
CS783: Theoretical Foundations of Cryptography
Lecture 21 (22/Oct/24)

Instructor: Chethan Kamath

Recall from Last Module
We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

Private outsourcing Verifiable outsourcing

1 / 16

T T'

Plan for Next Three Lectures...

2 / 16

*
**

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

2 / 16

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)

2 / 16

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)
Formalise black-box separation
Separate OWF from OWP

2 / 16

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)
Formalise black-box separation
Separate OWF from OWP

Later:
Code obfuscation

2 / 16

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)
Formalise black-box separation
Separate OWF from OWP

Later:
Code obfuscationHow to formalise security?

Virtual black-box (VBB) and indistinguishability obfuscator (IO)

2 / 16

Plan for Next Three Lectures...
Focus today: limitations of black-box reductions

Formalise black-box reduction of one primitive (e.g., PRF) to
another (e.g., PRG)

Black-box separations
Certain primitives (e.g., PKE) cannot be “black-box reduced” to
others (e.g., OWF)
Formalise black-box separation
Separate OWF from OWP

Later:
Code obfuscationHow to formalise security?

Virtual black-box (VBB) and indistinguishability obfuscator (IO)
Code obfuscation is powerful

Helps bypass certain black-box separations (e.g., OWF ↛ PKE)
IO → most cryptographic primitives!

2 / 16

Plan for Today’s Lecture

1 Black-Box Reduction

2 Black-Box Separation

3 Black-Box Separating OWF from OWP

2 / 16

Plan for Today’s Lecture

1 Black-Box Reduction

2 Black-Box Separation

3 Black-Box Separating OWF from OWP

2 / 16

Recall Our First Cryptographic Reduction...
Construction 1 (Computational OTP Π from PRG �)

3 / 16

Recall Our First Cryptographic Reduction...
Construction 1 (Computational OTP Π from PRG �)

Construction Π uses PRG � as a “black-box”
Only needs query access to �

Does not depend on exact implementation of �

3 / 16

Recall Our First Cryptographic Reduction...
Construction 1 (Computational OTP Π from PRG �)

Construction Π uses PRG � as a “black-box”
Only needs query access to �

Does not depend on exact implementation of �
Pseudocode 1 (of Π�)

���(��): output � ← {�, �}�
���

�(� ,�): query � on � to obtain � and output � := � ⊕ �

���
�(� , �): query � on � to obtain � and output � := � ⊕ �

3 / 16

Recall Our First Cryptographic Reduction...
Theorem 1
Assuming � is a PRG, Construction 1 is computationally secret.
Proof by security reduction: ∃��� breaking Π ⇒ ∃� for �.

3 / 16

Recall Our First Cryptographic Reduction...
Theorem 1
Assuming � is a PRG, Construction 1 is computationally secret.
Proof by security reduction: ∃��� breaking Π ⇒ ∃� for �.

Security reduction � (+analysis) uses � and ��� as black box
Only needs query access to � and ���: ��,���
Does not depend on exact implementation of � and ���

3 / 16

Our Reductions So Far Have All Been “Black Box”...

1 PRG → PRF (GGM construction)
2 PRF → CPA-SKE
3 OWP → hardcore predicate (Goldreich-Levin construction)
4 PRF → MAC
5 TDP → PKE
6 Commitment → Computational ZKP for �� (Blum’s protocol)
7 OT → 2PC (GMW protocol)

· · ·

4 / 16

Let’s Formally Define (Fully) Black-Box Reduction
Both construction and security reduction are black-box

5 / 16

Let’s Formally Define (Fully) Black-Box Reduction
Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (Π·, ����·,·) such that

5 / 16

Let’s Formally Define (Fully) Black-Box Reduction
Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (Π·, ����·,·) such that

1 Correctness: for every function F, construction ΠF is
permutation

5 / 16

Let’s Formally Define (Fully) Black-Box Reduction
Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (Π·, ����·,·) such that

1 Correctness: for every function F, construction ΠF is
permutation

2 Security: for every one-way F and for every OWP-inverter
����

· that inverts ΠF, the security reduction ����
����,F inverts F

5 / 16

Let’s Formally Define (Fully) Black-Box Reduction
Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (Π·, ����·,·) such that

1 Correctness: for every function F, construction ΠF is
permutation

2 Security: for every one-way F and for every OWP-inverter
����

· that inverts ΠF, the security reduction ����
����,F inverts F

Exercise 1
Formulate the general definition for any two primitives P and Q

5 / 16

BB Reduction “Relativises”...
BB reduction (Π·, ����·,·) of OWP to OWF:

6 / 16

BB Reduction “Relativises”...
BB reduction (Π·, ����·,·) of OWP to OWF:

(Π·, ����·,·) works relative to any oracle O : {�, �}∗ → {�, �}∗
World where all parties have access to O

6 / 16

BB Reduction “Relativises”...
BB reduction (Π·, ����·,·) of OWP to OWF:

(Π·, ����·,·) works relative to any oracle O : {�, �}∗ → {�, �}∗
World where all parties have access to O

BB reduction (Π·,·, ����·,·,·) of OWP to OWF, relative to O:

6 / 16

BB Reduction “Relativises”...
BB reduction (Π·, ����·,·) of OWP to OWF:

(Π·, ����·,·) works relative to any oracle O : {�, �}∗ → {�, �}∗
World where all parties have access to O

BB reduction (Π·,·, ����·,·,·) of OWP to OWF, relative to O:

Claim 1 (Contrapositive)
(Π·,·, ����·,·,·) does not exist relative to some oracle O ⇒ (Π·, ����·,·)
does not exist 6 / 16

BB Reduction “Relativises”...
PRG �O → computational OTP Π�

·,O

6 / 16

BB Reduction “Relativises”...
PRG �O → computational OTP Π�

·,O

Pseudocode 2 (Computational OTP Π�
·,O from PRG �O)

���(��): output � ← {�, �}�
���

�,O(� ,�): query �O on � to obtain � ; output � := � ⊕ �

���
�,O(� , �): query �O on � to obtain � ; output � := � ⊕ �

6 / 16

BB Reduction “Relativises”...
PRG �O → computational OTP Π�

·,O

Pseudocode 2 (Computational OTP Π�
·,O from PRG �O)

���(��): output � ← {�, �}�
���

�,O(� ,�): query �O on � to obtain � ; output � := � ⊕ �

���
�,O(� , �): query �O on � to obtain � ; output � := � ⊕ �

Proof by security reduction: ∃���Π·,·,O breaking Π�
·,O ⇒ ∃����

·,·
�

·,O.

6 / 16

BB Reduction “Relativises”...
PRG �O → computational OTP Π�

·,O

Pseudocode 2 (Computational OTP Π�
·,O from PRG �O)

���(��): output � ← {�, �}�
���

�,O(� ,�): query �O on � to obtain � ; output � := � ⊕ �

���
�,O(� , �): query �O on � to obtain � ; output � := � ⊕ �

Proof by security reduction: ∃���Π·,·,O breaking Π�
·,O ⇒ ∃����

·,·
�

·,O.

6 / 16

Plan for this Session

1 Black-Box Reduction

2 Black-Box Separation

3 Black-Box Separating OWF from OWP

7 / 16

Recall Our Landscape

8 / 16

Recall Our Landscape

8 / 16

Recall Our Landscape

8 / 16

Recall Our Landscape

What about OWF → OWP or OWF → PKE?
8 / 16

Recall Our Landscape

What about OWF → OWP or OWF → PKE? We don’t know
8 / 16

“Separating” OWF from OWP
Show that OWF exists but OWP doesn’t?

9 / 16

“Separating” OWF from OWP
Show that OWF exists but OWP doesn’t?

Both OWF and OWP are believed to exist
Implies � ̸= ��

9 / 16

“Separating” OWF from OWP
Show that OWF exists but OWP doesn’t?

Both OWF and OWP are believed to exist
Implies � ̸= ��

Instead show that there is no BB reduction of OWP to OWF

9 / 16

“Separating” OWF from OWP
Show that OWF exists but OWP doesn’t?

Both OWF and OWP are believed to exist
Implies � ̸= ��

Instead show that there is no BB reduction of OWP to OWF
We must show (by negating Defintion 1) that:

1 for every BB reduction (Π·,����·,·) of OWP to OWF
2 there exists a OWF F and a OWP-inverter ����· such that
3 ���� inverts ΠF but ��������,F does not invert F

9 / 16

“Separating” OWF from OWP
Show that OWF exists but OWP doesn’t?

Both OWF and OWP are believed to exist
Implies � ̸= ��

Instead show that there is no BB reduction of OWP to OWF
We must show (by negating Defintion 1) that:

1 for every BB reduction (Π·,����·,·) of OWP to OWF
2 there exists a OWF F and a OWP-inverter ����· such that
3 ���� inverts ΠF but ��������,F does not invert F

By Claim 1, suffices to show there exists oracle O such that:
1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 there exists a OWF FO and a OWP-inverter ����·,O such that
3 ����

·,O inverts ΠF,O but ��������,F,O does not invert FO

9 / 16

Plan for this Lecture

1 Black-Box Reduction

2 Black-Box Separation

3 Black-Box Separating OWF from OWP

9 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

Step I: design query-learning ���� that efficiently breaks
OWP ΠF given access to O

Idea: exploit the fact that ΠF is a permutation for any F

10 / 16

High-Level Idea of the Separation
We will come up with a “helper” oracle O such that

1 for every BB reduction (Π·,O,����·,·,O) of OWP to OWF
2 for random oracle F and “query-learning” ����·,O

3 ����
·,O inverts ΠF,O but ��������,F,O does not invert FO

Step I: design query-learning ���� that efficiently breaks
OWP ΠF given access to O

Idea: exploit the fact that ΠF is a permutation for any F
Step II: show ���� can’t break random oracle F even given O

Idea: random oracle output is unpredictable ⇒ one-wayness
10 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}

11 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′): F(�) = F′(�)

11 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′): F(�) = F′(�)
Consistent LF and LF′ can be “merged” into LF+ := LF ∪ LF′

11 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′): F(�) = F′(�)
Consistent LF and LF′ can be “merged” into LF+ := LF ∪ LF′

CF,�: query-answer pairs involved in computing ΠF(�) for somefunction F and input � (in F’s domain)
Q(CF,�): set of queries in CF,� , i.e., {� : (�, �) ∈ CF,�}

11 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′): F(�) = F′(�)
Consistent LF and LF′ can be “merged” into LF+ := LF ∪ LF′

CF,�: query-answer pairs involved in computing ΠF(�) for somefunction F and input � (in F’s domain)
Q(CF,�): set of queries in CF,� , i.e., {� : (�, �) ∈ CF,�}
ΠF(�) is determined once CF,� fixed
Π is efficient ⇒ for every � and F, |CF,� | is polynomial

11 / 16

Step I: Design Query-Learning ����...
Notation/observations:

LF: a list of query-response pairs of some function F
(�, �) ∈ LF ⇒ � = F(�)
Q(LF): set of queries in LF , i.e., {� : (�, �) ∈ LF}
LF′ consistent with LF if ∀� ∈ Q(LF) ∩ Q(LF′): F(�) = F′(�)
Consistent LF and LF′ can be “merged” into LF+ := LF ∪ LF′

CF,�: query-answer pairs involved in computing ΠF(�) for somefunction F and input � (in F’s domain)
Q(CF,�): set of queries in CF,� , i.e., {� : (�, �) ∈ CF,�}
ΠF(�) is determined once CF,� fixed
Π is efficient ⇒ for every � and F, |CF,� | is polynomial

Main observation: (partial F and F′ consistent) and
(ΠF(�) = ΠF′ (�′) = �) ⇒ Q(CF,�) ∩ Q(CF′,�′) ̸= ∅. Why?

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

3 Test � ′ on F: if ΠF(� ′) = � , output � ′ and halt
4 Query F with “fresh” queries Q∗ := Q(CF′,� ′) \ Q(LF) and add

these query-response pairs to LF

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

3 Test � ′ on F: if ΠF(� ′) = � , output � ′ and halt
4 Query F with “fresh” queries Q∗ := Q(CF′,� ′) \ Q(LF) and add

these query-response pairs to LF
5 Repeat from Step 2

11 / 16

Step I: Design Query-Learning ����...

Construction 2 (Query-learning inverter ����Π·,F,O(�))
1 Initiate list LF := ∅
2 Use O to find input � ′ & partial function F′ defined via LF′ s.t.:

1 LF′ ⊇ LF: F′ is consistent with all we know so far about F
2 LF′ ⊇ CF′,�′ and ΠF′ (�′) = �: �′ is a valid inverse w.r.to. F′

3 Test � ′ on F: if ΠF(� ′) = � , output � ′ and halt
4 Query F with “fresh” queries Q∗ := Q(CF′,� ′) \ Q(LF) and add

these query-response pairs to LF
5 Repeat from Step 2

Lemma 2
If O = ������, ���� outputs � : ΠF(�) = � in polynomial time

11 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
1 Claim 1: ���� outputs � such that ΠF(�) = � and halts

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
1 Claim 1: ���� outputs � such that ΠF(�) = � and halts

Sub-claim: Q∗ contains at least one query �
∗ ∈ Q(CF,� \ LF).

Why?

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
1 Claim 1: ���� outputs � such that ΠF(�) = � and halts

Sub-claim: Q∗ contains at least one query �
∗ ∈ Q(CF,� \ LF).

Why? Otherwise, possible to “merge” F and F′ into F+ such that
ΠF+ (� ′) = ΠF+ (�) = � . How?

Sub-claim ⇒ Claim 1 since |CF,�| is polynomial

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
2 Claim 2: ���� is efficient given access to (e.g.) ������ O.

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
2 Claim 2: ���� is efficient given access to (e.g.) ������ O.

Sub-claim: in Step 2 there must exist (�′, F′) s.t. ΠF′ (�′) = �

Why?

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
2 Claim 2: ���� is efficient given access to (e.g.) ������ O.

Sub-claim: in Step 2 there must exist (�′, F′) s.t. ΠF′ (�′) = �

Why? Π· is always a permutation
Only need to fix CF′,� ′ to determine ΠF′ (� ′) ⇒ suffices to fix
LF′ ⊇ CF′,� ′

12 / 16

Why does ���� Work?

Proof of Lemma 2 (���� outputs � : ΠF(�) = � in polynomial time).
2 Claim 2: ���� is efficient given access to (e.g.) ������ O.

Sub-claim: in Step 2 there must exist (�′, F′) s.t. ΠF′ (�′) = �

Why? Π· is always a permutation
Only need to fix CF′,� ′ to determine ΠF′ (� ′) ⇒ suffices to fix
LF′ ⊇ CF′,� ′

Framed as �� language: {(�, LF), (L′F, �′) : 2.1 and 2.2 holds}
What is ����’s run-time?

12 / 16

Step II: Show F is One-Way Even Given O
Claim 2
For any fixed, efficient ����·, the following is negligible

PrF,� [����F(F(�)) ∈ F−�(F(�))]

13 / 16

Step II: Show F is One-Way Even Given O
Claim 2
For any fixed, efficient ����·, the following is negligible

PrF,� [����F(F(�)) ∈ F−�(F(�))]

Proof idea: random oracles are unpredictable ⇒ one-wayness.
����

· efficient ⇒ ����
· can make a fixed polynomial number of

queries to �

����
· can only win if it queries an � ′ such that F(� ′) = F(�)

Probability of this event for its each query is exactly �/�|F(�)|
Claim follows by union bound over all its queries

13 / 16

Step II: Show F is One-Way Even Given O
Claim 2
For any fixed, efficient ����·, the following is negligible

PrF,� [����F(F(�)) ∈ F−�(F(�))]

Proof idea: random oracles are unpredictable ⇒ one-wayness.
����

· efficient ⇒ ����
· can make a fixed polynomial number of

queries to �

����
· can only win if it queries an � ′ such that F(� ′) = F(�)

Probability of this event for its each query is exactly �/�|F(�)|
Claim follows by union bound over all its queries

Exercise 2
Show that Claim 2 holds also with respect to the ������ oracle O.

13 / 16

What Else Has Been BB Separated?

Most primitives that don’t BB-reduce to each other!
14 / 16

What Else Has Been BB Separated?

Most primitives that don’t BB-reduce to each other!
14 / 16

What Else Has Been BB Separated?

Most primitives that don’t BB-reduce to each other!
14 / 16

To Recap Today’s Lecture

Black-box reductions and its limitations

15 / 16

To Recap Today’s Lecture

Black-box reductions and its limitations
Black-box separations

Formally defined what it means to separate one primitive from
another

15 / 16

To Recap Today’s Lecture

Black-box reductions and its limitations
Black-box separations

Formally defined what it means to separate one primitive from
another

Separated OWF from OWP
Key ideas:

Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn’t
Efficient query-set learning algorithm that exploits perfect
correctness of the construction
Random oracles are unpredictable, and hence one-way

15 / 16

Next Lecture

Friday (25/Oct): crib session for Quiz 2

16 / 16

Next Lecture

Friday (25/Oct): crib session for Quiz 2

Tuesday (29/Oct): Obfuscation I
Virtual black-box (VBB) obfuscationBypassing separation OWF and OWP using code of the OWF:

OWF VBB obfuscation−−−−−−−−→ OWP
Impossibility of VBB obfuscation for general programs
Way around: relax to indistinguishability obfuscation (IO)

16 / 16

References

1 This lecture is mostly based on [Rud84, RTV04, Yer11]
2 Formal definition of fully BB reduction can be found in

[RTV04, Yer11]. You can also find formal definitions of other
notions of reductions (semi-BB, relativising etc.) there

3 The black-box separation of OWF from OWP is from Rudich’s
thesis [Rud84]

4 For more discussion on relativising reductions, refer to [AB09,
§4.3]

16 / 16

Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.
Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Notions of reducibility between cryptographic primitives.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 1–20. Springer,
Heidelberg, February 2004.
Steven Rudich.
Limits on the Provable Consequences of One Way Functions.
PhD thesis, University of California at Berkeley, 1984.
Arkady Yerukhimovich.
A Study of Separations in Cryptography: New Results and Models.
PhD thesis, University of Maryland, College Park, 2011.

16 / 16

	Black-Box Reduction
	Black-Box Separation
	Black-Box Separating OWF from OWP

