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Perfectly-private MPC for linear functions over F�Perfectly-private 2PC for ∧ is impossible!
Computationally-private 2PC for general functions over F�

Key tools:
Threshold secret sharing (TSS): privately computes ⊕/+

Construction: Shamir’s TSS
Linearity: “sum of shares → shares of sum”

Oblivious transfer (OT): privately computes ∧/·
Trapdoor permutation (TDP) → OT

Key idea: “computing over secret shares”
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Task 7: secure outsourcing in the client-server setting

Task 7.a: private outsourcing in the client-server setting

Key tool: homomorphic (public-key) encryption
Operation on ciphertext =⇒ operation on plaintext
Fully homomorphic encryption (FHE)
Private outsourcing of computation using FHE

FHE from learning with errors (LWE) assumption
Recall LWE and Regev’s encryption
Gentry-Sahai-Waters construction of (levelled) FHE
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Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �
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Private Outsourcing: Setting and Security

The setting:
Client is resource constrained and server is powerfulFunction f known to both client and server

Alternatively: f is known only to server (=2PC)
Client’s local input is �

Server and client interact; in the end client locally outputs f(�)Security model: privacy against honest-but-curious server
Computational privacy of client’s input: there exists a simulator
��� for (honest) server’s view

Exercise 1
Why is private outsourcing trivial from a 2PC perspective?
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Why is it Useful?
Compute as a service:

We want: private/confidential compute as a service
Current solutions: some form of trusted hardware (TPM/HSM)

Private outsourcing avoids trusted hardware
4 / 17



Plan for Today’s Lecture

1 Private Outsourcing of Computation

2 Fully-Homomorphic Encryption (FHE)

3 Gentry-Sahai-Waters FHE from Learning with Errors
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What happens when you multiply ciphertexts?
Is it possible compute ∧ of plaintexts?
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A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

Compactness of evaluation: |� | obtained from ���� independent of |� |
Correctness of evaluation
Fully HE: F=functions computable by poly.-sized circuits

We will represent f using a Boolean circuit of NAND gates
Levelled FHE: F=functions computable by depth � circuits
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Security model: same as PKE (IND-CPA)
Defintion 2 (CPA Secrecy for FHE)
An FHE Π = (���, ���,���, ����) is CPA-secret if for every PPT
eavesdropper ���, the following is negligible:
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Let’s Define Homomorphic Encryption...

Security model: same as PKE (IND-CPA)
Defintion 2 (CPA Secrecy for FHE)
An FHE Π = (���, ���,���, ����) is CPA-secret if for every PPT
eavesdropper ���, the following is negligible:

δ(�) := Pr(�� ,�� )←���(��)(��,��)←���(�� )
�←���(�� ,��)

[���(�) = �] − Pr(�� ,�� )←���(��)(��,��)←���(�� )
�←���(�� ,��)

[���(�) = �]

Exercise 2 (Recall: IND-CCA=IND-CPA+decryption oracle)
Can FHE be IND-CCA secure?
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How to Privately Outsource using FHE?

1 Client:
1 Generate FHE public-secret key-pair (��, ��)
2 Encrypt input � using �� to get ciphertext � ; send it to server

2 Server:
1 Use ���� to run f on � and obtain encrypted output � ′
2 Send � ′ to client

3 Client: decrypt � ′ using �� to retrieve output f(� )
Exercise 3
Prove that the above protocol is private if FHE is IND-CPA secure
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Plan for this Session

1 Private Outsourcing of Computation

2 Fully-Homomorphic Encryption (FHE)

3 Gentry-Sahai-Waters FHE from Learning with Errors
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Input (�̄, �̄), where �̄ ← Z�×�
� , �̄ ← Z�

� , �̄ ← E� and
�̄⊤ := �̄⊤�̄+ �̄⊤ mod �

Solution: �̄
Usual parameters:

�=security parameter, � = ����(�) and � ≈ � log(�)Noise distribution E = Eα , the discrete Gaussian distributionover Z
Centred at �; parameter α < � determines s.d. σ := α� ≈ �

�̄ “determines” �̄ , but efficient algorithm to recover �̄ not known
Decision LWE (DLWE): (�̄, �̄) ≈ (�̄, �̄), where �̄ ← Z�

�
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Decryption ���(�� , �̄):
�′ := [(−�̄⊤

� , �)�̄ = �̄⊤�̄� + � · ⌊�/�⌉ mod �]�

What happens when you add two ciphertexts?
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First Attempt: “Eigenvector” Encryption...
Let’s recall eigenvectors

Definition 1 (Eigenvectors for matrices over F� )
A (left) eigenvector of a square matrix �̄ is a vector �̄ such that
�̄ �̄ = µ�̄ for some scalar µ, which is the eigenvalue.
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First Attempt: “Eigenvector” Encryption...
Invariant: �× � “ciphertext” matrix �̄ encrypts bit µ under
secret �̄ if �̄ �̄ = µ�̄

Do we have an FHE? No, can break by Gaussian elimination
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Second Attempt: Approximate Eigenvector Encryption
New invariant: �̄ encrypts a bit µ under secret �̄ if
�̄ �̄ + �̄ = µ�̄ for “short” �̄ (as in LWE)
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Second Attempt: Approximate Eigenvector Encryption
New invariant: �̄ encrypts a bit µ under secret �̄ if
�̄ �̄ + �̄ = µ�̄ for “short” �̄ (as in LWE)

Do we have an FHE? No, overall error when multiplying
depends �̄� which can be large (even if �̄� is small)
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Gentry-Sahai-Waters FHE...

Solution: use �̄� · G−�(�̄�) for homomorphic multiplication
G−� : Z�×�

� → Z�×�ℓ
� is the bit-decomposition function

1 G−�(�̄�) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

14 / 17



Gentry-Sahai-Waters FHE...

Solution: use �̄� · G−�(�̄�) for homomorphic multiplication
G−� : Z�×�

� → Z�×�ℓ
� is the bit-decomposition function

1 G−�(�̄�) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

14 / 17



Gentry-Sahai-Waters FHE...

Solution: use �̄� · G−�(�̄�) for homomorphic multiplication
G−� : Z�×�

� → Z�×�ℓ
� is the bit-decomposition function

1 G−�(�̄�) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

14 / 17



Gentry-Sahai-Waters FHE...

Solution: use �̄� · G−�(�̄�) for homomorphic multiplication
G−� : Z�×�

� → Z�×�ℓ
� is the bit-decomposition function

1 G−�(�̄�) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

14 / 17



Gentry-Sahai-Waters FHE...

Solution: use �̄� · G−�(�̄�) for homomorphic multiplication
G−� : Z�×�

� → Z�×�ℓ
� is the bit-decomposition function

1 G−�(�̄�) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

G−�’s inverse computed using gadget matrix �̄ : Z�×�ℓ
� → Z�×�

�

∀�̄ : �̄G−�(�̄ ) = �̄
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New invariant: �× � matrix �̄ encrypts a bit µ under secret �̄
if �̄ �̄ + �̄ = µ�̄ �̄ for “short” �̄

How does the noise grow? Entries of µ� , �̄� , �̄� and �̄� are at
most � =⇒ new noise at most � · ��
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To evaluate a NAND circuit f : {�, �}λ → {�, �} on ciphertexts
(�̄�, . . . , �̄λ):

1 Consider each gate � in f in topological order
2 Let �̄� and �̄� denote ciphertexts corresponding to its inputs
3 Output �̄� := �̄ − �̄�G−�(�̄�) as its output ciphertext

If the depth is � then the noise in ciphertext of output wire is
� (� + �)�

⇒ modulus � ≫ �(� + �)�
15 / 17
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Task 7.a: private outsourcing in the client-server setting

Key tool: Fully homomorphic encryption (FHE)
FHE → private outsourcing of computation
Possible: FHE → 2PC of arbitrary functions!

GSW FHE from LWE assumption
Key idea: approximate eigenvectors
Similar idea used in approximate key exchange from LWE
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Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring problem in RSA group

Pietrzak’s interactive protocol
SNARG via Fiat-Shamir transform

17 / 17



References

1 Most of the lecture is based on Shai Halevi’s survey [Hal17],
which is a very nice resource on homomorphic encryption.

2 The partially homomorphic schemes we discussed are from
[ElG84, GM82].

3 FHE was introduced in [RAD78], but the first candidate
construction was given by Gentry only in [Gen09].

4 The GSW FHE was proposed in [GSW13]. The presentation
here is taken from Halevi’s survey [Hal17].

17 / 17



Taher ElGamal.
A public key cryptosystem and a signature scheme based on discrete
logarithms.
In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of
LNCS, pages 10–18. Springer, Heidelberg, August 1984.
Craig Gentry.
Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.
Shafi Goldwasser and Silvio Micali.
Probabilistic encryption and how to play mental poker keeping secret all
partial information.
In 14th ACM STOC, pages 365–377. ACM Press, May 1982.
Craig Gentry, Amit Sahai, and Brent Waters.
Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.
Shai Halevi.

17 / 17



Homomorphic encryption.
In Tutorials on the Foundations of Cryptography, pages 219–276. Springer
International Publishing, 2017.
Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos.
On data banks and privacy homomorphisms.
In Foundations of Secure Computation, pages 165–179. 1978.

17 / 17


	Private Outsourcing of Computation
	Fully-Homomorphic Encryption (FHE)
	Gentry-Sahai-Waters FHE from Learning with Errors

