocol computes f with computational privacy.
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GMW Protocol...

Theorem 2
OT secure = GMW protocol computes f with computational privacy.

Exercise 4

m Prove Pi’s privacy: OT simulator — simulator Simp, for Ps.

m Prove Py's privacy: simulator Simp, for P;.
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m Perfectly-private 2PC for general functions is impossible!
m Counter-example: A

m What did we do? Relax to computational privacy

m New cryptographic primitive: oblivious transfer (OT)

m Trapdoor permutation (TDP) — OT
m GMW protocol: OT — computationally-private 2PC for
general functions over [,
m Alternatively, Yao's garbling from OT and SKE
m Can be extended to computationally-private MPC for general
functions over F,

m For privacy against malicious parties, use zero knowledge
proof (ZKP)

m Semi-honest-secure MPC + ZKP — malicious-secure MPC
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Next Two Lectures
m Outsourcing in client-server model
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m Privacy-preserving outsourcing

m Using fully homomorphic encryption (FHE)
m |[WE— FHE (GSW construction)
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Next Two Lectures

(] Outsourcmg inc Lent server model

DDDD

m Privacy-preserving outsourcmg

m Using fully homomorphic encryption (FHE)
m |[WE— FHE (GSW construction)

m Verifiable outsourcing

m Using succinct non-interactive argument (SNARG)
m SNARG for repeated squaring problem in ROM

m Pietrzak's protocol
m SNARG for NP in ROM (if time permits)

m Kilian's protocol
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