
CS783: Theoretical Foundations of Cryptography
Lecture 20 (18/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

1 / 17

Recall from Last Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

1 / 17

Recall from Last Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

Key tool: Fully homomorphic encryption (FHE)
FHE → private outsourcing of computation
In fact: FHE → 2PC of arbitrary functions

1 / 17

Recall from Last Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.a: private outsourcing in the client-server setting

Key tool: Fully homomorphic encryption (FHE)
FHE → private outsourcing of computation
In fact: FHE → 2PC of arbitrary functions

GSW FHE from LWE assumption
Key idea: approximate eigenvectors
Similar idea used in approximate key exchange from LWE

1 / 17

Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting

2 / 17

Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting

2 / 17

T

T

Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

2 / 17

T'

T

Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

2 / 17

T'

T

Plan for Today’s Lecture...

Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring function in RSA group

Pietrzak’s interactive protocol
Remove interaction using Fiat-Shamir transform

2 / 17

T'

T

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 17

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 17

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 17

Plan for Today’s Lecture

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

2 / 17

Plan for Today’s Lecture

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

2 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π
Server sends (�, π) to client, who uses π to verify that � = f(�)

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π
Server sends (�, π) to client, who uses π to verify that � = f(�)Requirements:

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π
Server sends (�, π) to client, who uses π to verify that � = f(�)Requirements:
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π

3 / 17

Verifiable Outsourcing: Setting and Requirements

Setting:
Client is resource-constrained and server is powerful
Function f : X → Y known to both client and server
Client wants to get f evaluated on an input � ∈ X
Server computes output � = f(�) and a proof π
Server sends (�, π) to client, who uses π to verify that � = f(�)Requirements:
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject πEfficient:

Server-side: overhead to compute π should be low
Client-side: verify π much faster than recomputing f(�)

3 / 17

Plan for this Session

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

4 / 17

Recall Interactive Proofs
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end

5 / 17

Recall Interactive Proofs
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1 (Interactive proof for a language L)
An interactive protocol (�,�) for L that is:

Complete: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Sound: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�

5 / 17

Recall Interactive Proofs
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1 (Interactive proof for a language L)
An interactive protocol (�,�) for L that is:

Complete: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Sound: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�
We saw (zero-knowledge) IP for GI and GNI

5 / 17

Recall Interactive Proofs
Difference from �� proofs:

1 Verifier � is randomised
2 Prover � and � interact and

� accepts/rejects in the end
Defintion 1 (Interactive proof for a language L)
An interactive protocol (�,�) for L that is:

Complete: for every � ∈ L, Pr[� ← ⟨�,�⟩(�)] ≥ � − �/�
Sound: for every � ̸∈ L and malicious prover �∗,

Pr[� ← ⟨�∗,�⟩(�)] ≤ �/�
We saw (zero-knowledge) IP for GI and GNI

What was the communication complexity for those IPs?

5 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , �) ∈ Lf :
Sound: for every (� , �) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , �) ∈ Lf :
Sound: for every (� , �) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , �) ∈ Lf :
Sound: for every (� , �) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2?

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , �) ∈ Lf :
Sound: for every (� , �) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2? It is too strong)
Show that if L� ∈ �����(�) has succinct non-interactive proof as
per Defintion 2 then �����(�) ⊆ �����(� (�))

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
Recall our requirements for verifiable outsourcing:

Non-interactive: server sends π in one go
Complete: if � = f(�) then client should accept π
Sound: if � ̸= f(�) then client should reject π
Succinct: verifying π should be faster than recomputing f(�)

Defintion 2 (Succinct Non-Interactive Proof, first attempt)
A non-interactive protocol (�,�) for Lf that is:

Complete: for every (� , �) ∈ Lf :
Sound: for every (� , �) ̸∈ Lf and malicious prover �∗,

Succinct: |π| ≤ � (�) and verifier runs in time � (�)
Exercise 1 (Problem with Defintion 2? It is too strong)
Show that if L� ∈ �����(�) has succinct non-interactive proof as
per Defintion 2 then �����(�) ⊆ �����(� (�))

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around?

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to find

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,��) for Lf that is:

Complete: for every (� , �) ∈ Lf and � ∈ N,

Computationally sound: for every (� , �) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,��) for Lf that is:

Complete: for every (� , �) ∈ Lf and � ∈ N,

Computationally sound: for every (� , �) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)

6 / 17

Let’s Define Succinct, Non-Interactive Proofs for Lf ...
The way around? Relax to computational soundness=argument

Bad proofs may exist but are computationally hard to findNeed source of comp. hardness to limit malicious prover
Common random string model or random-oracle model (ROM)

Defintion 3 (Succinct Non-Interactive Argument in ROM)
A non-interactive protocol (�� ,��) for Lf that is:

Complete: for every (� , �) ∈ Lf and � ∈ N,

Computationally sound: for every (� , �) ̸∈ Lf and PPT
malicious prover �∗, the following is negligible

Succinct: |π| ≤ � (�) · ����(�) verifier runs in time � (�) · ����(�)
How to carry out verifiable outsourcing using SNARGs?

6 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Where are SNARGs Useful?
Compute as a service (same as private outsourcing)
Blockchain: Ethereum, Starkware etc have deployed SNARGs
Great Internet Mersenne Prime Search (GIMPS)

7 / 17

Plan for this Session

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

8 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

9 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

9 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

Shortcut: 1) � := �� mod (� − �) 2) � := �� mod �

Requires ≈ � log(�) multiplications

9 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

Shortcut: 1) � := �� mod (� − �) 2) � := �� mod �

Requires ≈ � log(�) multiplications
Repeated squaring function modulo composite � = ��

f□(�, �, �) := ��
� mod �

9 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

Shortcut: 1) � := �� mod (� − �) 2) � := �� mod �

Requires ≈ � log(�) multiplications
Repeated squaring function modulo composite � = ��

f□(�, �, �) := ��
� mod �

Shortcut: 1) � := �� mod (� − �)(� − �) 2) � := �� mod �

9 / 17

Repeated Squaring Function over RSA Group...

Repeated squaring function modulo prime �:
f□(�, �, �) := ��

� mod �

Shortcut: 1) � := �� mod (� − �) 2) � := �� mod �

Requires ≈ � log(�) multiplications
Repeated squaring function modulo composite � = ��

f□(�, �, �) := ��
� mod �

Shortcut: 1) � := �� mod (� − �)(� − �) 2) � := �� mod �

Requires ≈ � log(�) multiplications if factors of � known
9 / 17

Repeated Squaring Function over RSA Group...

What if factors of � are not known?
Server could factor � and return (�, �)

9 / 17

Repeated Squaring Function over RSA Group...

What if factors of � are not known?
Server could factor � and return (�, �)
Recall: we need honest prover to not have too much overhead

9 / 17

Repeated Squaring Function over RSA Group...

What if factors of � are not known?
Server could factor � and return (�, �)
Recall: we need honest prover to not have too much overhead

Without factors, fastest way to compute f□(�, �, �) believed tobe by repeated squaring

9 / 17

Repeated Squaring Function over RSA Group...

What if factors of � are not known?
Server could factor � and return (�, �)
Recall: we need honest prover to not have too much overhead

Without factors, fastest way to compute f□(�, �, �) believed tobe by repeated squaring
Even if server has ����(�) amount of parallelism!So-call RSW assumption: useful in “timed” cryptography

Time-lock puzzles
Verifiable delay functions

9 / 17

Repeated Squaring Function over RSA Group...

What if factors of � are not known?
Server could factor � and return (�, �)
Recall: we need honest prover to not have too much overhead

Without factors, fastest way to compute f□(�, �, �) believed tobe by repeated squaring
Even if server has ����(�) amount of parallelism!So-call RSW assumption: useful in “timed” cryptography

Time-lock puzzles
Verifiable delay functions

A proof π would be useful here
9 / 17

Plan for this Session

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

10 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Step I: Harness the Power of IP
Protocol 1 (Π, proves that � = ��

� mod � interactively)

11 / 17

Attempt 1: recursively prove

Problem: recursion blows up!

Attempt 2: fold, then recurse

Problem: Bob can cheat. How?

Attempt 3: fold, then recurse
randomly

Why is Π Sound?
Theorem 1
Π is an interactive proof for the language

Lf□ := n(� , � , �,�) : � = ��
� mod �

o

12 / 17

Why is Π Sound?
Theorem 1
Π is an interactive proof for the language

Lf□ := n(� , � , �,�) : � = ��
� mod �

o

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

12 / 17

Why is Π Sound?
Theorem 1
Π is an interactive proof for the language

Lf□ := n(� , � , �,�) : � = ��
� mod �

o

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

12 / 17

Why is Π Sound?
Theorem 1
Π is an interactive proof for the language

Lf□ := n(� , � , �,�) : � = ��
� mod �

o

Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .
Exercise 2
Prove Claims 1 and 2. Argue overall soundness.

12 / 17

Plan for this Session

1 Verifiable Outsourcing of Computation
Succinct Non-Interactive Argument (SNARG)

2 SNARG for Repeated Squaring
Step I: Interactive Proof for Repeated Squaring
Step II: Remove Interaction via Fiat-Shamir Transform

13 / 17

Step II: Apply Fiat-Shamir Transform
Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

14 / 17

Step II: Apply Fiat-Shamir Transform
Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (Π� , Π after Fiat-Shamir)

14 / 17

Step II: Apply Fiat-Shamir Transform
Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (Π� , Π after Fiat-Shamir)

14 / 17

Step II: Apply Fiat-Shamir Transform
Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (Π� , Π after Fiat-Shamir)

14 / 17

Step II: Apply Fiat-Shamir Transform
Fiat-Shamir Transform: replace interaction with client (verifier)
by calls to random oracle

Protocol 2 (Π� , Π after Fiat-Shamir)

14 / 17

Why is ΠH Sound?
Theorem 2
ΠH is a SNARG for Lf in random-oracle model.
Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .

15 / 17

Why is ΠH Sound?
Theorem 2
ΠH is a SNARG for Lf in random-oracle model.
Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .

15 / 17

Why is ΠH Sound?
Theorem 2
ΠH is a SNARG for Lf in random-oracle model.
Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .

15 / 17

Why is ΠH Sound?
Theorem 2
ΠH is a SNARG for Lf in random-oracle model.
Proof Sketch.
Statistical soundness (for first round) can be argued using:

1 Claim: if �� ̸= ��
�

�
then �� ̸= µ�

�/�
�

or µ� ̸= ��
�/�

�
must hold

2 Claim: if �� ̸= µ�
�/�

�
or µ� ̸= ��

�/�
�

then the random combination
(� �� · µ�)��/� ̸= (µ�

� · ��)w.h.p. over choice of � .
Exercise 3
Work out the proof of soundness in random-oracle model.

15 / 17

To Recap Today’s Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

16 / 17

To Recap Today’s Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring problem in RSA group

Pietrzak’s interactive protocol
Main ideas: 1) downward self-reducibility 2) folding
SNARG via Fiat-Shamir transform

16 / 17

To Recap Today’s Lecture
Task 7: secure outsourcing in the client-server setting
Task 7.b: verifiable outsourcing in the client-server setting

Verifying faster than recomputing

Key tool: succinct non-interactive argument (SNARG)
SNARG for repeated squaring problem in RSA group

Pietrzak’s interactive protocol
Main ideas: 1) downward self-reducibility 2) folding
SNARG via Fiat-Shamir transform

SNARGs for �� (in ROM)
Coming Spring: Introduction to Probabilistic Proof Systems

16 / 17

To Recap Module III
We saw several avatars of secure computation

Zero-knowledge proofs

16 / 17

To Recap Module III
We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

16 / 17

To Recap Module III
We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

Private outsourcing Verifiable outsourcing

16 / 17

T T'

Module IV: Next Few Lectures

Code obfuscation
What cryptography is possible if you can obfuscate code?

17 / 17

*
**

Credit for images: Wikipedia (*User:DARPA)(**User:Saliko)

References

1 SNARGs were introduced as “CS proofs” in [Mic94]. You can
find a formal definition of SNARG in [BCI+13, §�].

2 The repeated squaring function was introduced in
[CLSY93, RSW96] and is extensively used in timed
cryptography. For example, the time-lock puzzle from [RSW96]
are the verifiable delay functions from [Pie19, Wes19] are both
based on sequential hardness of repeated squaring.

3 Formal description of Π and ΠH can be found in [Pie19]

17 / 17

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth.
Succinct non-interactive arguments via linear interactive proofs.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013.
J. . Cai, R. J. Lipton, R. Sedgewick, and A. C. . Yao.
Towards uncheatable benchmarks.
In Proceedings of the Eigth Annual Structure in Complexity Theory
Conference, pages 2–11, May 1993.
Silvio Micali.
CS proofs (extended abstracts).
In 35th FOCS, pages 436–453. IEEE Computer Society Press, November
1994.
Krzysztof Pietrzak.
Simple verifiable delay functions.
In Avrim Blum, editor, ITCS 2019, volume 124, pages 60:1–60:15. LIPIcs,
January 2019.
R. L. Rivest, A. Shamir, and D. A. Wagner.
Time-lock puzzles and timed-release crypto.

17 / 17

Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.
Benjamin Wesolowski.
Efficient verifiable delay functions.
In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 379–407. Springer, Heidelberg, May 2019.

17 / 17

	Verifiable Outsourcing of Computation
	Succinct Non-Interactive Argument (SNARG)

	SNARG for Repeated Squaring
	Step I: Interactive Proof for Repeated Squaring
	Step II: Remove Interaction via Fiat-Shamir Transform

