CS783: Theoretical Foundations of Cryptography

Lecture 19 (15/Oct/24)

Instructor: Chethan Kamath
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Recall from Last Two Lectures

m Task 0: Private computation of functions

m Perfectly-private MPC for linear functions over I,

m Perfectly-private 2PC for A is impossible!

m Computationally-private 2PC for general functions over
m Key tools:

m Threshold secret sharing (TSS): privately computes &/+

m Construction: Shamir's TSS
m Linearity: “sum of shares — shares of sum”

m Oblivious transfer (OT): privately computes A/
m Trapdoor permutation (TDP) — OT

m Key idea: “computing over secret shares’
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Plan for Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m Task 7.a: private outsourcing in the client-server setting

2ever

m Key tool: homomorphic (public-key) encryption
m Operation on ciphertext = operation on plaintext
m Fully homomorphic encryption (FHE) 0
m Private outsourcing of computation using FHE :
m FHE from learning with errors (LWE) assumption

m Recall LWE and Regev's encryption
m Gentry-Sahai-Waters construction of (levelled) FHE
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Plan for Today's Lecture...

General template: /> Task 1q. ?qu%e o%soumnq
1 ldentify the task

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M
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2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure? — N .
@mgﬁab »al plifoly

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2117



Plan for Today's Lecture...

General template: /7 Task 1q. ?m\lqke o%soumnq
1 ldentify the task Honesk-bak-0r1oVs serier

2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure? ~ Y
1 &\
3 Construct a scheme I Frig-vased pootntol Lam?\)m%\cﬂa\ P o
4 Formally prove that I in secure in model M
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Plan for Today's Lecture

1 Private Outsourcing of Computation

2 Fully-Homomorphic Encryption (FHE)

3 Gentry-Sahai-Waters FHE from Learning with Errors
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m Client's local input is x
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Private Outsourcing: Setting and Security

Fth

«—
U S Client
m The setting:

m Client is resource constrained and server is powerful
m Function f known to both client and server

m Alternatively: f is known only to server (=2PC)
m Client's local input is x

m Server and client interact; in the end client locally outputs f(x)
m Security model: privacy against honest-but-curious server

m Computational privacy of client’s input: there exists a simulator
Sim for (honest) server’s view

Exercise 1

Why is private outsourcing trivial from a 2PC perspective?
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Why is it Useful?

m Compute as a service:

Amazon SageMaker

Build, train, and deploy machine learning (ML)
models for any use case with fully managed
infrastructure, tools, and workflows

zhN Function App

+ Create @ View

Description
Function apps allow you to run event-driven

code without managing infrastructure,
enabling you to build and deploy
applications
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Why is it Useful?

m Compute as a service:

P AN Function App

Amazon SageMaker

t Create @ View

Build, train, and deploy machine learning (ML) Description

Function apps allow you to run event-driven
code without managing infrastructure,
enabling you to build and deploy
applications

models for any use case with fully managed
infrastructure, tools, and workflows

m We want: private/confidential compute as a service
m Current solutions: some form of trusted hardware (TPM/HSM)
Confidential
Computing:
Hardware-Based

Trusted Execution for
Applications and Data

m Private outsourcing avoids trusted hardware
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1 Private Outsourcing of Computation

2 Fully-Homomorphic Encryption (FHE)

3 Gentry-Sahai-Waters FHE from Learning with Errors
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Recall the PKEs We Saw in Lecture 9

m PKE 1: Elgamal encryption
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M Xg (3 MM, (91) ) \
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@%

. What happens when you multiply two ciphertexts?
. Is it possible to compute sum of plaintexts modulo p?
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Recall the PKEs We Saw in Lecture 9...

m PKE 2: Goldwasser-Micali bit encryption
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Recall the PKEs We Saw in Lecture 9...

m PKE 2: Goldwasser-Micali bit encryption
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Recall the PKEs We Saw in Lecture 9...

m PKE 2: Goldwasser-Micali bit encryption

(P/%>=SK P OENO”}

- \PW;N = Pk
(HARLIE %2 (od W) Cop ) @B

WS

)
Q b)b‘r:' (mod N) ALICE

B0B

. What happens when you multiply ciphertexts?
. Is it possible compute A of plaintexts?
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Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE ¥ = (Gen, Enc, Dec) + Eval algorithm wi

( L

following syntax

O
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m Public-key encryption + public evaluation algorithm
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m Public-key encryption + public evaluation algorithm
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Let's Define Homomorphic Encryption

m Public-key encryption + public evaluation algorithm
Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE ¥ = (Gen, Enc, Dec) + Eval algorithm with following syntax
e ENC(PHo M) M= DEC (5k,()

Q)c @ PhCh e GENC)
(HARLLE N \ S
Ce—ENC(Phs / EVAL(%, 1,6 ) _(_; ;0@1

O,

NG
Compactness of evaluation: |c| obtained from Eval independent of |f|
Correctness of evaluation

i

Fully HE: F=functions computable by poly-sized circuits
m We will represent f using a Boolean circuit of NAND gates
m Levelled FHE: F=functions computable by depth L circuits
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Let's Define Homomorphic Encryption..

m Security model: same as PKE (IND-CPA)

Defintion 2 (CPA Secrecy for FHE)

An FHE T1 = (Gen, Enc, Dec, Eval) is CPA-secret if for every PPT
eavesdropper Eve, the following is negligible:

o(n) = Pr [Eve(c) = 0] — Pr [Eve(c) = 0]
(pk,sk)«—Gen(1") (pk.sk)—Gen(1")
(mg,my)«—Eve(pk) (mg,my)«—Eve(pk)

c«—Enc(pk,mg) c«—Enc(pk,my)
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Let's Define Homomorphic Encryption..

m Security model: same as PKE (IND-CPA)

Defintion 2 (CPA Secrecy for FHE)

An FHE T1 = (Gen, Enc, Dec, Eval) is CPA-secret if for every PPT
eavesdropper Eve, the following is negligible:

o(n) = Pr [Eve(c) = 0] — Pr [Eve(c) = 0]
(pk,sk)—Gen(1") (pk,sk)—Gen(1")
(mo.fEl)Hive(Pk) (mov"E71)<—|ive(Pk)

cEncpm] e Enclpkm)
"Lt Lsorld Rignt world”

Exercise 2 (Recall: IND-CCA=IND-CPA-decryption oracle)
Can FHE be IND-CCA secure?
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@ How to Privately Outsource using FHE?

Bt
ph b < GENC?)
C —ENC(Phy )

2ever

1 Client:
1 Generate FHE public-secret key-pair (pk, sk)
2 Encrypt input x using pk to get ciphertext ¢; send it to server
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1 Client:

1 Generate FHE public-secret key-pair (pk, sk)

2 Encrypt input x using pk to get ciphertext ¢; send it to server
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1 Use Eval to run f on ¢ and obtain encrypted output ¢’

2 Send ¢’ to client
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@ How to Privately Outsource using FHE?

C=EVAL(PKaC m

SIS R

2ever

1 Client:

1 Generate FHE public-secret key-pair (pk, sk)

2 Encrypt input x using pk to get ciphertext ¢; send it to server
2 Server:

1 Use Eval to run f on ¢ and obtain encrypted output ¢’

2 Send ¢’ to client

3 Client: decrypt ¢’ using sk to retrieve output f(x)

Exercise 3
Prove that the above protocol is private if FHE is IND-CPA secure
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1 Private Outsourcing of Computation
2 Fully-Homomorphic Encryption (FHE)

3 Gentry-Sahai-Waters FHE from Learning with Errors
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Let's Recall LWE from Lecture 10

m Solving “noisy” linear equations over (Zp, +, -) is hard
m Input (A, £), where A «— Z2*™ 5 «— Z7 & < E™ and

t':=35"A4+e modp

m Solution: §
m Usual parameters:

m n=security parameter, p = poly(n) and m =~ nlog(p)
m Noise distribution E = E,, the discrete Gaussian distribution
over Z

m Centred at 0; parameter o < 1 determines s.d. 0 :== ap = n

me

l Pele)
oL v wane

m t “determines” s, but efficient algorithm to recover § not known

m Decision LWE (DLWE): (A, £) ~ (A, 7), where 7 — Z

O/ e
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Let's Recall Regev's PKE from Lecture 10

m “Noisy/approximate” 1-bit key-exchange based on DLWE:
Zf\
&

O ZPm

{P/ﬂ T mddp LP@

e,
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neacest neged
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Let's Recall Regev's PKE from Lecture 10

m “Noisy/approximate” 1-bit key-exchange based on DLWE:
~ 25

[’WE w'r\s\f ance:

A’e/zp

'5@%10; i
k& = P\S@ <_€(o ‘}
C:= z\‘c,\g\;+b%“>/]l

QA% ZP

ovthonged bt tiSe
: %] 4l
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Let's Recall Regev's PKE from Lecture 10
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Let's Recall Regev's PKE from Lecture 10
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Let's Recall Regev's PKE from Lecture 10

m “Noisy/approximate” 1-bit key-exchange based on DLWE:
~ 25

i
ty = Ae /bee%o‘;}
C:= @EA\Z\;+}>% U)/]l

4]

il
roond o

blb neacest eged

m Regev's PKE obtained by generic transformation
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Let's Recall Regev's PKE from Lecture 10...

Construction 1 (Regev's PKE for parameters n, m, p and E,)

m Key generation Gen(1"; A, 34, &):

T sk =354

Rg ingeance.

4

-1+ mody

%l
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Let's Recall Regev's PKE from Lecture 10...

Construction 1 (Regev's PKE for parameters n, m, p and E,)

m Key generation Gen(1"; A, 34, &):

A
= . sk =3
pk = (t,}:‘AJr ) A

LWE Instance

m Encryption Enc(pk, b; 58):

¢ = pks +( o )—( o= As )
TP b p2]] T \Eise+ b [pl2]
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Let's Recall Regev's PKE from Lecture 10...

Construction 1 (Regev's PKE for parameters n, m, p and E,)

m Key generation Gen(1"; A, 34, &):

A

k= |. i,
P (t} =5,A+¢&' modp

) sk =354
N e inscance
m Encryption Enc(pk, b; 5g):

- Q" . TC(E ifASB
e = ooty o) = |

m Decryption Dec(sk, ¢):

/ . . -[%] T\/ modp %]
b':=[(~54,1)c = &8 + b |p/2] mod pp

%l
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Let's Recall Regev's PKE from Lecture 10...

Construction 1 (Regev's PKE for parameters n, m, p and E,)

m Key generation Gen(1"; A, 34, &):

A
k = _ sk:=5
P (t} =5,A+e ) A

Nwe inscance,

m Encryption Enc(pk, b; 58):

_ _ Q" . TI6ii/_4§B
T pk55+(b- Lp/21) - (@Isg +b-|pf2

m Decryption Dec(sk, ¢):

/ § T m‘ moap Y%l
b :=[(—5,4,1)c = &8 + b |p/2] mod p) N

\%]
@V\/hat happens when you add two ciphertexts?
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First Attempt: “Eigenvector” Encryption

m Let's recall eigenvectors

e
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First Attempt: “Eigenvector” Encryption

m Let's recall eigenvectors
g?? £ 7

R !

i \

wo s

Definition 1 (Eigenvectors for matrices over [Fp)

A (left) eigenvector of a square matrix C is a vector v such that
vC = pv for some scalar p, which is the eigenvalue.
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First Attempt: “Eigenvector” Encryption...

m Invariant: n x n “ciphertext” matrix C encrypts bit p under
secret v if vC = pv

=
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First Attempt: “Eigenvector” Encryption...

m Invariant: n x n “ciphertext” matrix C encrypts bit p under
secret v if vC = pv

[—— gl ——

what does €+ C,
Lomspor\d 1

v__"f =p) v
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First Attempt: “Eigenvector” Encryption...

m Invariant: n x n “ciphertext” matrix C encrypts bit y under
secret v if vC = pv

What does <y -
Coreespond b7

T If =p 7
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First Attempt: “Eigenvector” Encryption...

m Invariant: n x n “ciphertext” matrix C encrypts bit y under
secret v if vC = pv

g =y, 2 I
c S ——
e 5, + El
what does C i+ ¢, -
Goraespond 017 )

T f sp v N
G R
s I S
What does C- G, -
Lorrespond b cpn

P

. Do we have an FHE? No, can break by Gaussian elimination
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Second Attempt: Approximate Eigenvector Encryption

m New invariant: C encrypts a bit y under secret v if
vC + &= pv for “short” & (as in LWE)

+ e " =p
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Second Attempt: Approximate Eigenvector Encryption

m New invariant: C encrypts a bit y under secret v if
vC + e = pv for “short” & (as in LWE)

v 1 +[ & T :PA —
<
v 1 +[ & 1 :P£444144L
E - —
2 Nhat d0@$ C[‘ C.l
 Coreespond g:gz)
G Z,
fCEf _ JpA S
z, | ,,
1 =7

m Do we have érrlwl—'_HE?”Nd,'o‘\}erall error when multiplying
depends G, which can be large (even if & is small)
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Gentry-Sahai-Waters FHE

v/

\QISolutlon: use C1 - G71(G,) for homomorphic multiplication

m G Zy" — Z,’;X"g is the bit-decomposition function
0,

1 G_I(Cz) has small entries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds
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\QISolutlon: use C1 - G71(G,) for homomorphic multiplication

m G Zy" — Z,’;X"e is the bit-decomposition function
0,

1 G_I(Cz) has small éntries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds
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Gentry-Sahai-Waters FHE

N _ _ .
9 Solution: use C; - G7(G,) for homomorphic multiplication

m G Zy" — Z,’;X"g is the bit-decomposition function
0,

1 G_I(Cz) has small éntries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds
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Gentry-Sahai-Waters FHE

Y

9, Solution: use C; - G7(G,) for homomorphic multiplication

m G Zy" — Z,’;X"g is the bit-decomposition function
0,

1 G_I(Cz) has small éntries (i.e., low infinity norm)
2 Linear algebra we carried out before still holds

W _ v — - - - P ——— .-.‘ ..........
zﬂu\«z = [ Q| G HUYITREE QHZE soo 1w ”“ahlfi
ke(U e N EAAREEEE RN L, Tt

%o %2
Qo 70° Q| 1 S

m G 1s inverse computed using gadget matrix G : ng”g = Zy"
mVv:GCly)=v
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m New invariant: n x N matrix C encrypts a bit ¢ under secret v
if vC+e X uvG for "short” e
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Gentry-Sahai-Waters FHE...

m New invariant: n x N matrix C encrypts a bit 4 under secret v
if vC+ e yvG for “short” @

T8 = w0 TC—JEf Wﬁ
wWhat does C,- C(Czy)’l,J (CZ) (N, /C e ) G (C;) :
CorreSpond €02 ‘ = M, /G/(J/(C;,) -6 4 (Cz)
= N /(, - 6 CI (Cz)
*
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1\

m How does the noise grow? Entrtes of /J1 1, & “and C2 'é're at
most B = new noise at most N - B?
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Putting it All Together

m Invariant: n x N matrix C encrypts a bit p under secret v if
vC + e = puvG for “short” e
m Secret key of the form v € Zj
m Ciphertexts of the form C € Z7*V
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m To evaluate a NAND circuit f : {0,1}" — {0,1} on ciphertexts
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1 Consider each gate G in f in topological order
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Putting it All Together

m Invariant: n x N matrix C encrypts a bit p under secret v if
vC + e = puvG for “short” e
m Secret key of the form v € Zj
m Ciphertexts of the form C € Z7*V

m To evaluate a NAND circuit f : {0,1}" — {0,1} on ciphertexts
(Cl, oy, C,\)I
1 Consider each gate G in f in topological order
2 Let G; and C; denote ciphertexts corresponding to its inputs
3 Output G .= G — GGG Y((,) as its output ciphertext
QLG

- - -1 N L s ~ .
a- (G L(z)‘ 4 = Z- Z"rc‘x((?)

m If the depth is d then the noise in ciphertext of output wire is
B(N +1)?
= modulus g > B(N + 1)¢
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To Recap Today's Lecture

m [ask 7: secure outsourcing in the client-server setting
m Task 7.a: private outsourcing in the client-server setting
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m [ask 7: secure outsourcing in the client-server setting
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)
A §0)
Qe —
sJEY ——=

Xrver

m Key tool: Fully homomorphic encryption (FHE)

m FHE — private outsourcing of computation
m Possible: FHE — 2PC of arbitrary functions!

m GSW FHE from LWE assumption

m Key idea: approximate eigenvectors
m Similar idea used in approximate key exchange from LWE
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Next Lecture

m [ask 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting
m Task 7.b: verifiable outsourcing in the client-server setting

m Key tool: succinct non-interactive argument (SNARG)
m SNARCG for repeated squaring problem in RSA group

m Pietrzak's interactive protocol
m SNARG via Fiat-Shamir transform
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