CS783: Theoretical Foundations of Cryptography

Lecture 21 (22/Oct/24)

Instructor: Chethan Kamath



Recall from Last Module

m We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

. Private outsourcin - Verifiable outsourcing
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Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions
m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG)  P&G — V&F
m Black-box separations
m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF)  DWF —» pre

m Formalise black-box separation
m Separate OWF from OWP DWF — OWP

m Later: | e
m Code obfuscation © Co
m How to formalise security?
m Virtual black-box (VBB) and indistinguishability obfuscator (10)
m Code obfuscation is powerful

m Helps bypass certain black-box separations (e.g, OWF - PKE)
m |O — most cryptographic primitives!
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Recall Our First Cryptographic Reduction

Construction 1 (Computational OTP [T from PRG G)
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Recall Our First Cryptographic Reduction

Construction 1 (Computational OTP [T from PRG G)
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m Construction 'l uses PRG G as a "black-box” ,‘

m Only needs query access to G
m Does not depend on exact implementation of G
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Recall Our First Cryptographic Reduction

Construction 1 (Computattonal OTP [1 from PRG G)

By

m Construction 'l uses PRG G as a "black-box” ,,

m Only needs query access to G
m Does not depend on exact implementation of G

= [

[ ¢

Pseudocode 1 (of M€) "\ denokes orade/Bods oo access & G

m Gen(1"): output k « {0,1}"
m Enc®(k, m): query'G on k to obtain y and output ¢ ==y & m
m Dec®(k, c): query'G on k to obtain y and output m = y & ¢
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Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Proof by security reduction: 3Eve breaking 1 = 3D for G.
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Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Proof by security reduction: 3Eve breaking 1 = 3D for G.
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m Security reduction D (4+analysis) usesG and Eve as black box

m Only needsiquery access to G and Eve: D¢
m Does not depend on exact me[ementatton of G and Eve
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Our Reductions So Far Have All Been “Black Box"..

1 PRG — PRF (GGM construction)

2 PRF — CPA-SKE

3 OWP — hardcore predicate (Goldreich-Levin construction)

4 PRF — MAC

5 TDP — PKE

6 Commitment — Computational ZKP for NP (Blum's protocol)
7 OT — 2PC (GMW protocol)
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m Both construction and security reduction are black-box
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1 Correctness: for every function F, construction ne is
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Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box
Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (HW"&D%%BW argrents

1 Correctness: for every function F, construction ne is
permutation

r\\ - %~ >
4\ = — L F
. <m
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2 Security: for every one-way F and for every OWP-inverter
Plnv' that inverts 17, the security reduction Finv™"™" inverts F

Exercise 1

Formulate the general definition for any two primitives P and Q
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[ BB reductton (ﬂ FInv ) of OWP to OWF:
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BB Reduction “Relativises”

m BB reductlon (ﬂ' FInv ) of OWP to OWF:
B
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m (1, FInv"') works relative to any oracle 0" {0,1}" — {O 1}

m World where all parties have access to O
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BB Reduction “Relativises”

m BB reductLon (I_I FInv ) of OWP to OWF:
| C W [ S
ﬁf_‘ N Pt |

m (1, FInv"') works relative to any oracle 0" {0,1}" — {O 1}

m World where all parties have access to O

m BB reduction (I, Flnv) of OWP to OWF, relative to O:

o} \ /A%’ W - ﬁ 0} . B
SENETRE S ) |

Flnv

Claim 1 (Contrapositive)

(I, Flnv'") does not exist relative to some oracle O = (I, FInv")

does not exist

1
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m PRG G° — computational OTP 160
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BB Reduction “Relativises”

m PRG G° — computational OTP 1¢©
Pseudocode 2 (Computational OTP %0 from PRG G°)

m Gen(1"): output k « {0,1}" 11 pases (s O-guedes to O
[ EncG'O(k, m): query G® on k to obtain y, output ¢ ==y & m
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m PRG G° — computational OTP 1¢©

Pseudocode 2 (Computational OTP %0 from PRG G°)

m Gen(1"): output k « {0/15 T passes G5 O-guedies to O
[ EncG'O(k, m): query G® on k to obtain y, output ¢ ==y & m

m Dec®O(k, ¢): query GO on k to obtain y; output m ==y & c

Proof by security reduction: 3Eve"© breaking M¢:0 = 3
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1 Black-Box Reduction —
2 Black-Box Separation >

3 Black-Box Separating OWF from OWP  OWF —+> OWP
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Recall Our Landscape
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Recall Our Landscape
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Recall Our Landscape

— BB redocton
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m What about OWF — OWP or OWF — PKE? We don’t know
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.Show that OWF exists but OWP doesn't?
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@ Show that OWF exists but OWP doesn't?
/\ Both OWF and OWP are believed to exist
/\lImplies P + NP
OWF —» DWP
m Instead show that there is no BB reduction of OWP to OWF

m We must show (by negating Defintion 1) that:
f 1 for every BB reduction (I, Flnv') of OWP to OWF
J 2 there exists a OWF F and a OWP-inverter Plnv' such that
— 3 Plnv inverts M but FInv®'"™F does not invert F
3
m By Claim 1, suffices to show there exists oracle O such that:
\ 11 for every BB reduction (-9, Flnv©) of OWP to OWF

312 there exists a OWF F© and a OWP-inverter Plnv"® such that
—3 Plnv? inverts M0 but FinvP'™9 does not invert FO
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High-Level Idea of the Separation
-7 Wik D} 0= PSPRCE
m We will come up with a “helper” oracle O such that

\ 1 for every BB reduction (M, Flnv"?) of OWP to OWF
312 for random oracle F and "query-learning” Plnv©

OWF Fuorid "N 0Wp T Lorld
SE N 0
X { |
P /(,}V?‘ S ¢+ 0

Flov \\_/,PM

— 13 PInv? inverts M9 but Flnv®'"™ O does not invert FO

m Step I: design query-learning Plnv that efficiently breaks
OWP " given access to O
m Idea: exploit the fact that 17 is a permutation for any F
m Step Il: show Flnv can't break random oracle F even given O
m |dea: random oracle output is unpredictable = one-wayness
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Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(q.r)c Ly =r=F(q)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}

@/@C@Q

F@)

11/16



Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A L consistent with@Cp if Vg € Q(LF) N Q(Lr): F(q) = F'(q)

@J(OLF)Q QQQ‘L/‘F)

11/16



Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@Cp if Vg € Q(Le) N Q(Le): F(q) = F'(q)
W Consistent Ly and L¢ can be "merged” into Le+ = L U Lpr

@J(OLF)Q QQQ‘L/‘F)

11/16



Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@p if Vg € Q(LF) N Q(L): F(q) = F'(q)
ConsistentLr and Ly can be "merged” into Le+ = L U L

@J(OCF)Q §Q< )

q/
m Cr,: query-answer pairs involved in computing M (x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {q:(q.r) € Crx}

11/16



Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@p if Vg QL) N Q(Lp): F(g) = F'(q)
ConsistentLr and Ly can be "merged” into Le+ = L U L
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m Cr,: query-answer pairs ‘anolveqé in computing MNF(x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {qg:(q,r) € Crx}
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m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Ly consistent with@p if Vg € Q(LF) N Q(Lr): F(q) = F'(q)
@ Consistent Ly and L¢ can be "merged” into Le+ = L U Lpr

AlLe), Allr) onsidad:
K -~ o

m Cr,: query-answer pairs ‘anolveqé in computing MNF(x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {q:(q,r) € Crx}
YOS M7 (x) is determined once Cr , fixed
W 1 is efficient = for every x and F, |Cr x| is polynomial
X Main observation: (partial F and F’ consistent) and

(N"(x) = N7 (x) = y) = QCrx) N QCr ) + 0. WHD
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Step I: Design Query-Learning Plnv
C;)/ Strabegy: lootn o least one newy query from C o per und

Construction 2 (Query-learning inverter Plnv" 'F'O(yg)j %:TXF@)
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Step I: Design Query-Learning Plnv
éj/gtrakeggi ot ok least one newy query from C. . per und

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

I Inifiate list ﬁ@\wgﬂnmu powsOf F we nave leact so f0¢
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Construction 2 (Query-learning inverter Plnv ¥))

1 Initiate list Lp:= 0 S
2 Use O to find input x" & partial function F' defined via Lgr s.t.:

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Cryx and MY (X') = y: x is a valid inverse w.rto. F!
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Step I: Design Query-Learning Plnv
\\C;j/gtmkegg o b least e newy guery from C. L per und

A #/%_

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

N

o
1 Initiate list Lg:= 0 N
D 3 //\( LA

2 Use O to find input x" & partial function E' defined via EF/ st: X

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Crix and MY (X') = y: x is a valid inverse w.r.to. F!

3 Test x' on F: if MF(x) =y, output x' and halt

4 Query F with “fresh” queries @%:= Q(Cr' /) \ Q(Lf) and add
these query-response pairs to L
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Construction 2 (Query-learning inverter Plnv

1
2

Step I: Design Query-Learning Plnv

\\Cé/gtmkegg o b least e newy guery from C. L per rom

TEO(y)

Initiate list L= @

Use O to find input x" & partial function ' defined via EF/ ét X

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Criw and N7 (X') = y: x is a valid inverse w.rto. F!

Test x' on F: if 7 (x') = y, output x' and halt

Query F with ‘fresh” queries @%:= Q(Cr ») \ Q(Lr) and add
these query-response pairs to L

Repeat from Step 2
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Step I: Design Query-Learning Plnv

N
9 Strakegy: lotn ok least one newy query rom C LR rom

S i

Construction 2 (Query-learning inverter Plnv'" ™9 (y))

1 Initiate list Lg:= 0 i ¢
2 Use O to find input x" & partial function E' defined via EF/ st s

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Crix and MY (X') = y: x is a valid inverse w.r.to. F!

3 Test x' on F: if MF(x) =y, output x' and halt
4 Query F with “fresh” queries @%:= Q(Cr' »/) \ Q(Lf) and add
these query-response pairs to L

5 Repeat from Step 2

Lemma 2
If O = PSPACE, Plnv outputs x : 17 (x) = y in polynomial time
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Construction 2 (Query-learning inverter Plnv

5
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Query F with ‘fresh” queries @%:= Q(Cr' x) \ Q(LF) and add
these query-response pairs to Lr
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Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

1 Claim 1: Plnv outputs x such that M7 (x) = y and halts
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1 Claim 1: Plnv outputs x such that M7 (x) = y and halts
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12116



Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg:= 0

2 Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt

4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.

12116



Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg:= 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt
4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y
@ why?

12116



Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt
4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y

@ Why? 1 is always a permutation
m Only need to fix G to determine M (x/) = suffices to fix
Le 2 Crr x

12/16



Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

nle>le F’ is consistent with all we know so far about E
2 Lg 2Cap and M¥(x) = y: x’ is a valid inverse w.r.to. F'

3 Test x' on F: if NP (x) = y, output x and halt

4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y

() Why? [T is always a permutation
m Only need to fix G to determine M (x/) = suffices to fix

L 2 Crr
m Framed as NP language: {(y, L), (Lr, x) : 2.1 and 2.2 holds}
@ What is Plnv's run-time? O
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Step Il: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]
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Step Il: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]

Proof idea: random oracles are unpredictable = one-wayness.

m Flnv efficient = FInv' can make a fixed polynomial number of
queries to F

m Flnv can only win if it queries an x’ such that F(x’) = F(x)
m Probability of this event for its each query is exactly 1/2/7x)l

m Claim follows by union bound over all its queries O
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Step II: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]

Proof idea: random oracles are unpredictable = one-wayness.

m Flnv efficient = FInv' can make a fixed polynomial number of
queries to F

m FInv' can only win if it queries an x’ such that F(x’) = F(x)
m Probability of this event for its each query is exactly 1/2/7x)l

m Claim follows by union bound over all its queries O

Exercise 2
Show that Claim 2 holds also with respect to the PSPACE oracle O.
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m Black-box reductions and its limitations
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To Recap Today's Lecture

m Black-box reductions and its limitations
m Black-box separations

m Formally defined what it means to separate one primitive from
another
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To Recap Today's Lecture

m Black-box reductions and its limitations
m Black-box separations

m Formally defined what it means to separate one primitive from
another

m Separated OWF from OWP
m Key ideas:

m Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn't

m Efficient query-set learning algorithm that exploits perfect
correctness of the construction

m Random oracles are unpredictable, and hence one-way
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m Friday (25/Oct): crib session for Quiz 2
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Next Lecture

m Friday (25/Oct): crib session for Quiz 2

m Tuesday (29/Oct): Obfuscation |

m Virtual black-box (VBB) obfuscation
m Bypassing separation OWF and OWP using code of the OWF:

m OWF VBB obfuscation OWP

m Impossibility of VBB obfuscation for general programs
m Way around: relax to indistinguishability obfuscation (1O)
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§4.3]
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