

CS783: Theoretical Foundations of Cryptography

Lecture 20 (18/Oct/24)

Instructor: Chethan Kamath

Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

■ Key tool: Fully homomorphic encryption (FHE)

- \blacksquare FHE \rightarrow private outsourcing of computation
- In fact: FHE \rightarrow 2PC of arbitrary functions

Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

■ Similar idea used in approximate key exchange from LWE

■ Task 7: secure outsourcing in the client-server setting

■ Task 7: secure outsourcing in the client-server setting

Task 7: secure outsourcing in the client-server setting
Task 7.b: *verifiable* outsourcing in the client-server setting

- Task 7: secure outsourcing in the client-server setting
- Task 7.b: *verifiable* outsourcing in the client-server setting
 - Verifying faster than recomputing

- Task 7: secure outsourcing in the client-server setting
- Task 7.b: *verifiable* outsourcing in the client-server setting
 - Verifying faster than recomputing

- Key tool: succinct non-interactive argument (SNARG)
- SNARG for repeated squaring function in RSA group
 - Pietrzak's interactive protocol
 - Remove interaction using Fiat-Shamir transform

a, b,

- General template: Task 7.6: verifiable outsourcing
 1 Identify the task

 - 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
 - 3 Construct a scheme Π
 - 4 Formally prove that Π in secure in model M

General template: Task 1.5: verifiable outsourcing
1 Identify the task Malicious server
2 Come up with precise threat model M (a.k.a security model)
Adversary/Attack: What are the adversary's capabilities?
Security Goal: What does it mean to be secure?
3 Construct a scheme Π computational soundness

4 Formally prove that Π in secure in model M

General template: 1 Identify the task Task 1b: verifiable outsourcing 2 Come up with precise threat model M (a.k.a security model) ■ Adversary/Attack: What are the adversary's capabilities? ■ Security Goal: What does it mean to be secure? 3 Construct a scheme Π→ SNARG-based computational soundness ■ Formally prove that Π in secure in model M

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

- 2 SNARG for Repeated Squaring
 - Step I: Interactive Proof for Repeated Squaring
 - Step II: Remove Interaction via Fiat-Shamir Transform

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring

- Step I: Interactive Proof for Repeated Squaring
- Step II: Remove Interaction via Fiat-Shamir Transform

Setting:

- Client is resource-constrained and server is powerful
- \blacksquare Function f : $\mathcal{X} \to \mathcal{Y}$ known to both client and server
- \blacksquare Client wants to get f evaluated on an input $x \in \mathcal{X}$

Sound: if $y \neq f(x)$ then client should reject π

Plan for this Session

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring

- Step I: Interactive Proof for Repeated Squaring
- Step II: Remove Interaction via Fiat-Shamir Transform

■ Difference from NP proofs:

- () 1 Verifier V is *randomised*
- ⊆ Prover P and V interact and V accepts/rejects in the end

■ Difference from NP proofs:

- 🚯 🔟 Verifier V is *randomised*
- → 2 Prover P and V *interact* and V accepts/rejects in the end

Definiton 1 (Interactive proof for a language \mathcal{L})

An interactive protocol (P,V) for \mathcal{L} that is: completeness error $\varepsilon_{c}(n)$

- Complete: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V} \rangle(x)] \ge 1 \frac{1}{3}$
- Sound: for every $x \notin \mathcal{L}$ and malicious prover P^* ,

 $\Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] \leq \frac{1}{3}$

■ Difference from NP proofs:

- 🚯 🔟 Verifier V is *randomised*
- ⊆ Prover P and V interact and V accepts/rejects in the end

Definiton 1 (Interactive proof for a language \mathcal{L})

An interactive protocol (P,V) for \mathcal{L} that is: completeness error $\varepsilon_{c}(n)$

- Complete: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V} \rangle(x)] \ge 1 \frac{1}{3}$
- Sound: for every $x \notin \mathcal{L}$ and malicious prover P^* ,

 $\Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] \leq \frac{1}{3}$

■ We saw (zero-knowledge) IP for GI and GNI

■ Difference from NP proofs:

- 🚯 🔟 Verifier V is *randomised*
- → 2 Prover P and V *interact* and V accepts/rejects in the end

Definiton 1 (Interactive proof for a language \mathcal{L})

An interactive protocol (P,V) for \mathcal{L} that is: completeness error $\varepsilon_{c}(n)$

- Complete: for every $x \in \mathcal{L}$, $\Pr[1 \leftarrow \langle \mathsf{P}, \mathsf{V} \rangle(x)] \ge 1 \frac{1}{3}$
- Sound: for every $x \notin \mathcal{L}$ and malicious prover P^* ,

 $\Pr[1 \leftarrow \langle \mathsf{P}^*, \mathsf{V} \rangle(x)] \leq \frac{1}{3}$

We saw (zero-knowledge) IP for GI and GNI
What was the communication complexity for those IPs?
Csize of branscript

■ Recall our requirements for verifiable outsourcing:

- \longrightarrow Non-interactive: server sends π in one go
 - **Complete**: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should reject π
 - Succinct: verifying π should be faster than recomputing f(x)

■ Recall our requirements for verifiable outsourcing:

- \longrightarrow Non-interactive: server sends π in one go
 - **Complete**: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should *reject* π
 - Succinct: verifying π should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P,V) for \mathcal{L}_{f} that is:

 $\{(x,y): y = f(x)\}$

Recall our requirements for verifiable outsourcing:

- \longrightarrow Non-interactive: server sends π in one go
 - Complete: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should reject π
 - Succinct: verifying π should be faster than recomputing f(x)

Definition 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for \mathcal{L}_{f} that is:

- Complete: for every $(x, y) \in \mathcal{L}_{f}$: $\exists \mathsf{Fr} \left[\forall (x, y, \pi) = 1 \right] = 1$ $\exists \mathsf{Sound}$: for every $(x, y) \notin \mathcal{L}_{f}$ and malicious prover P^{*} ,

Pr [V(x,y,T)=I]=0 $\exists Succinct: |\pi| \le o(t) \text{ and verifier runs in time } o(t)$

 $\{(x,y): y = f(x)\}$

Recall our requirements for verifiable outsourcing:

- \longrightarrow Non-interactive: server sends π in one go
 - Complete: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should reject π
 - Succinct: verifying π should be faster than recomputing f(x)

Definition 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for \mathcal{L}_{f} that is:

- Complete: for every $(x, y) \in \mathcal{L}_{f}$: $\exists f \in P(x,y)$ $\exists f \in P(x,y)$ $\exists f \in P(x,y)$ $\exists f \in P(x,y)$

Succinct: $|\pi| \le o(t)$ and verifier runs in time o(t) $\pi \in P^*(x,y)$

 $\{(x,y): y=f(x)\}$

- \longrightarrow Non-interactive: server sends π in one go
 - Complete: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should reject π
 - Succinct: verifying π should be faster than recomputing f(x)

Definition 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for \mathcal{L}_{f} that is:

■ Complete: for every $(x, y) \in \mathcal{L}_{f}$: $\exists \text{Sound}$: for every $(x, y) \notin \mathcal{L}_{f}$ and malicious prover P^{*} ,

 $= Succinct: |\pi| \le o(t) and verifier runs in time o(t) \le locally O(log(t))$

Exercise 1 (Problem with Definiton 2?

 $\{(x,y): y = f(x)\}$

- \longrightarrow Non-interactive: server sends π in one go
 - Complete: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should reject π
 - Succinct: verifying π should be faster than recomputing f(x)

Definition 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for \mathcal{L}_{f} that is:

- Complete: for every $(x, y) \in \mathcal{L}_{f}$: $\exists f \in \mathcal{P}(x,y) = 1 = 1$ Sound: for every $(x, y) \notin \mathcal{L}_{f}$ and malicious prover P*,

Succinct: $|\pi| \le o(t)$ and verifier runs in time o(t) $\exists I = 0$

Exercise 1 (Problem with Definition 2? It is too strong)

Show that if $\mathcal{L}_f \in \mathsf{DTIME}(t)$ has succinct non-interactive proof as per Definition 2 then $DTIME(t) \subset NTIME(o(t))$

 $\{(x,y): y = f(x)\}$

■ Recall our requirements for verifiable outsourcing:

- $\longrightarrow \blacksquare$ Non-interactive: server sends π in one go
 - **Complete**: if y = f(x) then client should accept π
 - **Sound**: if $y \neq f(x)$ then client should *reject* π
 - Succinct: verifying π should be faster than recomputing f(x)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)

A non-interactive protocol (P, V) for \mathcal{L}_{f} that is:

■ Complete: for every $(x, y) \in \mathcal{L}_{f}$: $\exists \mathsf{Sound}$: for every $(x, y) \notin \mathcal{L}_{f}$ and malicious prover P^{*} , Too strong $\exists \mathsf{Sound}$: for every $(x, y) \notin \mathcal{L}_{f}$ and malicious prover P^{*} , Too strong $\exists \mathsf{Succinct}$: $|\pi| \leq o(t)$ and verifier runs in time o(t) deally $O(\log(t))$

?

Exercise 1 (Problem with Definiton 2? It is too strong)

Show that if $\mathcal{L}_f \in \mathsf{DTIME}(t)$ has succinct non-interactive proof as per Definition 2 then $\mathsf{DTIME}(t) \subseteq \mathsf{NTIME}(o(t))$

 $\{(x,y): y=f(x)\}$

? The way around?

All ITS The way around? Relax to computational soundness=argument Bad proofs may exist but are computationally *hard* to find
Pill The way around? Relax to computational soundness=argument Bad proofs may exist but are computationally *hard* to find Need source of comp. hardness to limit malicious prover

Pill TS
The way around? Relax to computational soundness=argument
Bad proofs may exist but are computationally *hard* to find
Need source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

(?) The way around? Relax to computational soundness=argument All ITS Bad proofs may exist but are computationally hard to find Need source of comp. hardness to limit malicious prover Common random string model or random-oracle model (ROM) Defintion 3 (Succinct Non-Interactive Argument in ROM) A non-interactive protocol (P^H, V^H) for \mathcal{L}_f that is: **Complete**: for every $(x, y) \in \mathcal{L}_{f}$ and $n \in \mathbb{N}$, $\Pr_{H, \pi \leftarrow P^{H}(I^{n}, \chi, Y)} \left[V^{H}(\chi, y, \pi) = I \right] = I$ • Computationally sound: for every $(x, y) \notin \mathcal{L}_{f}$ and PPT malicious prover P*, the following is negligible $\Pr\left[\bigvee_{i, \pi \in P^{H}(i^{n}, x, y)} \left[\bigvee_{i, \pi \in P^{H}(i^{n}, x, y)} \right] = i \right]$ **Succinct:** $|\pi| \le o(t) \cdot \operatorname{poly}(n)$ verifier runs in time $o(t) \cdot \operatorname{poly}(n)$

How to carry out verifiable outsourcing using SNARGs?

■ Compute as a service (same as *private* outsourcing)

Blockchain: Ethereum, Starkware etc have deployed SNARGs

■ Compute as a service (same as *private* outsourcing)

- Blockchain: Ethereum, Starkware etc have deployed SNARGs
- Great Internet Mersenne Prime Search (GIMPS)

■ Compute as a service (same as *private* outsourcing)

- Blockchain: Ethereum, Starkware etc have deployed SNARGs
- Great Internet Mersenne Prime Search (GIMPS)

■ Compute as a service (same as *private* outsourcing)

- Blockchain: Ethereum, Starkware etc have deployed SNARGs
- Great Internet Mersenne Prime Search (GIMPS)

■ Compute as a service (same as *private* outsourcing)

Great Internet Mersenne Prime Search (GIMPS)

- Compute as a service (same as *private* outsourcing)
- Blockchain: Ethereum, Starkware etc have deployed SNARGs

PRIME

PRIMALITY TES ~ WEEKS

■ Great Internet Mersenne Prime Search (GIMPS)

Rank +	Number	Discovered +	Digits +	Form			
1	2 ⁸²⁵⁸⁹⁹³³ - 1	2018-12-07	24,862,048	Mersenne			
2	2 ⁷⁷²³²⁹¹⁷ - 1	2017-12-26	23,249,425	Mersenne			
3	2 ⁷⁴²⁰⁷²⁸¹ - 1	2016-01-07	22,338,618	Mersenne			
4	2 ⁵⁷⁸⁸⁵¹⁶¹ - 1	2013-01-25	17,425,170	Mersenne			
5	2 ⁴³¹¹²⁶⁰⁹ - 1	2008-08-23	12,978,189	Mersenne			
6	$2^{42643801} - 1$	2009-06-04	12,837,064	Mersenne			
7	2 ³⁷¹⁵⁶⁶⁶⁷ - 1	2008-09-06	11,185,272	Mersenne			
8	$2^{32582657} - 1$	2006-09-04	9,808,358	Mersenne			
9	10223 × 2 ³¹¹⁷²¹⁶⁵ + 1	2016-10-31	9,383,761	Proth			
10	p30402457	2005 22 25	0.153.053				

(IMDS/DRIME/RIN

- Compute as a service (same as *private* outsourcing)
- Blockchain: Ethereum, Starkware etc have deployed SNARGs

PRIMEL

Great Internet Mersenne Prime Search (GIMPS)

PRIMALITY TEST ~ WEFKS

WIKIPEDIASLARGEST-KNOWN PRIME NUMBER

- Compute as a service (same as *private* outsourcing)
- Blockchain: Ethereum, Starkware etc have deployed SNARGs

PRIME

PRIMALITY TES ~ WEEKS

Great Internet Mersenne Prime Search (GIMPS)

Rank +	Number	Discovered +	Digits +	Form	¢		
1	2 ⁸²⁵⁸⁹⁹³³ - 1	2018-12-07	24,862,048	Mersenne			
2	2 ⁷⁷²³²⁹¹⁷ - 1	2017-12-26	23,249,425	Mersenne			
3	2 ⁷⁴²⁰⁷²⁸¹ - 1	2016-01-07	22,338,618	Mersenne			
4	2 ⁵⁷⁸⁸⁵¹⁶¹ - 1	2013-01-25	17,425,170	Mersenne			
5	2 ⁴³¹¹²⁶⁰⁹ - 1	2008-08-23	12,978,189	Mersenne			
6	$2^{42643801} - 1$	2009-06-04	12,837,064	Mersenne			
7	2 ³⁷¹⁵⁶⁶⁶⁷ - 1	2008-09-06	11,185,272	Mersenne			
8	2 ³²⁵⁸²⁶⁵⁷ - 1	2006-09-04	9,808,358	Mersenne			
9	10223 × 2 ³¹¹⁷²¹⁶⁵ + 1	2016-10-31	9,383,761	Proth			
10	2 ³⁰⁴⁰²⁴⁵⁷ - 1	2005-12-15	9,152,052	Mersenne			

GIMPS/PRIME(BID

» PROBLEM « VERIFYING BY RETESTING IS EXPENSIVE !

Plan for this Session

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

- 2 SNARG for Repeated Squaring
 - Step I: Interactive Proof for Repeated Squaring
 - Step II: Remove Interaction via Fiat-Shamir Transform

■ Repeated squaring function modulo prime *p*:

$$f_{\Box}(p, t, x) := x^{2^t} \bmod p$$

■ Repeated squaring function modulo prime *p*:

$$f_{\Box}(p, t, x) := x^{2^t} \mod p$$

■ Repeated squaring function modulo prime *p*:

$$f_{\Box}(p, t, x) := x^{2^t} \mod p$$

Shortcut: 1) $e := 2^t \mod (p - 1)$ 2) $y := x^e \mod p$ Requires $\approx p \log(t)$ multiplications

• Requires $\approx n \log(t)$ multiplications

Repeated squaring function modulo prime p:

$$f_{\Box}(p, t, x) := x^{2^t} \mod p$$

Shortcut: 1) $e := 2^t \mod (p-1)$ 2) $y := x^e \mod p$ Requires $\approx n \log(t)$ multiplications

Repeated squaring function modulo *composite* N = pq

$$f_{\Box}(N, t, x) := x^{2^t} \mod N$$

Repeated squaring function modulo prime p:

$$f_{\Box}(p, t, x) := x^{2^t} \mod p$$

Shortcut: 1) e := 2^t mod (p − 1) 2) y := x^e mod p
Requires ≈ n log(t) multiplications
Repeated squaring function modulo composite N = pq

$$f_{\Box}(N, t, x) := x^{2^t} \mod N$$

■ Shortcut: 1) $e := 2^t \mod (p-1)(q-1)$ 2) $y := x^e \mod N$

Repeated squaring function modulo prime p:

$$f_{\Box}(p, t, x) := x^{2^t} \mod p$$

Shortcut: 1) $e := 2^t \mod (p-1)$ 2) $y := x^e \mod p$ Requires $\approx n \log(t)$ multiplications

Repeated squaring function modulo *composite* N = pq

$$f_{\Box}(N, t, x) := x^{2^t} \mod N$$

Shortcut: 1) $e := 2^t \mod (p-1)(q-1)$ 2) $y := x^e \mod N$ Requires $\approx n \log(t)$ multiplications *if factors of N known* $||_{N}|$

■ What if factors of *N* are *not known*?

Server could factor N and return (p, q)

■ What if factors of *N* are *not known*?

Server could factor N and return (p, q)

🕂 Recall: we need honest prover to not have too much overhead

■ What if factors of *N* are *not known*?

Server could factor N and return (p, q)

Recall: we need honest prover to not have too much overhead

■ Without factors, fastest way to compute $f_{\Box}(N, t, x)$ believed to be by repeated squaring

■ What if factors of *N* are *not known*?

Server could factor N and return (p, q)

Recall: we need honest prover to not have too much overhead

- Without factors, fastest way to compute $f_{\Box}(N, t, x)$ believed to be by repeated squaring
 - Even if server has **poly**(*n*) amount of parallelism!
 - So-call RSW assumption: useful in "timed" cryptography
 - Time-lock puzzles
 - Verifiable delay functions

■ What if factors of *N* are *not known*?

- Server could factor N and return (p, q)
- Recall: we need honest prover to not have too much overhead
- Without factors, fastest way to compute $f_{\Box}(N, t, x)$ believed to be by repeated squaring
 - Even if server has **poly**(*n*) amount of parallelism!
 - So-call RSW assumption: useful in "timed" cryptography
 - Time-lock puzzles
 - Verifiable delay functions

• A proof π would be useful here

Plan for this Session

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring

- Step I: Interactive Proof for Repeated Squaring
- Step II: Remove Interaction via Fiat-Shamir Transform

Theorem 1

 Π is an interactive proof for the language

$$\mathcal{L}_{f_{\square}} := \left\{ (x, y, t, N) : y = x^{2^{t}} \mod N \right\}$$

Theorem 1

 Π is an interactive proof for the language

$$\mathcal{L}_{f_{\square}} := \left\{ (x, y, t, N) : y = x^{2^{t}} \mod N \right\}$$

Proof Sketch.

Statistical soundness (for first round) can be argued using: 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold ?

Theorem 1

 Π is an interactive proof for the language

$$\mathcal{L}_{f_{\square}} := \left\{ (x, y, t, N) : y = x^{2^{t}} \mod N \right\}$$

Proof Sketch.

Statistical soundness (for first round) can be argued using: 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold (?) $(x_0, y_0, t) \notin d_{f_0}$ $(\mu_0, y_0, t/2) \notin d_{f_0}$

Theorem 1

 Π is an interactive proof for the language

$$\mathcal{L}_{f_{\square}} := \left\{ (x, y, t, N) : y = x^{2^{t}} \mod N \right\}$$

Proof Sketch.

Statistical soundness (for first round) can be argued using: 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold 2 Claim: if $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ then the random combination $(x_0^r \cdot \mu_0)^{2^{t/2}} \neq (\mu_0^r \cdot y_0)$ w.h.p. over choice of r. $x_1'' \longrightarrow (x_1, y_1, t/2) \notin d_{f_0}$

Exercise 2

Prove Claims 1 and 2. Argue overall soundness.

Plan for this Session

1 Verifiable Outsourcing of Computation

Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring

- Step I: Interactive Proof for Repeated Squaring
- Step II: Remove Interaction via Fiat-Shamir Transform

 Fiat-Shamir Transform: replace interaction with client (verifier) by calls to random oracle

■ Fiat-Shamir Transform: replace interaction with client (verifier) by calls to random oracle

 Fiat-Shamir Transform: replace interaction with client (verifier) by calls to random oracle

 Fiat-Shamir Transform: replace interaction with client (verifier) by calls to random oracle

■ Fiat-Shamir Transform: replace interaction with client (verifier) by calls to random oracle

Theorem 2 $\Pi^{H} \text{ is a SNARG for } \mathcal{L}_{f} \text{ in random-oracle model.}$

Proof Sketch.

Statistical soundness (for first round) can be argued using:

1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold 2 Claim: if $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ then the random combination

$$(x_0^r \cdot \mu_0)^{2^{t/2}} \neq (\mu_0^r \cdot y_0)$$

w.h.p. over choice of r.

Theorem 2 $\Pi^{H} \text{ is a SNARG for } \mathcal{L}_{f} \text{ in random-oracle model.}$

Proof Sketch.

Statistical soundness (for first round) can be argued using: \checkmark 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold \checkmark 2 Claim: if $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ then the random combination $(x_0^r \cdot \mu_0)^{2^{t/2}} \neq (\mu_0^r \cdot y_0)$

w.h.p. over choice of r. holds also for PO

Theorem 2 Π^{H} is a SNARG for \mathcal{L}_{f} in random-oracle model.

Proof Sketch. Statistical soundness (for first round) can be argued using: \checkmark 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold \checkmark 2 Claim: if $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ then the random combination $(x_0^r \cdot \mu_0)^{2^{t/2}} \neq (\mu_0^r \cdot y_0)$ w.h.p. over choice of r_{\sim} holds also for PO

Theorem 2 Π^{H} is a SNARG for \mathcal{L}_{f} in random-oracle model.

Proof Sketch. Statistical soundness (for first round) can be argued using: \checkmark 1 Claim: if $y_0 \neq x_0^{2^t}$ then $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ must hold \checkmark 2 Claim: if $y_0 \neq \mu_0^{2^{t/2}}$ or $\mu_0 \neq x_0^{2^{t/2}}$ then the random combination $(x_0^r \cdot \mu_0)^{2^{t/2}} \neq (\mu_0^r \cdot y_0)$ w.h.p. over choice of r, holds also for PO

Exercise 3

Work out the proof of soundness in random-oracle model.

To Recap Today's Lecture

■ Task 7: secure outsourcing in the client-server setting ■ Task 7.b: verifiable outsourcing in the client-server setting ■ Verifying faster than recomputing f_{D} f_{D} f

To Recap Today's Lecture

to

(N,t,x)

y

Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

 $x \rightarrow x^2 \rightarrow \cdots x^2 \rightarrow x^2 = y \pmod{N}$

Key tool: succinct non-interactive argument (SNARG)

SNARG for repeated squaring problem in RSA group

- Main ideas: 1) downward self-reducibility 2) folding
- SNARG via Fiat-Shamir transform

Server

N,t,z)

To Recap Today's Lecture

- Task 7: secure outsourcing in the client-server setting ■ Task 7.b: verifiable outsourcing in the client-server setting Verifying faster than recomputing N,t,z) to $x \rightarrow x^2 \rightarrow \cdots x^2 \rightarrow x^2 = y \pmod{N}$ (N,t,x)y Server Key tool: succinct non-interactive argument (SNARG) SNARG for repeated squaring problem in RSA group Pietrzak's interactive protocol Main ideas: 1) downward self-reducibility 2) folding SNARG via Fiat-Shamir transform
 - SNARGs for NP (in ROM)
 - Coming Spring: Introduction to Probabilistic Proof Systems

To Recap Module III

 \blacksquare We saw several avatars of secure computation

To Recap Module III

■ We saw several avatars of secure computation

To Recap Module III

 \blacksquare We saw several avatars of secure computation

Module IV: Next Few Lectures

Code obfuscation

■ What cryptography is possible if you can obfuscate code?

References

- SNARGs were introduced as "CS proofs" in [Mic94]. You can find a formal definition of SNARG in [BCI+13, §4].
- The repeated squaring function was introduced in [CLSY93, RSW96] and is extensively used in timed cryptography. For example, the time-lock puzzle from [RSW96] are the verifiable delay functions from [Pie19, Wes19] are both based on *sequential* hardness of repeated squaring.
- **3** Formal description of Π and Π^{H} can be found in [Pie19]

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

Succinct non-interactive arguments via linear interactive proofs.

In Amit Sahai, editor, *TCC 2013*, volume 7785 of *LNCS*, pages 315–333. Springer, Heidelberg, March 2013.

J. . Cai, R. J. Lipton, R. Sedgewick, and A. C. . Yao.

Towards uncheatable benchmarks.

In *Proceedings of the Eigth Annual Structure in Complexity Theory Conference*, pages 2–11, May 1993.

Silvio Micali.

CS proofs (extended abstracts).

In *35th FOCS*, pages 436–453. IEEE Computer Society Press, November 1994.

Krzysztof Pietrzak.

Simple verifiable delay functions.

In Avrim Blum, editor, *ITCS 2019*, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

R. L. Rivest, A. Shamir, and D. A. Wagner.

Time-lock puzzles and timed-release crypto.

Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996.

Benjamin Wesolowski.

Efficient verifiable delay functions.

In Yuval Ishai and Vincent Rijmen, editors, *EUROCRYPT 2019, Part III*, volume 11478 of *LNCS*, pages 379–407. Springer, Heidelberg, May 2019.