
CS783: Theoretical Foundations of Cryptography
Lecture 20 (18/Oct/24)

Instructor: Chethan Kamath
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Task 7.a: private outsourcing in the client-server setting

Key tool: Fully homomorphic encryption (FHE)
FHE → private outsourcing of computation
In fact: FHE → 2PC of arbitrary functions

GSW FHE from LWE assumption
Key idea: approximate eigenvectors
Similar idea used in approximate key exchange from LWE
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Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring function in RSA group

Pietrzak’s interactive protocol
Remove interaction using Fiat-Shamir transform
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Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π
Server sends (�, π) to client, who uses π to verify that � = f(�)Requirements:
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject πEfficient:

Server-side: overhead to compute π should be low
Client-side: verify π much faster than recomputing f(� )
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Complete: for every � ∈ L, Pr[� ← ⟨�,�⟩(� )] ≥ � − �/�
Sound: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(� )] ≤ �/�
We saw (zero-knowledge) IP for GI and GNI

What was the communication complexity for those IPs?

5 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , � ) ∈ Lf :
Sound: for every (� , � ) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , � ) ∈ Lf :
Sound: for every (� , � ) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , � ) ∈ Lf :
Sound: for every (� , � ) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2?

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , � ) ∈ Lf :
Sound: for every (� , � ) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2? It is too strong)
Show that if L� ∈ �����(�) has succinct non-interactive proof as
per Defintion 2 then �����(�) ⊆ �����(� (�))

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , � ) ∈ Lf :
Sound: for every (� , � ) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2? It is too strong)
Show that if L� ∈ �����(�) has succinct non-interactive proof as
per Defintion 2 then �����(�) ⊆ �����(� (�))

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around?

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to find

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,�� ) for Lf that is:

Complete: for every (� , � ) ∈ Lf and � ∈ N,

Computationally sound: for every (� , � ) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,�� ) for Lf that is:

Complete: for every (� , � ) ∈ Lf and � ∈ N,

Computationally sound: for every (� , � ) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)

6 / 17



Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
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Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,�� ) for Lf that is:

Complete: for every (� , � ) ∈ Lf and � ∈ N,

Computationally sound: for every (� , � ) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)
How to carry out verifiable outsourcing using SNARGs?
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Without factors, fastest way to compute f□(�, �, � ) believed tobe by repeated squaring
Even if server has ����(�) amount of parallelism!So-call RSW assumption: useful in “timed” cryptography

Time-lock puzzles
Verifiable delay functions
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Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .
Exercise 2
Prove Claims 1 and 2. Argue overall soundness.
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Why is ΠH Sound?
Theorem 2
ΠH is a SNARG for Lf in random-oracle model.
Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .
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then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .
Exercise 3
Work out the proof of soundness in random-oracle model.
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Verifying faster than recomputing
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Verifying faster than recomputing

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring problem in RSA group

Pietrzak’s interactive protocol
Main ideas: 1) downward self-reducibility 2) folding
SNARG via Fiat-Shamir transform

SNARGs for �� (in ROM)
Coming Spring: Introduction to Probabilistic Proof Systems
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To Recap Module III
We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

Private outsourcing Verifiable outsourcing
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Module IV: Next Few Lectures

Code obfuscation
What cryptography is possible if you can obfuscate code?

17 / 17
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