f*

ol g(modu)

S

CS783: Theoretical Foundations of Cryptography

Lecture 20 (18/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting

5

L bn)

B,

xver

117

Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting

117

Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting

5

xver Clenke

m Key tool: Fully homomorphic encryption (FHE)

m FHE — private outsourcing of computation
m In fact: FHE — 2PC of arbitrary functions

117

Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting

5

xver Clenke

m Key tool: Fully homomorphic encryption (FHE)

m FHE — private outsourcing of computation
m In fact: FHE — 2PC of arbitrary functions

v - :F/PIM

m GSW FHE from LWE assumption < <,

m Key idea: approximate eigenvectors
m Similar idea used in approximate key exchange from LWE

117

Plan for Today's Lecture

m [ask 7: secure outsourcing in the client-server setting

2117

Plan for Today's Lecture

m [ask 7: secure outsourcing in the client-server setting

2117

Plan for Today's Lecture

m [ask 7: secure outsourcing in the client-server setting
m Task 7.b: verifiable outsourcing in the client-server setting

2117

Plan for Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m Task 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

» T
o> (5 o
=L —
Lwver @ v

2117

Plan for Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m Task 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

rver
m Key tool: succinct non-interactive argument (SNARG)
m SNARG for repeated squaring function in RSA group

m Pietrzak's interactive protocol /
m Remove interaction using Fiat-Shamir transform °

2117

Plan for Today's Lecture...

General template: /> Task b vexifiodle oo%soumnq
1 ldentify the task

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2117

Plan for Today's Lecture...

General template: ﬁ Task b vexifiodle oo%soumnq
1 Ildentify the task ralicovs sefer
2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure? " Ty

3 Construct a scheme [a,ompaabma\ coondness

4 Formally prove that I in secure in model M

2117

Plan for Today's Lecture...

General template: ﬁ Task b~ vexifiodle oo%soumnq
1 Identify the task mMalicovs series
2 Come up with precise threat model M (ak.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure? " Ty

3 Construct a scheme [N SNARG s LDN){UVJHJ\Q\ ooNdess

4 Formally prove that I in secure in model M

\%m (ondom-oralle. Mode)

2117

Plan for Today's Lecture

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step Il: Remove Interaction via Fiat-Shamir Transform

2117

1 \Verifiable Outsourcing of Computation
© Succinct Non-Interactive Argument (SNARG)

2 SNARCG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

2[17

Verifiable Outsourcing: Setting and Requirements

i)

SIS,

2rver

m Setting:
m Client is resource-constrained and server is powerful
m Function f : X — Y known to both client and server
m Client wants to get f evaluated on an input x € X

3/17

Verifiable Outsourcing: Setting and Requirements

i)

SIS,

2rver

m Setting:
m Client is resource-constrained and server is powerful
OTME(t)—~>m Function f : X —) known to both client and server
UDMP\JMQOH m Client wants to get f evaluated on an input x € X

3/17

Verifiable Outsourcing: Setting and Requirements

i)

x =)

SIS,

2rver

m Setting:
m Client is resource-constrained and server is powerful
OTME(t) —>m Function f : X — Y known to both client and server
UDM{)\JMﬁO“ m Client wants to get f evaluated on an input x € X
m Server computes output y = f(x) and a proof 7

3/17

Verifiable Outsourcing: Setting and Requirements

i)

x =) .

e ——

-
Lrver 50 @

m Setting:
m Client is resource-constrained and server is powerful
OTME(t) —>m Function f : X — Y known to both client and server
UDM{)\JMﬁO“ m Client wants to get f evaluated on an input x € X
m Server computes output y = f(x) and a proof 7
m Server sends (y, 7r) to client, who uses 7 to verify that y = f(x)

3/17

Verifiable Outsourcing: Setting and Requirements

i)

x =) .

e ——

-
Lrver 50 @

m Setting:
m Client is resource-constrained and server is powerful
OTME(t) —>m Function f : X — Y known to both client and server
UDM{)\JMﬁO“ m Client wants to get f evaluated on an input x € X
m Server computes output y = f(x) and a proof 7
m Server sends (y, 7r) to client, who uses 7 to verify that y = f(x)

@ Requirements:

3/17

Verifiable Outsourcing: Setting and Requirements

i)

x =) .

e ——

-
Lrver 50 @

m Setting:

m Client is resource-constrained and server is powerful
OTME(t) ~—>m Function f : X — Y known to both client and server
LOMP\JMQOH m Client wants to get f evaluated on an input x € X

m Server computes output y = f(x) and a proof 7

m Server sends (y, 7r) to client, who uses 7 to verify that y = f(x)

@ Requirements:
m Complete: if '=H(x) then client should accept 7
m Sound: if = f(x) then client should reject

3/17

Verifiable Outsourcing: Setting and Requirements

i)

x =) .

e ——

—s
rver 5o @

m Setting:

m Client is resource-constrained and server is powerful
OTME(t) ~—>m Function f : X — Y known to both client and server
LOMP\JMQOH m Client wants to get f evaluated on an input x € X

m Server computes output y = f(x) and a proof 7

m Server sends (y, 7r) to client, who uses 7 to verify that y = f(x)

@ Requirements:
m Complete: if '=H(x) then client should accept 7

m Sound: if = f(x) then client should reject -
m Efficient: \A(ZC{\\B o

m Server-side: overhead to compute 7 should be low TN
m Client-side: verify st much faster than recomputing f(x)u\dw\\ﬂ O‘L\OQUJ/J

3/17

1 \Verifiable Outsourcing of Computation
© Succinct Non-Interactive Argument (SNARG)

2 SNARCG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

4117

Recall Interactive Proofs

m Difference from NP proofs: N
-~ L : . ® Qo, (.9
(4) 1 Verifier V is randomised & . i‘?-
12 Prover P and V interact and : él)
V accepts/rejects in the end - > 3

5/17

Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >

Defintion 1 (Interactive proof for a lanquage L)

An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁslcrro’ v
m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

5/17

Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >

Defintion 1 (Interactive proof for a lanquage L)

An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁilcrro’ v

m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

m We saw (zero-knowledge) IP for GI and GNI

5/17

Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >

Defintion 1 (Interactive proof for a lanquage L)

An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁilcrro’ v
m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

m We saw (zero-knowledge) IP for GI and GNI
@What was the communication complexity for those 1Ps?
Csie of mmsm?k

5/17

Let's Define Succinct, Non-Interactive Proofs for L

m Recall our requirements for verifiable outsourcing:
— m Non-interactive: server sends s in one go
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m Succinct: verifying s should be faster than recomputing f(x)

6/17

Let's Define Succinct, Non-Interactive Proofs for L

m Recall our requirements for verifiable outsourcing: P
— m Non-interactive: server sends s in one go {(?Lf‘\j)i"ﬁjgdjﬁ
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m Succinct: verifying 7 should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:

6/17

Let's Define Succinct, Non-Interactive Proofs for ;Cfﬁ
m Recall our requtrenjents for vertﬁable outsourcing: %\@Uﬂ) : “j;’{@%
— m Non-interactive: server sends s in one go -
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m (Succinct: verifying 7 should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:
m Coipléte: for every (x,y) € Ly T\jf@ 9 [vGym=1]=]
m Sound.: for every (x,y) ¢ Ls and malicious prover P¥,
b [vaum=1-=0
JT@P%CIM [/J/) :l
m Succinet: || < o(t) and verifier runs in time o(t)

6/17

Let's Define Succinct, Non-Interactive Proofs for ;Cfﬁ
m Recall our requtrenjents for vertﬁable outsourcing: i@fﬂ) : “j;’{@%
— m Non-interactive: server sends s in one go -
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m (Succinct: verifying s should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:

m Coipléte: for every (x,y) € Ly T\e\?’@g) [vGym=1]=!
m Sound.: for every (x,y) ¢ Ls and malicious prover P,

f\eg{@!)[MRl Weally DOoale)
m Succinet: || < o(t)$g{7d veriﬁe)r runs {M aaly DUog(e))

6/17

Let's Define Succinct, Non-Interactive Proofs for L
m Recall our requtrenjents for vertﬁable outsourcing: fe0y): “j;’{@%
— m Non-interactive: server sends s in one go v
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m (Succinct: verifying 7 should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:

m Coipléte: for every (x,y) € Ly T\jf@ 9 [vGym=1]=]
m Sound.: for every (x,y) ¢ Ls and malicious prover P¥,
be [veum=1=0
JT@P%CIM [/J/‘J) :l
m Succinet: || < o(t)vqnd verifier runs in ti

—

MD Waaly DUog(t))

@ Exercise 1 (Problem with Defintion 27?

6/17

Let's Define Succinct, Non-Interactive Proofs for L
m Recall our requtrenjents for vertﬁable outsourcing: %\@Uﬂ) : ‘j:{'@\g
— m Non-interactive: server sends s in one go -
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m (Succinct: verifying 7 should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:

m Complete: for every (x,y) € Ly: ﬂe\;b@ [! (9,7)= q;
m Sound.: for every (x,y) ¢ Ls and malicious prover P,

re bt (=110 .
m Succinet: || < o(Jt\)ignd %eriﬁe)r runs in,timeio(tﬁ Aty DUA(E)

@) Exercise 1 (Problem with Defintion 2? It is too strong)

Show that if L € DTIME(t) has succinct non-interactive proof as
per Defintion 2 then DTIME(t) C NTIME(o(t))

6/17

Let's Define Succinct, Non-Interactive Proofs for L
m Recall our requtrenjents for vertﬁable outsourcing: fe0y): “j;’{@%
— m Non-interactive: server sends s in one go v
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m (Succinct: verifying 7 should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for Ls that is:

m Qoimpléte: for every (x,y) € Ly: r\e\;r@ 9 [vym=1]=) %
m Sound: for every (x,y) & Lt and malicious prover P*, 1o story
e (vam=zgy, — el

TP (Y Aaali Ao)
m Succinet: || < o(t) and verifier runs in “i”LO(tD ey DUg(t))

@) Exercise 1 (Problem with Defintion 2? It is too strong)

Show that if L € DTIME(t) has succinct non-interactive proof as
per Defintion 2 then DTIME(t) C NTIME(o(t))

6/17

.The way around?

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

ﬁ;fg/\@The way around? Relax to computational soundness=argument

/ Bad proofs may exist but are computationally hard to find

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

Pl /‘,TQ/\@The way around? Relax to computational soundness=argument
% Bad proofs may exist but are computationally hard to find
/ m Need source of comp. hardness to limit malicious prover

{

\
\

\\ -

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

ﬁ;fg/\@The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to find
m Need source of comp. hardness to limit malicious prover

m Common random string model or random-oracle model (ROM)

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

Al 1
o~

o @The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to find
m Need source of comp. hardness to limit malicious prover
m Common random string model or random-oracle model (ROM)

efintion 3 (Succinct Non-Interactive Argument in ROM)

A non-interactive protocol (PY, V¥ for L; that is:

m Compléte: for every (x,y) € Ly and n € N,
Pr \{H@U M=t]|=]
H, JT%PHOTXM)[/A/)]
n Computationally'sound: for every (x,y) ¢ L and PPT
malicious prover P*, the following is negligible
Pr \(H@@ k=
m Succinct: || < o(t) - poly(n) verifier runs in time o(t) - poly(n)

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

Aill

{ /‘,TQ/.\@The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to find
m Need source of comp. hardness to limit malicious prover
m Common random string model or random-oracle model (ROM)

efintion 3 (Succinct Non-Interactive Argument in ROM)

A non-interactive protocol (PY, V¥ for L; that is:

m Compléte: for every (x,y) € Ly and n € N,
Pr \{H@U M=t |=1
H, JT%PHOTXM)[/A/)]
n Computationally'sound: for every (x,y) ¢ L and PPT
malicious prover P*, the following is negligible
Pr \(H@@ k=
H, e HQ“/)(,@[A%]

m Succinct: || < o(t) - poly(n) verifier runs in time o(t) - poly(n)
N

I S— Y%

6/17

Let's Define Succinct, Non-Interactive Proofs for L;...

all @The way around? Relax to computational soundness=argument
V4 Bad proofs may exist but are computationally hard to find
m Need source of comp. hardness to limit malicious prover

m Common random string model or random-oracle model (ROM)

efintion 3 (Succinct Non-Interactive Argument in ROM)

A non-interactive protocol (PY, V¥ for L; that is:

m Compléte: for every (x,y) € Ly and n € N,
Pr “!H@U m=t|=|
H, ﬁePHQTx,g)[A7)
n Computationally'sound: for every (x,y) ¢ L and PPT
malicious prover P*, the following is negligible
Pr \{H@(W T=
H, I H(\“,)(,g)[A=)
m Succinct: || < o(t) - poly(n) verifier runs in time o(t) - poly(n)

@How to carry out verifiable outsourcing using SNARGSs?

6/17

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Creat Internet Mersenne Prime Search (GIMPS)

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 4 é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Creat Internet Mersenne Prime Search (GIMPS)

Ul a

Nl

********* 1

(IMPS/PRIMELAID!

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 7 é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Creat Internet Mersenne Prime Search (GIMPS)

4

********* 1

(IMPS/PRIMELAID!

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 74 é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Creat Internet Mersenne Prime Search (GIMPS)

oo

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 74 é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Great Internet Mersenne Pere Search (GIMPS)

Number
282589933 _ 1
Q7232017 _ 1
74207281 _ 1
57885161 _ |
293112609 _ 1
292643801 _ 1
237156667 _ 1
232562657 _ |
10223 x 231172165 4 1
230802857 _ 1

Discovered ¢ Digits ¢ Form s
2018-12-07 | 24,862,048 Mersenne
2017-12-26 | 23,249,425 Mersenne
2016-01-07 22,338,618 Mersenne
2013-01-25 17,425,170 Mersenne
2008-08-23 12,978,189 Mersenne
2009-06-04 | 12,837,064 Mersenne
2008-09-06 | 11,185,272 Mersenne
2006-09-04 9,808,358 | Mersenne
2016-10-31 9,383,761 | Proth
2005-12-15 9,152,052 | Mersenne

WIKIPEDIASLARGEST-KNOWN PRIME NUMBER

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 4 é
m Blockchain: Ethereum, Starkware etc have deployed SNARCs

N// PRIME]
v PROBLEM .

_________ < VERIPYING BY

'6|MP§/ PR\MELRID' .. PTESTNG b

—————————— - BPENSVEL.

Number
Q82589933 _ 1
Jr7selr _ 1
274207281 _ |
57885161 _ 1
243112609 _ 1
42643801 _ 1
237156667 _ 1
232582657 _ 1
10223 x 231172165 4 1
3002657 _ 1

Discovered ¢ Digits ¢ Form s T
2018-12-07 | 24,862,048 Mersenne
2017-1226 | 23,249,425 | Mersenne
2016-01-07 | 22,338,618 Mersenne
20130125 | 17,425,170 | Mersenne
20080823 | 12,978,189 | Mersenne
2009-06-04 | 12,837,064 Mersenne
2008-09-06 | 11,185,272 | Mersenne
2006-09-04 | 9,808,358 Mersenne
2016-10-31 | 9,383,761 Proth
20051215 | 9,152,052 Mersenne

WIKIPEDIASLARGEST-KNOWN PRIME NOMBER

7117

Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 4 é
m Blockchain: Ethereum, Starkware etc have deployed SNARCs

oy PROBLEM .

_________ < VERIPYNG BY

'6|MP§/ PR\MELRID' .. PTESTNG b

—————————— - BPENSVEL.

Number
Q82589933 _ 1
Jr7selr _ 1
274207281 _ |
57885161 _ 1
243112609 _ 1
42643801 _ 1
237156667 _ 1
232582657 _ 1
10223 x 231172165 4 1
3002657 _ 1

Discovered ¢ Digits ¢ Form s T
2018-12-07 | 24,862,048 Mersenne
2017-1226 | 23,249,425 | Mersenne
2016-01-07 | 22,338,618 Mersenne
20130125 | 17,425,170 | Mersenne
20080823 | 12,978,189 | Mersenne
2009-06-04 | 12,837,064 Mersenne
2008-09-06 | 11,185,272 | Mersenne
2006-09-04 | 9,808,358 Mersenne
2016-10-31 | 9,383,761 Proth
20051215 | 9,152,052 Mersenne

WIKIPEDIASLARGEST-KNOWN PRIME NOMBER

7117

Plan for this Session

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step Il: Remove Interaction via Fiat-Shamir Transform

8/17

Repeated Squaring Function over RSA Group

D

©-9)
Server et
m Repeated squaring function modulo prime p:

falp, t, x) = x2" mod p

9/17

Repeated Squaring Function over RSA Group

50 (T),t})
L— 12_% ’171 — 7&29 (mod PJ

SiloRe .
EBDD Server JM/H \efk

m Repeated squaring function modulo prime p:

falp, t, x) = x2" mod p

9/17

Repeated Squaring Function over RSA Group

., ; l’f@oa (p-D
s A /a7
e

Xrver
m Repeated squaring function modulo prime p:

falp, t, x) = x2" mod p

m Shortcut: 1) e :=2" mod (p — 1) 2) y := x® mod p

m Requires = rLLog(t) multiplications
ol

9/17

Repeated Squaring Function over RSA Group

50 (N/ t/1'>
AX— 12—% ’17"~ — Xzilj (mod N)

(A

u <
EDBD@ —

m Repeated squaring function modulo prime p:
falp, t, x) = x2" mod p
m Shortcut: 1) e :=2" mod (p — 1) 2) y := x® mod p

m Requires = rLLog(t) multiplications
m Repeated squarlngP function modulo composite N = pgq

(N, £, x) == x2 mod N

9/17

Repeated Squaring Function over RSA Group

50 (N/ t/1'>
AX— 12—% ’17"~ — 7&29 (mod N)

(A

u <
EDBD@ —

m Repeated squaring function modulo prime p:
falp, t, x) = x2" mod p
m Shortcut: 1) e :=2" mod (p — 1) 2) y := x® mod p

m Requires = rLLog(t) multiplications
m Repeated squarlngP function modulo composite N = pgq

(N, £, x) == x2 mod N

m Shortcut: 1) e:=2"mod (p —1)(g—1) 2) y :== x® mod N

9/17

Repeated Squaring Function over RSA Group

50 (N/ t/;t')
AX— 12—% ’17"~ — Xzilj (mod N)
O,

)
[] D— ‘
SO A——

Server et
m Repeated squaring function modulo prime p:

falp, t, x) = x2" mod p
m Shortcut: 1) e :=2" mod (p — 1) 2) y := x® mod p

m Requires = nlog(t) multiplications
m Repeated squarlngP function modulo composite N = pgq

(N, £, x) == x2 mod N

m Shortcut: 1) e:=2"mod (p —1)(g—1) 2) y :== x® mod N
m Requires = nlog(t) multiplications if factors of N known
G o117

Repeated Squaring Function over RSA Group..

5o
2 5 2€
=X — x5 olay (modN)
[:] (N/t/1>
Jiles — —
Zrver ’

m What if factors of N are not known?
m Server could factor N and return (p, q)

9/17

Repeated Squaring Function over RSA Group..

5g
2 %ty - 22y (mod V)
(N/t/1>
SR — —
= 7

xrver

m What if factors of N are not known?

m Server could factor N and return (p, q)
/N\ Recall: we need honest prover to not have too much overhead

9/17

Repeated Squaring Function over RSA Group..

50
S TN ft;g (mod V)
(N/t/1>
Sy — —
= -y

xrver

m What if factors of N are not known?

m Server could factor N and return (p, q)
/N\ Recall: we need honest prover to not have too much overhead

m Without factors, fastest way to compute fo(N, ¢, x) believed to
be by repeated squaring

9/17

Repeated Squaring Function over RSA Group..

50
S TN ft;g (mod V)
(N/t/1>
Sy — —
= -y

xrver

m What if factors of N are not known?

m Server could factor N and return (p, q)
/N\ Recall: we need honest prover to not have too much overhead

m Without factors, fastest way to compute fo(N, ¢, x) believed to

be by repeated squaring

m Even if server has poly(n) amount of parallelism!
m So-call RSW assumption: useful in “timed” cryptography

m Time-lock puzzles
m Verifiable delay functions

9/17

Repeated Squaring Function over RSA Group..

9:% : §o

2 i . t
L X s 2P P2y (mod N)

(N/t/1>

QDDD@ —

m What if factors of N are not known?

m Server could factor N and return (p, q)

/A\Recall: we need honest prover to not have too much overhead
m Without factors, fastest way to compute fo(N, ¢, x) believed to

be by repeated squaring

m Even if server has poly(n) amount of parallelism!
m So-call RSW assumption: useful in “timed” cryptography

m Time-lock puzzles
m Verifiable delay functions

m A proof 7 would be useful here

9/17

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
« Step [Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

10/17

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

L —3 0as L —Saal X'z: %

B

2rver

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

2 F
L —3 oas —veea X = %o

B

2rver

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

B

2rver

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

x, ga t, %,
]

B

2rver

11717

1

Step |: Harness the Power of IP
£=9

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy ga %ﬁ %,
]

/

DDDD Attempt 1: recursively prove
=
ever To_h RO S

1

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy ga %ﬁ %,
]

] D DD Attempt 1: recursively prove
=

18 tﬁl t/g %a
1

2rver

Problem: recursion blows up!

11717

1

Step |: Harness the Power of IP
£=9

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy ga %ﬁ %,
]

DDDD Attempt 2: fold, then recurse
=

1

11717

1

Step |: Harness the Power of IP
£=9

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy ga %ﬁ %,
]

DDDD Attempt 2: fold, then recurse
=

Srver %0 th e %

N
—

Lo =11 1y, W=l
—=

11717

Step |: Harness the Power of IP

1

t=of

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy gh %ﬁ %,
]

DDDD Attempt 2: fold, then recurse
=

Srver %0 th e %

N
—

Lo =11 1y, W=l

Problem: Bob can cheat. How?

11717

Step |: Harness the Power of IP

1

t=of

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy gh %ﬁ %,
]

randomly
DDDD Attempt 3: fold, then recurse
=
rver T 2 %

G —

% 16}
”/—aDPo =% t, Y= F“ Yo
[(—"—==

11717

Step |: Harness the Power of IP

1

t=of

v
Protocol 1 (I, proves that y = x? mod N interactively)

Xy gh %ﬁ %,
]

randomly
DDDD Attempt 3: fold, then recurse
=
rver T 2 %

G —

% 16}
”/—aDPo =% t, Y= F“ Yo
[(—"—==

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

r% e S
oiﬁa t¢1 tﬁl %,
—_— A
. aK\
/ “
randomly
DDDD Attempt 3: fold, then recurse
=
ever T SCH

\@/
.

% D
”/—aDPo =% t, Y= F“ Yo
]

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

11717

Step |: Harness the Power of [P =
£=9f

v
Protocol 1 (I, proves that y = x? mod N interactively)

17,t/ Yz
—

(A
x, t/1 t,

—_ :
ecesnn . ianeea. . oaass GR;
/ o)

6
Ay e, Mg Y,
fo

11717

Step |: Harness the Power of [P =
=0
ot . :
Protocol 1 (', proves that y = x= mod N interactively)
79> Uy '~_‘
Lot Y
—
—Z
Xy t¢1 tﬁl %,
—_—

/

/ 2
=L @ <log(s) TIMES

2rver

—

6
(ti te g48,
(b Ve B
(R Pll?
. “\\ﬂa:@//

11717

Step |: Harness the Power of [P =
£=9f
2tlﬂ o .

Protocol 1 (', proves that y = x= mod N interactively)
79> Uy '~_‘
11€/ Ye
-
6')[1 t, DM %\JQ
01‘7 t/:L Mo t/q_ %,

16

2rver

d<log(s) TIMES

. Nh9 5 the pmtous(Lamy[a&e?

11717

[l is an interactive proof for the language

Liy = {(x,y, t,N): y= x> mod N}

12117

Why is 1 Sound?

Theorem 1

[l is an interactive proof for the language
Liy = {(x,y, t,N): y= X% mod N]»

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if yo # x2" then yo # 12" or o # x&"* must hold @

12/17

Why is 1 Sound?

Theorem 1

[l is an interactive proof for the language
Liy = {(x,y, t,N): y= X% mod N]»

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if yo # x2" then yo # 12" or o # x&"* must hold @
—
(6, Y,6) & dg_ (o o 112) & &
(Ho/ go/t/z) 47 o(.fD

12/17

Why is 1 Sound?

Theorem 1

[l is an interactive proof for the language
Liy = {(x,y, t,N): y= X% mod N]»

Proof Sketch.

Statistical soundness (for first round) can be argued using:

2 Claim: if yp ugt/z or Lo # th/z then the random combination

------------------------- 9,
t/2 U
(o - Hol " # (g - yo)
w.h.p. over choice of r. % s (4, Y,,%) ¢1§D 0

Exercise 2

Prove Claims 1 and 2. Argue overall soundness.

12/17

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
« Step Il: Remove Interaction via Fiat-Shamir Transform

137117

Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

14117

Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (MY, 1 after Fiat-Shamir)

14117

Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (MY, 1 after Fiat-Shamir)

14117

Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (MY, 1 after Fiat-Shamir)
/*> rt+\:H(1v Noy000, /ri)

14117

Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (MY, 1 after Fiat-Shamir)
/*> rt+\:H(1v/ Noy000, /ri)

14117

Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.
Statistical soundness (for first round) can be argued using:
1 Claim: if yp #+ th then yp + ugm or tp # th/z must hold
2 Claim: if yp y%m or Lo th/z then the random combination

t/2
(6 10)*" (1§ - y0)
w.h.p. over choice of r. O

15/17

Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.

Statistical soundness (for first round) can be argued using:

/1 Claim: if yp xgt then yp + ugm or tp # th/z must hold

/2 Claim: if yp #+ ugm or L #+ th/z then the random combination
t/2

(6 - ko)™ # (5 y0)
w.h.p. over choice of r,

& holds also for A0 U

15/17

Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.

Statistieed soundness (for first round) can be argued using:

/1 Claim: if yp xgt then yp + ugm or tp # th/z must hold

/2 Claim: if yp #+ ugm or L #+ th/z then the random combination

0§ 102" + (16 - yo)

w.h.p. over choice of B, nolds also for #O

15/17

Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.

Statistieed soundness (for first round) can be argued using:

/1 Claim: if yp th then yp + ugm or tp # th/z must hold

/2 Claim: if yp y%m or L #+ th/z then the random combination
t/2

(- 10)*" (1§ - y0)
w.h.p. over choice of r,

Exercise 3

Work out the proof of soundness in random-oracle model.

& holds also for A0 U

15/17

To Recap Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m [ask 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

5g

P
= ’XI—)~ oxz.. %’)in\j (MOAI\D

ST

16/17

To Recap Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m [ask 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

5g

Pk
= ’XI—)~ oxz.. %’)Lz:\j UY\Od N)

QDDD@ —

m Key tool: succinct non-interactive argument (SNARQ)
m SNARC for repeated squaring problem in RSA group

m Pietrzak's interactive protocol
m Main ideas: 1) downward self-reducibility 2) folding
m SNARG via Fiat-Shamir transform

16/17

To Recap Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m [ask 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

5g

Pk
= ’)(1—7— oxz.. %’)LZ:U UY\Od N)

QDDD@ —

m Key tool: succinct non-interactive argument (SNARQ)
m SNARC for repeated squaring problem in RSA group

m Pietrzak's interactive protocol
m Main ideas: 1) downward self-reducibility 2) folding
m SNARG via Fiat-Shamir transform

m SNARGs for NP (in ROM)
m Coming Spring: Introduction to Probabilistic Proof Systems

16/17

To Recap Module Il

m We saw several avatars of secure computation

Zero-knowledge proofs

"

Prover \eritier

16/17

To Recap Module Il

m We saw several avatars of secure computation

Zero-knowledge proofs

Private computation of function

"

Prover \eritier

16/17

To Recap Module Il

m We saw several avatars of secure computation

Zero-knowledge proofs

Private computation of function

"

Prover \eritier

. Private outsourcin

oy &
@

=il

_Verifiable outsourcing

%;9

MODULE | MODULE 2 MODLE MODILE 4
(Shaced heys) (Pubkc heys) (Sewre womp) (Adv. I:qsk$)

For o lrge et of oty

[’Ac)vent D} inkernet (*Uhqwta {LOmruTw)

» »@ @ 8 Q <@J -

~9308° ~I0T05Y 20¢ ~[990¢+ ~90[ps -

b

¢ ¢ fresent

m Code obfuscation
m What cryptography is possible if you can obfuscate code?

Credit for images: Wikipedia (*User:DARPA)(**User:Saliko) 17117

References

1 SNARGs were introduced as “CS proofs” in [Mic94] You can
find a formal definition of SNARG in [BCIT13, §4]

2 The repeated squaring function was introduced in
[CLSY93, RSW96] and is extensively used in timed
cryptography. For example, the time-lock puzzle from [RSW96]
are the verifiable delay functions from [Pie19, Wes19] are both
based on sequential hardness of repeated squaring.

3 Formal description of 1 and M can be found in [Pie19]

17117

B Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth.

Succinct non-interactive arguments via linear interactive proofs.

In Amit Sahat, editor, TCC 2013, volume 7785 of LNCS, pages 315-333.
Springer, Heidelberg, March 2013.

ﬁ J.. Cai, R J. Lipton, R. Sedgewick, and A. C. . Yao.
Towards uncheatable benchmarks.

In Proceedings of the Eigth Annual Structure in Complexity Theory
Conference, pages 2—11, May 1993.

B Silvio Micali.
CS proofs (extended abstracts).
In 35th FOCS, pages 436-453. IEEE Computer Society Press, November
1994.
B Krzysztof Pietrzak.
Simple verifiable delay functions.

In Avrim Blum, editor, ITCS 2019, volume 124, pages 60:1-60:15. LIPIcs,
January 2019.

ﬁ R. L. Rivest, A. Shamir, and D. A. Wagner.

Time-lock puzzles and timed-release crypto.
17117

Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.

Benjamin Wesolowski.

Efficient verifiable delay functions.

In Yuval Ishat and Vincent Rijmen, editors, EUROCRYPT 2019, Part Ill,
volume 11478 of LNCS, pages 379-407. Springer, Heidelberg, May 2019.

17117

	Verifiable Outsourcing of Computation
	Succinct Non-Interactive Argument (SNARG)

	SNARG for Repeated Squaring
	Step I: Interactive Proof for Repeated Squaring
	Step II: Remove Interaction via Fiat-Shamir Transform

