
CS783: Theoretical Foundations of Cryptography
Lecture 21 (22/Oct/24)

Instructor: Chethan Kamath



Recall from Last Module
We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

Private outsourcing Verifiable outsourcing
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Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)
Formalise black-box separation
Separate OWF from OWP

Later:
Code obfuscationHow to formalise security?

Virtual black-box (VBB) and indistinguishability obfuscator (IO)
Code obfuscation is powerful

Helps bypass certain black-box separations (e.g., OWF ↛ PKE)
IO → most cryptographic primitives!
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Construction 1 (Computational OTP Π from PRG �)

Construction Π uses PRG � as a “black-box”
Only needs query access to �

Does not depend on exact implementation of �
Pseudocode 1 (of Π�)

���(�� ): output � ← {�, �}�
���

�(� ,�): query � on � to obtain � and output � := � ⊕ �
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Recall Our First Cryptographic Reduction...
Theorem 1
Assuming � is a PRG, Construction 1 is computationally secret.
Proof by security reduction: ∃��� breaking Π ⇒ ∃� for �.

Security reduction � (+analysis) uses � and ��� as black box
Only needs query access to � and ���: ��,���
Does not depend on exact implementation of � and ���
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Our Reductions So Far Have All Been “Black Box”...

1 PRG → PRF (GGM construction)
2 PRF → CPA-SKE
3 OWP → hardcore predicate (Goldreich-Levin construction)
4 PRF → MAC
5 TDP → PKE
6 Commitment → Computational ZKP for �� (Blum’s protocol)
7 OT → 2PC (GMW protocol)

· · ·
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Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (Π·, ����·,·) such that

1 Correctness: for every function F, construction ΠF is
permutation

2 Security: for every one-way F and for every OWP-inverter
����

· that inverts ΠF, the security reduction ����
����,F inverts F

Exercise 1
Formulate the general definition for any two primitives P and Q
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BB reduction (Π·, ����·,·) of OWP to OWF:

(Π·, ����·,·) works relative to any oracle O : {�, �}∗ → {�, �}∗
World where all parties have access to O

BB reduction (Π·,·, ����·,·,·) of OWP to OWF, relative to O:

Claim 1 (Contrapositive)
(Π·,·, ����·,·,·) does not exist relative to some oracle O ⇒ (Π·, ����·,·)
does not exist 6 / 16
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Plan for this Session

1 Black-Box Reduction

2 Black-Box Separation
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We must show (by negating Defintion 1) that:

1 for every BB reduction (Π·,����·,·) of OWP to OWF
2 there exists a OWF F and a OWP-inverter ����· such that
3 ���� inverts ΠF but ��������,F does not invert F

By Claim 1, suffices to show there exists oracle O such that:
1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 there exists a OWF FO and a OWP-inverter ����·,O such that
3 ����
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We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

Step I: design query-learning ���� that efficiently breaks
OWP ΠF given access to O

Idea: exploit the fact that ΠF is a permutation for any F
Step II: show ���� can’t break random oracle F even given O

Idea: random oracle output is unpredictable ⇒ one-wayness
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Notation/observations:

LF: a list of query-response pairs of some function F
(�, � ) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, � ) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′ ): F(�) = F′(�)
Consistent LF and LF′ can be “merged” into LF+ := LF ∪ LF′

CF,�: query-answer pairs involved in computing ΠF(�) for somefunction F and input � (in F’s domain)
Q(CF,� ): set of queries in CF,� , i.e., {� : (�, � ) ∈ CF,�}
ΠF(� ) is determined once CF,� fixed
Π is efficient ⇒ for every � and F, |CF,� | is polynomial

Main observation: (partial F and F′ consistent) and
(ΠF(�) = ΠF′ (�′) = �) ⇒ Q(CF,�) ∩ Q(CF′,�′ ) ̸= ∅. Why?
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Construction 2 (Query-learning inverter ����Π·,F,O(� ))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

3 Test � ′ on F: if ΠF(� ′) = � , output � ′ and halt
4 Query F with “fresh” queries Q∗ := Q(CF′,� ′ ) \ Q(LF) and add

these query-response pairs to LF
5 Repeat from Step 2

Lemma 2
If O = ������, ���� outputs � : ΠF(� ) = � in polynomial time
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Proof of Lemma 2 (���� outputs � : ΠF(� ) = � in polynomial time).
2 Claim 2: ���� is efficient given access to (e.g.) ������ O.

Sub-claim: in Step 2 there must exist (�′, F′) s.t. ΠF′ (�′) = �

Why? Π· is always a permutation
Only need to fix CF′,� ′ to determine ΠF′ (� ′) ⇒ suffices to fix
LF′ ⊇ CF′,� ′

Framed as �� language: {(�, LF), (L′F, �′) : 2.1 and 2.2 holds}
What is ����’s run-time?
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Claim 2
For any fixed, efficient ����·, the following is negligible

PrF,� [����F(F(� )) ∈ F−�(F(� ))]

Proof idea: random oracles are unpredictable ⇒ one-wayness.
����

· efficient ⇒ ����
· can make a fixed polynomial number of

queries to �

����
· can only win if it queries an � ′ such that F(� ′) = F(� )

Probability of this event for its each query is exactly �/�|F(�)|
Claim follows by union bound over all its queries

Exercise 2
Show that Claim 2 holds also with respect to the ������ oracle O.
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To Recap Today’s Lecture

Black-box reductions and its limitations
Black-box separations

Formally defined what it means to separate one primitive from
another

Separated OWF from OWP
Key ideas:

Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn’t
Efficient query-set learning algorithm that exploits perfect
correctness of the construction
Random oracles are unpredictable, and hence one-way
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Next Lecture

Friday (25/Oct): crib session for Quiz 2
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Next Lecture

Friday (25/Oct): crib session for Quiz 2

Tuesday (29/Oct): Obfuscation I
Virtual black-box (VBB) obfuscationBypassing separation OWF and OWP using code of the OWF:

OWF VBB obfuscation−−−−−−−−→ OWP
Impossibility of VBB obfuscation for general programs
Way around: relax to indistinguishability obfuscation (IO)
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1 This lecture is mostly based on [Rud84, RTV04, Yer11]
2 Formal definition of fully BB reduction can be found in

[RTV04, Yer11]. You can also find formal definitions of other
notions of reductions (semi-BB, relativising etc.) there

3 The black-box separation of OWF from OWP is from Rudich’s
thesis [Rud84]

4 For more discussion on relativising reductions, refer to [AB09,
§4.3]
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