

CS783: Theoretical Foundations of Cryptography

Lecture 21 (22/Oct/24)

Instructor: Chethan Kamath

Recall from Last Module

■ We saw several avatars of secure computation

- Focus today: limitations of *black-box reductions*

- Focus today: limitations of *black-box reductions*
 - Formalise black-box reduction of one primitive (e.g., PRF) to another (e.g., PRG) PRG → PRF
- Black-box *separations*
 - Certain primitives (e.g., PKE) *cannot* be "black-box reduced" to others (e.g., OWF) OWF -+> PKE

- Focus today: limitations of *black-box reductions*
 - Formalise black-box reduction of one primitive (e.g., PRF) to another (e.g., PRG) PRG → PRF
- Black-box separations
 - Certain primitives (e.g., PKE) *cannot* be "black-box reduced" to others (e.g., OWF) OWF → PKE
 - Formalise black-box separation
 - Separate OWF from OWP OWF +> OWP

- Focus today: limitations of *black-box reductions*
 - Formalise black-box reduction of one primitive (e.g., PRF) to another (e.g., PRG) PRG → PRF
- Black-box separations
 - Certain primitives (e.g., PKE) *cannot* be "black-box reduced" to others (e.g., OWF) OWF → PKE
 - Formalise black-box separation
 - Separate OWF from OWP OWF → OWP

Later:

Code obfuscation

- Focus today: limitations of *black-box reductions*

- Formalise black-box reduction of one primitive (e.g., PRF) to another (e.g., PRG) PRG → PRF
- Black-box separations
 - Certain primitives (e.g., PKE) *cannot* be "black-box reduced" to others (e.g., OWF) OWF → PKE
 - Formalise black-box separation
 - Separate OWF from OWP OWF → OWP

Later:

- Code obfuscation
- 2 #include +lottrase 3 4 int main(int argc, char *argv[]) 5 (6 std::cout << "Not prime.ln"; 7)
- How to formalise security?
 - Virtual black-box (VBB) and indistinguishability obfuscator (IO)

- Focus today: limitations of *black-box reductions*

- Formalise black-box reduction of one primitive (e.g., PRF) to another (e.g., PRG) PRG → PRF
- Black-box separations
 - Certain primitives (e.g., PKE) *cannot* be "black-box reduced" to others (e.g., OWF) OWF → PKE
 - Formalise black-box separation
 - Separate OWF from OWP DWF → DWP

Later:

- Code obfuscation
- How to formalise security?
 - Virtual black-box (VBB) and indistinguishability obfuscator (IO)
- Code obfuscation is powerful
 - Helps bypass certain black-box separations (e.g., OWF → PKE)
 - $IO \rightarrow most cryptographic primitives!$

Plan for Today's Lecture

1 Black-Box Reduction \rightarrow

2 Black-Box Separation +>

3 Black-Box Separating OWF from OWP OWF -+> OWP

Plan for Today's Lecture

1 Black-Box Reduction \rightarrow

2 Black-Box Separation -+>

3 Black-Box Separating OWF from OWP OWF ---- OWP

Recall Our First Cryptographic Reduction

Recall Our First Cryptographic Reduction

3/16

Recall Our First Cryptographic Reduction

Pseudocode 1 (of Π^{G}) is denotes oracle/black-box access to G

Gen
$$(1^n)$$
: output $k \leftarrow \{0, 1\}^r$

- $Enc^{G}(k, m)$: query G on k to obtain y and output $c := y \oplus m$
- $Dec^{G}(k, c)$: query G on k to obtain y and output $m := y \oplus c$

Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Security reduction D (+analysis) uses G and Eve as black box

- Only needs query access to **G** and **Eve**: D^{G,Eve}
- Does not depend on exact implementation of G and Eve

Our Reductions So Far Have All Been "Black Box"...

- 1 PRG \rightarrow PRF (GGM construction)
- 2 PRF \rightarrow CPA-SKE
- **3** OWP \rightarrow hardcore predicate (Goldreich-Levin construction)
- 4 $\mathsf{PRF} \to \mathsf{MAC}$
- 5 TDP \rightarrow PKE
- 6 Commitment \rightarrow Computational ZKP for NP (Blum's protocol)
- **7** OT \rightarrow 2PC (GMW protocol)

■ *Both* construction and security reduction are black-box

Both construction and security reduction are black-box Definition 1 ((Fully) black-box (BB) reduction of OWP to OWF) A pair of efficient oracle-algorithms (Π^{i} , Flnvⁱ) such that

Both construction and security reduction are black-box

Definition 1 ((Fully) black-box (BB) reduction of OWP to OWF) A pair of efficient oracle-algorithms (Π^{i} , Flnvⁱ) such that

1 Correctness: for every function F, construction Π^{F} is permutation

Both construction and security reduction are black-box

Definition 1 ((Fully) black-box (BB) reduction of OWP to OWF) A pair of efficient oracle-algorithms (Π^{i} , Flnvⁱ) such that

1 *Correctness: for every function* F*, construction* Π^{F} *is* permutation

2 Security: for every one-way F and for every OWP-inverter Plnv that inverts Π^{F} , the security reduction $Flnv^{Plnv,F}$ inverts F

■ *Both* construction and security reduction are black-box

Definiton 1 ((Fully) black-box (BB) reduction of OWP to OWF)

A pair of efficient oracle-algorithms (II, Finver) denotes that

1 Correctness: for every function F, construction Π^{F} is permutation

2 Security: for every one-way F and for every OWP-inverter Plnv that inverts Π^{F} , the security reduction $Flnv^{Plnv,F}$ inverts F

Exercise 1

Formulate the general definition for any two primitives ${\cal P}$ and ${\cal Q}$

BB reduction (Π^{\cdot} , **FInv**^{γ}) of OWP to OWF:

BB reduction (Π^{\cdot} , Flnv^{·,·}) of OWP to OWF:

■ BB reduction (Π⁻, Flnv^{-,-}) of OWP to OWF:

■ (Π , Flnv^{*}) works *relative* to any oracle O : {0,1}* → {0,1}* ■ World where all parties have access to O

B B reduction (Π^{i_1} , **F**Inv^(i_1)) of OWP to OWF, relative to **O**:

■ (Π , Flnv^{*}) works *relative* to any oracle O : {0,1}* → {0,1}* ■ World where all parties have access to O

B B reduction (Π^{i_1} , **F**Inv^(i_1)) of OWP to OWF, relative to **O**:

Claim 1 (Contrapositive)

 $(\Pi^{\cdot,\cdot}, \mathsf{FInv}^{\cdot,\cdot,\cdot})$ does not exist relative to some oracle $\mathsf{O} \Rightarrow (\Pi^{\cdot}, \mathsf{FInv}^{\cdot,\cdot})$ does not exist

• PRG $G^0 \rightarrow$ computational OTP $\Pi^{G^*,0}$

■ PRG $G^0 \rightarrow \text{computational OTP } \Pi^{G^*,0}$

Pseudocode 2 (Computational OTP $\Pi^{G^{\circ},0}$ from PRG G^{0})

- Gen (1^n) : output $k \leftarrow \{0, 1\}^n \prod \text{ passes G's 0-queries to 0}$
- $Enc^{G,O}(k, m)$: query G^{O} on k to obtain y; output $c := y \oplus m$
- $Dec^{G,O}(k, c)$: query G^O on k to obtain y; output $m := y \oplus c$

■ PRG $G^0 \rightarrow \text{computational OTP } \Pi^{G^*,0}$

Pseudocode 2 (Computational OTP $\Pi^{G^*,O}$ from PRG G^{O})

Gen(1ⁿ): output $k \leftarrow \{0, 1\}^n \prod \text{ passes } G's \quad 0 \text{ -queries to } 0$ Enc^{G,O}(k, m): query G^O on k to obtain y; output $c := y \oplus m$ Dec^{G,O}(k, c): query G^O on k to obtain y; output $m := y \oplus c$

■ PRG $G^0 \rightarrow \text{computational OTP } \Pi^{G^*,0}$

Pseudocode 2 (Computational OTP $\Pi^{G^*,O}$ from PRG G^{O})

Gen(1ⁿ): output $k \leftarrow \{0, 1\}^n \prod \text{ passes } G's \quad 0 \text{ -queries to } 0$ Enc^{G,O}(k, m): query G^O on k to obtain y; output $c := y \oplus m$ Dec^{G,O}(k, c): query G^O on k to obtain y; output $m := y \oplus c$

Plan for this Session

1 Black-Box Reduction \rightarrow

2 Black-Box Separation 🕂

3 Black-Box Separating OWF from OWP OWF → OWP

• What about $OWF \rightarrow OWP$ or $OWF \rightarrow PKE$?

• What about $OWF \rightarrow OWP$ or $OWF \rightarrow PKE$? We don't know
Show that OWF exists but OWP doesn't?

Show that OWF exists but OWP doesn't?
▲ Both OWF and OWP are believed to exist
▲ Implies P ≠ NP

Show that OWF exists but OWP doesn't?
▲ Both OWF and OWP are believed to exist
▲ Implies P ≠ NP

OWF -> OWP

■ Instead show that there is no BB reduction of OWP to OWF

Show that OWF exists but OWP doesn't? Both OWF and OWP are believed to exist Implies $P \neq NP$

OWF +> OWP

- Instead show that there is no BB reduction of OWP to OWF
- We must show (by negating Definiton 1) that:
 - \forall 1 for every BB reduction (Π° , Flnv $^{\circ}$) of OWP to OWF
 - 3 2 there exists a OWF F and a OWP-inverter Plnv such that
 - 3 PInv inverts Π^{F} but $FInv^{PInv,F}$ does not invert F

Show that OWF exists but OWP doesn't? Both OWF and OWP are believed to exist Implies $P \neq NP$

OWF +> OWP

- Instead show that there is no BB reduction of OWP to OWF
- We must show (by negating Definiton 1) that:
 - \forall 1 for every BB reduction (Π° , Flnv $^{\circ}$) of OWP to OWF
 - 3 2 there exists a OWF F and a OWP-inverter Plnv such that
 - 3 PInv inverts Π^{F} but $FInv^{PInv,F}$ does not invert F

Ð

- By Claim 1, suffices to show there exists oracle O such that:
 - \forall **1** for every BB reduction ($\Pi^{,0}$, **FInv**^{,,0}) of OWP to OWF
 - $_{3}$ 2 there exists a OWF F⁰ and a OWP-inverter Plnv ,0 such that
 - -3 Plnv^{,0} inverts $\Pi^{F,0}$ but Flnv^{Plnv,F,0} does not invert F⁰

Plan for this Lecture

1 Black-Box Reduction \rightarrow

2 Black-Box Separation +>

3 Black-Box Separating OWF from OWP OWF → OWP

> think of 0= PSPACE

■ We will come up with a "helper" oracle O such that

> think of 0= PSPACE

- We will come up with a "helper" oracle O such that
 - \forall 1 for every BB reduction ($\Pi^{\cdot,0}$, **FInv**^{\cdot,\cdot ,0}) of OWP to OWF
 - 3 2 for *random oracle* F and "query-learning" PInv ^{,0}

> think of 0= PSPACE

- We will come up with a "helper" oracle O such that
 - \forall 1 for every BB reduction ($\Pi^{,0}$, **FInv**^{,,,0}) of OWP to OWF
 - 3 2 for *random oracle* F and "query-learning" PInv ^{,0}

> think of 0= PSPACE

- We will come up with a "helper" oracle ڬ such that
 - \forall 1 for every BB reduction ($\Pi^{,0}$, **FInv**^{,,0}) of OWP to OWF
 - 3 2 for *random oracle* F and "query-learning" PInv ^{,0}

- 3 $PInv^{,0}$ inverts $\Pi^{F,0}$ but $FInv^{PInv,F,0}$ does not invert F^{0}

High-Level Idea of the Separation > think of 0= PSPACE ■ We will come up with a "helper" oracle O such that \forall 1 for every BB reduction ($\Pi^{,0}$, Flnv^{,,0}) of OWP to OWF 3 2 for random oracle F and "query-learning" Plnv^{.,0} OWP TT WORLD OWF Fworld y* We design O, F and Play

- 3 $PInv^{,0}$ inverts $\Pi^{F,O}$ but $FInv^{PInv,F,O}$ does not invert F^{O}

- 3 $PInv^{,0}$ inverts $\Pi^{F,0}$ but $FInv^{PInv,F,0}$ does not invert F^{0}

> think of 0= PSPACE

- We will come up with a "helper" oracle O such that
 - \forall 1 for every BB reduction ($\Pi^{,0}$, **FInv**^{,,0}) of OWP to OWF
 - 3 2 for *random oracle* F and "query-learning" PInv ^{,0}

- 3 $PInv^{,0}$ inverts $\Pi^{F,0}$ but $FInv^{PInv,F,0}$ does not invert F^{0}

- Step I: design query-learning PInv that *efficiently* breaks OWP Π^F given access to O
 - Idea: exploit the fact that Π^{F} is a permutation for *any* F

> think of 0= PSPACE

- We will come up with a "helper" oracle O such that
 - \forall 1 for every BB reduction ($\Pi^{,0}$, **FInv**^{,,0}) of OWP to OWF
 - 3 2 for *random oracle* F and "query-learning" PInv ^{,0}

- 3 $PInv^{,0}$ inverts $\Pi^{F,0}$ but $FInv^{PInv,F,0}$ does not invert F^{0}

■ Step I: design query-learning PInv that *efficiently* breaks OWP Π^F given access to O

• Idea: exploit the fact that Π^{F} is a permutation for *any* F

- Step II: show FInv can't break random oracle F even given O
 - \blacksquare Idea: random oracle output is unpredictable \Rightarrow one-wayness

- Notation/observations:
 - \blacksquare \mathcal{L}_{F} : a list of query-response pairs of some function F
 - $\blacksquare (q, r) \in \mathcal{L}_{F} \Rightarrow r = F(q)$
 - $\blacksquare \ \mathrm{Q}(\mathcal{L}_{\mathsf{F}}): \text{ set of } queries \text{ in } \mathcal{L}_{\mathsf{F}}, \text{ i.e., } \{q: (q, r) \in \mathcal{L}_{\mathsf{F}}\}$

- Notation/observations:
 - \blacksquare \mathcal{L}_{F} : a list of query-response pairs of some function F
 - $\blacksquare (q, r) \in \mathcal{L}_{F} \Rightarrow r = F(q)$
 - $Q(\mathcal{L}_{\mathsf{F}})$: set of *queries* in \mathcal{L}_{F} , i.e., $\{q : (q, r) \in \mathcal{L}_{\mathsf{F}}\}$
 - $\bigtriangleup \mathcal{L}_{\mathsf{F}'}$ consistent with \mathcal{L}_{F} if $\forall q \in Q(\mathcal{L}_{\mathsf{F}}) \cap Q(\mathcal{L}_{\mathsf{F}'})$: $\mathsf{F}(q) = \mathsf{F}'(q)$

 \blacksquare \mathcal{L}_{F} : a list of query-response pairs of some function \models

$$\blacksquare (q, r) \in \mathcal{L}_{\mathbb{F}} \Rightarrow r = \mathbb{F}(q)$$

- $Q(\mathcal{L}_{\mathsf{F}})$: set of *queries* in \mathcal{L}_{F} , i.e., $\{q: (q, r) \in \mathcal{L}_{\mathsf{F}}\}$

 ${}^{\textcircled{W}}$ Consistent \mathcal{L}_{F} and $\mathcal{L}_{F'}$ can be "merged" into $\mathcal{L}_{F^+} := \mathcal{L}_{F} \cup \mathcal{L}_{F'}$

Notation/observations:

 \blacksquare \mathcal{L}_{F} : a list of query-response pairs of some function \models

$$\blacksquare (q, r) \in \mathcal{L}_{\mathbb{F}} \Rightarrow r = \mathbb{F}(q)$$

- $Q(\mathcal{L}_{\mathsf{F}})$: set of *queries* in \mathcal{L}_{F} , i.e., $\{q: (q, r) \in \mathcal{L}_{\mathsf{F}}\}$

 ${}^{\textcircled{W}}$ Consistent \mathcal{L}_{F} and $\mathcal{L}_{F'}$ can be "merged" into $\mathcal{L}_{F^+}:=\mathcal{L}_{F}\cup\mathcal{L}_{F'}$

- $C_{F,x}$: query-answer pairs involved in *computing* $\Pi^{F}(x)$ for some function F and input x (in F's domain)
 - $\blacksquare Q(\mathcal{C}_{\mathsf{F},x}): \text{ set of } queries \text{ in } \mathcal{C}_{\mathsf{F},x}, \text{ i.e., } \{q: (q, r) \in \mathcal{C}_{\mathsf{F},x}\}$
 - $\overset{\circ}{W}$ $\Pi^{F}(x)$ is determined once $\mathcal{C}_{F,x}$ fixed
 - \mathfrak{W} Π is efficient \Rightarrow for every x and F, $|\mathcal{C}_{\mathsf{F},x}|$ is polynomial

Notation/observations:

 \blacksquare \mathcal{L}_{F} : a list of query-response pairs of some function \models

$$\blacksquare (q, r) \in \mathcal{L}_{\mathbb{F}} \Rightarrow r = \mathbb{F}(q)$$

- $Q(\mathcal{L}_{F})$: set of *queries* in \mathcal{L}_{F} , i.e., $\{q : (q, r) \in \mathcal{L}_{F}\}$

 $\check{\mathbb{U}}$ Consistent \mathcal{L}_{F} and $\mathcal{L}_{F'}$ can be "merged" into $\mathcal{L}_{F^+}:=\mathcal{L}_{F}\cup\mathcal{L}_{F'}$

- $C_{F,x}$: query-answer pairs involved in *computing* $\Pi^{F}(x)$ for some function F and input x (in F's domain)
 - Q($C_{F,x}$): set of *queries* in $C_{F,x}$, i.e., $\{q : (q, r) \in C_{F,x}\}$ ③ $\Pi^{F}(x)$ is determined once $C_{F,x}$ fixed

 $\overset{\text{(I)}}{\textcircled{\mathbb{U}}} \Pi \text{ is efficient } \Rightarrow \text{ for every } x \text{ and } F, |\mathcal{C}_{F,x}| \text{ is polynomial} \\ \overset{\text{(I)}}{\textcircled{\mathbb{U}}} Main \text{ observation: (partial F and F' consistent) and} \\ (\Pi^{F}(x) = \Pi^{F'}(x') = y) \Rightarrow Q(\mathcal{C}_{F,x}) \cap Q(\mathcal{C}_{F',x'}) \neq \emptyset. Where W$

Strategy: learn at least one new query from CF,x per round

Construction 2 (Query-learning inverter $PInv^{\Pi^{*},F,O}(\chi)$, $y=\pi^{F}(\alpha)$

Strategy: learn at least one new query from $C_{F,X}$ per round $P_{F,X}$ per round Construction 2 (Query-learning inverter $PInv^{\Pi;F,O}(y)$), $y=TT^{F}(x)$

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{F} := \emptyset$ query-answer poirs of F we have learner so for

Step I: Design Query-Learning Plnv \bigvee strategy: learn at least one new query from $C_{F,X}$ per round

Construction 2 (Query-learning inverter $PInv^{\Pi,F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

2 Use O to find input x' & partial function ${\mathbb F}$ defined via ${\mathcal L}_{{\mathbb F}}$ s.t.:

- 1 $\mathcal{L}_{\overline{P}} \supseteq \mathcal{L}_{\overline{F}}$: \overline{P} is consistent with all we know so far about $\overline{\mathbb{P}}$
- 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',x'}$ and $\Pi^{\mathbf{F}'}(x') = y$: x' is a valid inverse w.r.to. \mathbf{F}'

Strategy: learn at least one new query from CF,x per round

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

2 Use O to find input x' & partial function \mathbf{F} defined via $\mathcal{L}_{\mathbf{F}}$ s.t.:

- 1 $\mathcal{L}_{\overline{P}} \supseteq \mathcal{L}_{\overline{F}}$: \overline{P} is consistent with all we know so far about \overline{P}
- 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}', \mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

2 Use O to find input x' & partial function \blacksquare defined via $\mathcal{L}_{\blacksquare}$ s.t.:

- 1 $\mathcal{L}_{\overline{\mathbb{P}}} \supseteq \mathcal{L}_{\overline{\mathbb{F}}}$: $\overline{\mathbb{P}}$ is consistent with all we know so far about $\overline{\mathbb{P}}$
- 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}', \mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'

Step I: Design Query-Learning Plnv \bigvee strategy: learn at least one new query from $C_{F,x}$ per round

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

- 1 Initiate list $\mathcal{L}_{\mathsf{F}} := \emptyset$
- 2 Use O to find input x' & partial function \blacksquare' defined via $\mathcal{L}_{\blacksquare'}$ s.t.: 1 $\mathcal{L}_{\blacksquare'} \supseteq \mathcal{L}_{\blacksquare'} \vDash''$ is consistent with all we know so far about \blacksquare' 2 $\mathcal{L}_{\blacksquare'} \supseteq \mathcal{C}_{\blacksquare',x'}$ and $\Pi^{\blacksquare'}(x') = y$: x' is a valid inverse w.r.to. \blacksquare'
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries $Q^* := Q(C_{F',x'}) \setminus Q(\mathcal{L}_F)$ and add these query-response pairs to \mathcal{L}_F

Step I: Design Query-Learning Plnv \bigvee strategy: learn at least one new query from $C_{F,X}$ per round

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

- 1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$
- 2 Use O to find input x' & partial function \blacksquare' defined via $\mathcal{L}_{\blacksquare'}$ s.t.: 1 $\mathcal{L}_{\blacksquare'} \supseteq \mathcal{L}_{\blacksquare'} \vDash is consistent with all we know so far about \blacksquare$ $2 <math>\mathcal{L}_{\blacksquare'} \supseteq \mathcal{C}_{\blacksquare',x'}$ and $\Pi^{\square'}(x') = y$: x' is a valid inverse w.r.to. \blacksquare'
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries $Q^* := Q(C_{F',x'}) \setminus Q(\mathcal{L}_F)$ and add these query-response pairs to \mathcal{L}_F
- 5 Repeat from Step 2

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

- 1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$
- 2 Use O to find input x' & partial function \mathbf{F}' defined via $\mathcal{L}_{\mathbf{F}'}$ s.t.: 1 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{L}_{\mathbf{F}}$: \mathbf{F}' is consistent with all we know so far about \mathbf{F}' 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',\mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries $Q^* := Q(C_{F',x'}) \setminus Q(\mathcal{L}_F)$ and add these query-response pairs to \mathcal{L}_F
- 5 Repeat from Step 2

Lemma 2

If O = PSPACE, PInv outputs $x : \Pi^{F}(x) = y$ in polynomial time

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

- 2 Use O to find input x' & partial function \mathbf{F} defined via $\mathcal{L}_{\mathbf{F}}$ s.t.:
 - 1 $\mathcal{L}_{E} \supseteq \mathcal{L}_{E} \stackrel{e}{\mapsto} is consistent with all we know so far about <math display="inline">\stackrel{e}{\vdash}$
 - 2 $\mathcal{L}_{F'} \supseteq \mathcal{C}_{F',x'}$ and $\Pi^{F'}(x') = y$: x' is a valid inverse w.r.to. F'
- 3 Test x' on F: if $\Pi^{\mathsf{F}}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (**Plnv** outputs $x : \Pi^{F}(x) = y$ in polynomial time).

1 Claim 1: PInv outputs x such that $\Pi^{F}(x) = y$ and halts

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

- 2 Use O to find input x' & partial function $\overrightarrow{\mathsf{P}}$ defined via $\mathcal{L}_{\overrightarrow{\mathsf{P}}}$ s.t.:
 - 1 $\mathcal{L}_{\overline{\mathbb{P}}} \supseteq \mathcal{L}_{\overline{\mathbb{P}}}$ is consistent with all we know so far about $\overline{\mathbb{P}}$
 - 2 $\mathcal{L}_{F'} \supseteq \mathcal{C}_{F',x'}$ and $\Pi^{F'}(x') = y$: x' is a valid inverse w.r.to. F'
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (**Plnv** outputs $x : \Pi^{F}(x) = y$ in polynomial time).

Claim 1: Plnv outputs x such that Π^F(x) = y and halts
 Sub-claim: Q^{*} contains at least one query q^{*} ∈ Q(C_{F,x} \ L_F).
 Whu?

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

- 2 Use O to find input x' & partial function ♥ defined via L₁ s.t.:
 - 1 $\mathcal{L}_{\overline{\mathbb{P}}} \supseteq \mathcal{L}_{\overline{\mathbb{P}}} \stackrel{\mathbb{P}}{=} is consistent with all we know so far about <math>\overline{\mathbb{P}}$
 - 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',\mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'
- 3 Test x' on F: if $\Pi^{\mathsf{F}}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries \mathbf{Q} := Q($\mathcal{C}_{F',\mathbf{x}'}$) \ Q(\mathcal{L}_F) and add these query-response pairs to \mathcal{L}_F

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs $x : \Pi^{F}(x) = y$ in polynomial time).

1 Claim 1: Plnv outputs x such that $\Pi^{\mathsf{F}}(x) = y$ and halts Sub-claim: \mathbb{Q}^* contains at least one query $q^* \in Q(\mathcal{C}_{\mathsf{F},x} \setminus \mathcal{L}_{\mathsf{F}})$. (Why? Otherwise, possible to "merge" \mathbb{F} and \mathbb{P} into \mathbb{F}^* such that (OlliSiON) $\longrightarrow \Pi^{\mathsf{F}^+}(x') = \Pi^{\mathsf{F}^+}(x) = y$. How?

• Sub-claim \Rightarrow Claim 1 since $|\mathcal{C}_{F,x}|$ is polynomial

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

- 2 Use O to find input x' & partial function ${\mathbb F}$ defined via ${\mathcal L}_{{\mathbb F}}$ s.t.:
 - 1 $\mathcal{L}_{\overline{\mathbb{P}}} \supseteq \mathcal{L}_{\overline{\mathbb{P}}} \stackrel{\mathbb{P}}{=} is consistent with all we know so far about <math>\overline{\mathbb{P}}$
 - 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',\mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs $x : \Pi^{F}(x) = y$ in polynomial time).

2 Claim 2: PInv is efficient given access to (e.g.) PSPACE O.

Construction 2 (Query-learning inverter $PInv^{\Pi^{\circ},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

2) Use 🔾 to find input x' & partial function 🖻 defined via $\mathcal{L}_{ extsf{eq}}$ s.t.:

- 1 \mathcal{L}_{\models} ⊇ \mathcal{L}_{\models} \models is consistent with all we know so far about ⊨
- 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',\mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'
- 3 Test x' on F: if $\Pi^{\mathsf{F}}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs $x : \Pi^{F}(x) = y$ in polynomial time).

2 Claim 2: PInv is efficient given access to (e.g.) PSPACE O.
 ■ Sub-claim: in Step 2 there must exist (x', F') s.t. Π^{F'}(x') = y
 @ Why?

Construction 2 (Query-learning inverter $PInv^{\Pi^{+},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

- 2) Use O to find input x′ & partial function ₱′ defined via Lee s.t.:
 - 1 $\mathcal{L}_{\overline{\mathbb{P}}} \supseteq \mathcal{L}_{\overline{\mathbb{P}}} \stackrel{\mathbb{P}}{=} is consistent with all we know so far about <math>\overline{\mathbb{P}}$
 - 2 $\mathcal{L}_{\mathbf{F}'} \supseteq \mathcal{C}_{\mathbf{F}',\mathbf{x}'}$ and $\Pi^{\mathbf{F}'}(\mathbf{x}') = \mathbf{y}$: \mathbf{x}' is a valid inverse w.r.to. \mathbf{F}'
- 3 Test x' on F: if $\Pi^F(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs $x : \Pi^{F}(x) = y$ in polynomial time).

- 2 Claim 2: PInv is efficient given access to (e.g.) PSPACE O.
 - Sub-claim: in Step 2 there must exist (x', F') s.t. $\Pi^{F'}(x') = y$
 - Why? П⁻ is always a permutation
 - Only need to fix $C_{F',x'}$ to determine $\Pi^{F'}(x') \Rightarrow$ suffices to fix $\mathcal{L}_{F'} \supseteq C_{F',x'}$

Construction 2 (Query-learning inverter $PInv^{\Pi^{+},F,O}(y)$)

1 Initiate list $\mathcal{L}_{\mathbf{F}} := \emptyset$

2) Use O to find input x' & partial function ଟ defined via $\mathcal{L}_{igstarrow}$ s.t.:

- $\begin{array}{c|c} \underline{1} & \mathcal{L}_{\overline{\mathbf{P}}} \supseteq \mathcal{L}_{\overline{\mathbf{F}}}; \stackrel{\underline{P}'}{\Longrightarrow} is consistent with all we know so far about [F] \\ \underline{2} & \mathcal{L}_{\overline{\mathbf{P}}} \supseteq \mathcal{C}_{\overline{\mathbf{F}}',\mathbf{x}'} and \prod^{\underline{P}'}(\mathbf{x}') = \mathbf{y}; \mathbf{x}' is a valid inverse w.r.to. [F'] \end{array}$
- 3 Test x' on F: if $\Pi^{F}(x') = y$, output x' and halt
- 4 Query F with "fresh" queries Q:= Q($C_{F',x'}$) \ Q(L_F) and add these query-response pairs to L_F

5 Repeat from Step 2

Proof of Lemma 2 (PInv outputs $x : \Pi^{F}(x) = y$ in polynomial time).

2 Claim 2: PInv is efficient given access to (e.g.) PSPACE O.

- Sub-claim: in Step 2 there must exist (x', F') s.t. $\Pi^{F'}(x') = y$
 - Why? Π⁻ is always a permutation
 - Only need to fix $C_{F',x'}$ to determine $\Pi^{F'}(x') \Rightarrow$ suffices to fix $\mathcal{L}_{F'} \supseteq C_{F',x'}$

• Framed as NP language: $\{(y, \mathcal{L}_F), (\mathcal{L}'_F, x') : 2.1 \text{ and } 2.2 \text{ holds}\}$ (What is PInv's run-time?
Step II: Show F is One-Way Even Given O

Claim 2

For any fixed, efficient Flnv^{*}, the following is negligible

 $\Pr_{\mathsf{F},x}[\mathsf{FInv}^{\mathsf{F}}(\mathsf{F}(x)) \in \mathsf{F}^{-1}(\mathsf{F}(x))]$

Step II: Show F is One-Way Even Given O

Claim 2

For any fixed, efficient Flnv⁻, the following is negligible

$$\Pr_{\mathsf{F},x}[\mathsf{FInv}^{\mathsf{F}}(\mathsf{F}(x)) \in \mathsf{F}^{-1}(\mathsf{F}(x))]$$

Proof idea: random oracles are unpredictable \Rightarrow one-wayness.

- FInv⁻ efficient ⇒ FInv⁻ can make a fixed polynomial number of queries to F
- **Finv** can only win if it queries an x' such that F(x') = F(x)
- Probability of this event for its each query is exactly $1/2^{|F(x)|}$
- Claim follows by union bound over all its queries

Step II: Show F is One-Way Even Given O

Claim 2

For any fixed, efficient Flnv⁻, the following is negligible

$$\Pr_{\mathsf{F},x}[\mathsf{FInv}^{\mathsf{F}}(\mathsf{F}(x)) \in \mathsf{F}^{-1}(\mathsf{F}(x))]$$

Proof idea: random oracles are unpredictable \Rightarrow one-wayness.

- FInv[·] efficient ⇒ FInv[·] can make a fixed polynomial number of queries to F
- **Finv** can only win if it queries an x' such that F(x') = F(x)
- Probability of this event for its each query is exactly $1/2^{|F(x)|}$
- Claim follows by union bound over all its queries

Exercise 2

Show that Claim 2 holds also with respect to the PSPACE oracle O.

What Else Has Been BB Separated?

■ Most primitives that don't BB-reduce to each other!

What Else Has Been BB Separated?

■ Most primitives that don't BB-reduce to each other!

What Else Has Been BB Separated?

■ Most primitives that don't BB-reduce to each other!

To Recap Today's Lecture

Black-box reductions and its limitations

To Recap Today's Lecture

- Black-box reductions and its limitations
- Black-box *separations*
 - Formally defined what it means to separate one primitive from another

To Recap Today's Lecture

- Black-box reductions and its limitations
- Black-box separations
 - Formally defined what it means to separate one primitive from another
- Separated OWF from OWP
- Key ideas:
 - Black-box reduction relativises: suffices to come up with an "oracle world" O where OWF exists but OWP doesn't
 - Efficient query-set learning algorithm that exploits perfect correctness of the construction
 - Random oracles are unpredictable, and hence one-way

Next Lecture

■ Friday (25/Oct): crib session for Quiz 2

Next Lecture

■ Friday (25/Oct): crib session for Quiz 2

Tuesday (29/Oct): Obfuscation I

- Virtual black-box (VBB) obfuscation
- Bypassing separation OWF and OWP using code of the OWF:

■ OWF <u>VBB obfuscation</u> OWP

- Impossibility of VBB obfuscation for general programs
- Way around: relax to indistinguishability obfuscation (IO)

References

- 1 This lecture is mostly based on [Rud84, RTV04, Yer11]
- Formal definition of fully BB reduction can be found in [RTV04, Yer11]. You can also find formal definitions of other notions of reductions (semi-BB, relativising etc.) there
- The black-box separation of OWF from OWP is from Rudich's thesis [Rud84]
- For more discussion on relativising reductions, refer to [AB09, §4.3]

Sanjeev Arora and Boaz Barak. *Computational Complexity - A Modern Approach.* Cambridge University Press, 2009.

Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryptographic primitives. In Moni Naor, editor, *TCC 2004*, volume 2951 of *LNCS*, pages 1–20. Springer, Heidelberg, February 2004.

Steven Rudich.

Limits on the Provable Consequences of One Way Functions. PhD thesis, University of California at Berkeley, 1984.

Arkady Yerukhimovich.

A Study of Separations in Cryptography: New Results and Models. PhD thesis, University of Maryland, College Park, 2011.