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Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting
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Recall from Last Lecture

m Task 7: secure outsourcing in the client-server setting

m Task 7.a: private outsourcing in the client-server setting

5

xver Clenke

m Key tool: Fully homomorphic encryption (FHE)

m FHE — private outsourcing of computation
m In fact: FHE — 2PC of arbitrary functions

v - :F/PIM

m GSW FHE from LWE assumption < <,

m Key idea: approximate eigenvectors
m Similar idea used in approximate key exchange from LWE
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Plan for Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m Task 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing

rver
m Key tool: succinct non-interactive argument (SNARG)
m SNARG for repeated squaring function in RSA group

m Pietrzak's interactive protocol /
m Remove interaction using Fiat-Shamir transform °
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Plan for Today's Lecture...

General template: /> Task b vexifiodle oo%soumnq
1 ldentify the task

2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M
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Plan for Today's Lecture

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step Il: Remove Interaction via Fiat-Shamir Transform
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© Succinct Non-Interactive Argument (SNARG)

2 SNARCG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform
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Verifiable Outsourcing: Setting and Requirements

i)

SIS,

2rver

m Setting:
m Client is resource-constrained and server is powerful
m Function f : X — Y known to both client and server
m Client wants to get f evaluated on an input x € X
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m Setting:

m Client is resource-constrained and server is powerful
OTME(t) ~—>m Function f : X — Y known to both client and server
LOMP\JMQOH m Client wants to get f evaluated on an input x € X

m Server computes output y = f(x) and a proof 7

m Server sends (y, 7r) to client, who uses 7 to verify that y = f(x)

@ Requirements:
m Complete: if '=H(x) then client should accept 7

m Sound: if = f(x) then client should reject -
m Efficient: \A(ZC{\\B o

m Server-side: overhead to compute 7 should be low TN
m Client-side: verify st much faster than recomputing f(x)u\dw\\ﬂ O‘L\OQUJ/J

3/17



1 \Verifiable Outsourcing of Computation
© Succinct Non-Interactive Argument (SNARG)

2 SNARCG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

4117



Recall Interactive Proofs

m Difference from NP proofs: N
-~ L : . ® Qo, (.9
(4) 1 Verifier V is randomised & . i‘?-
12 Prover P and V interact and : él )
V accepts/rejects in the end - > 3

5/17



Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >

Defintion 1 (Interactive proof for a lanquage L)

An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁslcrro’ v
m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

5/17



Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >

Defintion 1 (Interactive proof for a lanquage L)

An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁilcrro’ v

m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

m We saw (zero-knowledge) IP for GI and GNI

5/17



Recall Interactive Proofs

m Difference from NP proofs: po@oo

1 Verifier V is randomised
12 Prover P and V interact and
V accepts/rejects in the end - >
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An interactive protocol (P, V) for L that is: coﬂy\e\:meﬁilcrro’ v
m Complete: for every x € L, Pr{1 « (P, V)(x)] >1—1/3
m Sound: for every x ¢ L and malicious prover P*,

= SOUNANESS er(or o)
Pl « (P*,V)(x) < 1/3

m We saw (zero-knowledge) IP for GI and GNI
@What was the communication complexity for those 1Ps?
Csie of mmsm?k
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Let's Define Succinct, Non-Interactive Proofs for L

m Recall our requirements for verifiable outsourcing:
— m Non-interactive: server sends s in one go
m Complete: if y = f(x) then client should accept 7
m Sound: if y + f(x) then client should reject 7
m Succinct: verifying s should be faster than recomputing f(x)
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Where are SNARGs Useful?

m Compute as a service (same as private outsourcing) 74 é
m Blockchain: Ethereum, Starkware etc have deployed SNARGs

m Great Internet Mersenne Pere Search (GIMPS)

Number
282589933 _ 1
Q7232017 _ 1
74207281 _ 1
57885161 _ |
293112609 _ 1
292643801 _ 1
237156667 _ 1
232562657 _ |
10223 x 231172165 4 1
230802857 _ 1

Discovered ¢ Digits ¢ Form s
2018-12-07 | 24,862,048  Mersenne
2017-12-26 | 23,249,425 Mersenne
2016-01-07 22,338,618  Mersenne
2013-01-25 17,425,170  Mersenne
2008-08-23 12,978,189  Mersenne
2009-06-04 | 12,837,064  Mersenne
2008-09-06 | 11,185,272  Mersenne
2006-09-04 9,808,358 | Mersenne
2016-10-31 9,383,761 | Proth
2005-12-15 9,152,052 | Mersenne

WIKIPEDIASLARGEST-KNOWN PRIME NUMBER
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Plan for this Session

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step Il: Remove Interaction via Fiat-Shamir Transform
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Repeated Squaring Function over RSA Group
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Repeated Squaring Function over RSA Group
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m Repeated squaring function modulo prime p:

falp, t, x) = x2" mod p
m Shortcut: 1) e :=2" mod (p — 1) 2) y := x® mod p

m Requires = nlog(t) multiplications
m Repeated squarlngP function modulo composite N = pgq

(N, £, x) == x2 mod N

m Shortcut: 1) e:=2"mod (p —1)(g—1) 2) y :== x® mod N
m Requires = nlog(t) multiplications if factors of N known
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Repeated Squaring Function over RSA Group..

50
S TN ft;g (mod V)
(N/t/1>
Sy — —
= -y
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m What if factors of N are not known?

m Server could factor N and return (p, q)

/A\Recall: we need honest prover to not have too much overhead
m Without factors, fastest way to compute fo(N, ¢, x) believed to

be by repeated squaring

m Even if server has poly(n) amount of parallelism!
m So-call RSW assumption: useful in “timed” cryptography

m Time-lock puzzles
m Verifiable delay functions

m A proof 7 would be useful here
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1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
« Step [ Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform
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[l is an interactive proof for the language

Liy = {(x,y, t,N): y= x> mod N}
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Why is 1 Sound?

Theorem 1

[l is an interactive proof for the language
Liy = {(x,y, t,N): y= X% mod N]»

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if yo # x2" then yo # 12" or o # x&"* must hold @
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Why is 1 Sound?

Theorem 1

[l is an interactive proof for the language
Liy = {(x,y, t,N): y= X% mod N]»

Proof Sketch.

Statistical soundness (for first round) can be argued using:

2 Claim: if yp ugt/z or Lo # th/z then the random combination

------------------------- 9,
t/2 U
(o - Hol " # (g - yo)
w.h.p. over choice of r. % s (4, Y,,%) ¢1§D 0

Exercise 2

Prove Claims 1 and 2. Argue overall soundness.
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1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
« Step Il: Remove Interaction via Fiat-Shamir Transform
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Step II: Apply Fiat-Shamir Transform

m Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle
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Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.
Statistical soundness (for first round) can be argued using:
1 Claim: if yp #+ th then yp + ugm or tp # th/z must hold
2 Claim: if yp y%m or Lo th/z then the random combination

t/2
(6 10)*" (1§ - y0)
w.h.p. over choice of r. O
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Why is M" Sound?

Theorem 2
MM is a SNARG for Ly in random-oracle model.

Proof Sketch.

Statistieed soundness (for first round) can be argued using:

/1 Claim: if yp th then yp + ugm or tp # th/z must hold

/2 Claim: if yp y%m or L #+ th/z then the random combination
t/2

(- 10)*" (1§ - y0)
w.h.p. over choice of r,

Exercise 3

Work out the proof of soundness in random-oracle model.

& holds also for A0 U
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To Recap Today's Lecture

m Task 7: secure outsourcing in the client-server setting
m [ask 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing
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m [ask 7.b: verifiable outsourcing in the client-server setting
m Verifying faster than recomputing
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m Key tool: succinct non-interactive argument (SNARQ)
m SNARC for repeated squaring problem in RSA group

m Pietrzak's interactive protocol
m Main ideas: 1) downward self-reducibility 2) folding
m SNARG via Fiat-Shamir transform

m SNARGs for NP (in ROM)
m Coming Spring: Introduction to Probabilistic Proof Systems
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m We saw several avatars of secure computation

Zero-knowledge proofs
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Zero-knowledge proofs
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m Code obfuscation
m What cryptography is possible if you can obfuscate code?
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