CS783: Theoretical Foundations of Cryptography

Lecture 21 (22/Oct/24)

Instructor: Chethan Kamath

Recall from Last Module

m We saw several avatars of secure computation

Zero-knowledge proofs Private computation of function

. Private outsourcin - Verifiable outsourcing
— "_ - - V‘.; I ° v
|sfs) ‘é. §Fgl é@
B B b

1/16

MOLE | MO 2 MODULE 3 MODE 4
(Shard heys) (Pubc %egs) Gewre wmp) (Ad\,_];qgk;)

For a lorge o of hiory

(*i\dvent o wkernet f’Ublqutkj of <0mrufn9

V!
G -
g @ agll
305" ”/%()5‘:{ ~0010s B . QJP&SU\E

2/16

— Focus today: limitations of black-box reductions

2/16

Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions

m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG) P&G — V&F

m Black-box separations

m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF) DWF —» pre

2/16

Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions
m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG) P&G — V&F
m Black-box separations

m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF) DWF —» pre

m Formalise black-box separation

m Separate OWF from OWP DWF — OWP

2/16

Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions
m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG) P&G — V&F
m Black-box separations

m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF) DWF —» pre

m Formalise black-box separation

m Separate OWF from OWP DWF — OWP

m Later:

. |
m Code obfuscation

2/16

Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions
m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG) P&G — V&F
m Black-box separations
m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF) DWF —» pre

m Formalise black-box separation
m Separate OWF from OWP DWF — OWP

m Later: \\ ,,,,,,,,)
m Code obfuscation = <
m How to formalise security?

m Virtual black-box (VBB) and indistinguishability obfuscator (10)

2/16

Plan for Next Three Lectures...

— Focus today: limitations of black-box reductions
m Formalise black=box reduction of one primitive (e.g, PRF) to
another (e.g, PRG) P&G — V&F
m Black-box separations
m Certain primitives (e.q, PKE) éannot be “black=box reduced" to
others (e.g, OWF) DWF —» pre

m Formalise black-box separation
m Separate OWF from OWP DWF — OWP

m Later: | e
m Code obfuscation © Co
m How to formalise security?
m Virtual black-box (VBB) and indistinguishability obfuscator (10)
m Code obfuscation is powerful

m Helps bypass certain black-box separations (e.g, OWF - PKE)
m |O — most cryptographic primitives!

2/16

1 Black-Box Reduction —
2 Black-Box Separation -+»

3 Black-Box Separating OWF from OWP OWF -+ OWP

2/16

1 Black-Box Reduction —
2 Black-Box Separation —+

3 Black-Box Separating OWF from OWP OWF —+» OWP

2/16

Recall Our First Cryptographic Reduction

Construction 1 (Computational OTP [T from PRG G)

: ’W)@m . l«<’f° g ﬂom%ﬁﬁ)@c
. e 3 oi C

c
a
[¢

3/16

Recall Our First Cryptographic Reduction

Construction 1 (Computational OTP [T from PRG G)

c ’G{k)@m ‘Oo, o l<</-f0 ﬂI o m3 %EW@C

B

m Construction 'l uses PRG G as a "black-box” ,‘

m Only needs query access to G
m Does not depend on exact implementation of G

= [

[¢

3/16

Recall Our First Cryptographic Reduction

Construction 1 (Computattonal OTP [1 from PRG G)

By

m Construction 'l uses PRG G as a "black-box” ,,

m Only needs query access to G
m Does not depend on exact implementation of G

= [

[¢

Pseudocode 1 (of M€) "\ denokes orade/Bods oo access & G

m Gen(1"): output k « {0,1}"
m Enc®(k, m): query'G on k to obtain y and output ¢ ==y & m
m Dec®(k, c): query'G on k to obtain y and output m = y & ¢

3/16

Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Proof by security reduction: 3Eve breaking 1 = 3D for G.

PAG World L. e vorld

ol

L Ca= LMy,

u) 0%

\44§514,444k44> 3 4 o

== u o)

Dtstmgmlsher ; 2
. Scwrkg Reduckion O

3/16

Recall Our First Cryptographic Reduction...

Theorem 1

Assuming G is a PRG, Construction 1 is computationally secret.

Proof by security reduction: 3Eve breaking 1 = 3D for G.

PAG (orld L e vorld
" befof

w o Cim w@w ﬁ

C C/

DIShﬂa\)lShef ‘
. Scwrkg Reduckion []

m Security reduction D (4+analysis) usesG and Eve as black box

m Only needsiquery access to G and Eve: D¢
m Does not depend on exact me[ementatton of G and Eve

3/16

Our Reductions So Far Have All Been “Black Box"..

1 PRG — PRF (GGM construction)

2 PRF — CPA-SKE

3 OWP — hardcore predicate (Goldreich-Levin construction)

4 PRF — MAC

5 TDP — PKE

6 Commitment — Computational ZKP for NP (Blum's protocol)
7 OT — 2PC (GMW protocol)

4/16

Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box

5/16

Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF
~ deneres oxade axguments

A pair of efficient oracle-algorithms (I'T", Flnv"") such that

5/16

Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF
~ deneres oxade axguments

A pair of efficient oracle-algorithms (I'T", Flnv"") such that

1 Correctness: for every function F, construction ne is

permutation
* ("'
Q
//; i
N

()

I

5/16

Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box

Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF

~ dendres orade arg e

A pair of efficient oracle-algorithms (I'T", Flnv"") such that

1 Correctness: for every function F, construction ne is

permutation

FFT B %[

I D L F

¢ \;\ y (\ @j\J

—_— - —_— -— “

SokEs o WG
Flnv L P

2 Security: for every one-way F and for every OWP-inverter
Plnv' that inverts 1", the security reduction Finv™"™" inverts F

5/16

Let's Formally Define (Fully) Black-Box Reduction

m Both construction and security reduction are black-box
Defintion 1 ((Fully) black-box (BB) reduction of OWP to OWF)
A pair of efficient oracle-algorithms (HW"&D%%BW argrents

1 Correctness: for every function F, construction ne is
permutation

r\\ - %~ >
4\ = — L F
. <m

O @P\)

Y Ol

2 Security: for every one-way F and for every OWP-inverter
Plnv' that inverts 17, the security reduction Finv™"™" inverts F

Exercise 1

Formulate the general definition for any two primitives P and Q

5/16

[BB reductton (ﬂ FInv) of OWP to OWF:

6/16

BB Reduction “Relativises”

m BB reductlon (ﬂ' FInv) of OWP to OWF:
B
@ i L, g f |
w20
= .. ‘.~~j“ E?\ J .

m (1, FInv"') works relative to any oracle 0" {0,1}" — {O 1}

m World where all parties have access to O

6/16

BB Reduction “Relativises”
[BB reductLon (I_I Flnv of OWP to OWF:
f_m CC) @

m ([T, Flnv"’) works relatzv.é.fbhéng oracle O': {0,1}" — {O 1}
m World where all parties have access to O

m BB reduction (I, Flnv) of OWP to OWF, relative to O:
%
o \/” 7] Vf vﬁ

6/16

BB Reduction “Relativises”

m BB reductLon (I_I FInv) of OWP to OWF:
| C W [S
ﬁf_‘ N Pt |

m (1, FInv"') works relative to any oracle 0" {0,1}" — {O 1}

m World where all parties have access to O

m BB reduction (I, Flnv) of OWP to OWF, relative to O:

o} \ /A%’ W - ﬁ 0} . B
SENETRE S) |

Flnv

Claim 1 (Contrapositive)

(I, Flnv'") does not exist relative to some oracle O = (I, FInv")

does not exist

1

6/16

m PRG G° — computational OTP 160

6/16

BB Reduction “Relativises”

m PRG G° — computational OTP 1¢©
Pseudocode 2 (Computational OTP %0 from PRG G°)

m Gen(1"): output k « {0,1}" 11 pases (s O-guedes to O
[EncG'O(k, m): query G® on k to obtain y, output ¢ ==y & m
[DecG'O(k, c): query GY on k to obtain y; output m:=y @ c

6/16

BB Reduction “Relativises”

m PRG G° — computational OTP 1¢©

Pseudocode 2 (Computational OTP %0 from PRG G°)

m Gen(1"): output k « {0/15 T passes G5 O-guedies to O
[EncG'O(k, m): query G® on k to obtain y, output ¢ ==y & m

m Dec®O(k, ¢): query GO on k to obtain y; output m ==y & c

Proof by security reduction: 3Eve"© breaking M¢:0 = 3
PAG World b

DEve"'G',O'
7 oetah SHE Wocld
a:;w@@/ I,
e . [
i e\ \
Ditingushner & %’/ _/C/“_j
“Sewrky: Reduckion

6/16

BB Reduction “Relativises”

m PRG G° — computational OTP 1¢©

Pseudocode 2 (Computational OTP %0 from PRG G°)

m Gen(1"): output k « {0/15 T passes G5 O-guedies to O
m Enc®O(k, m): query G° on k to obtain y; output ¢ ==y & m

m Dec®O(k, ¢): query GO on k to obtain y; output m ==y & c

Proof by security reductton EiEveH 0 breaking M°° = 3
PAG World

DEve"'G'O'
it SKE Wocld
 Ci= @@)mb " I,
/L“”\
| J(S) or r ‘ /mgm\
- O L e |
Diskingusher D %’/ e
“Sewrky: Reduckion

6/16

1 Black-Box Reduction —
2 Black-Box Separation >

3 Black-Box Separating OWF from OWP OWF —+> OWP

7116

hacder

Q\qr\abd s

m%s\n {um

e mnd fey- m\nange S

Puiyc - kc e n
rucured ' \ 3 W .
A ((%%omon\q

8/16

“Wincry pe

hacder
g‘qna@(as
e e
o lﬂetg —eiﬁh-ajg;;}%g T \rop
' poblic -key Y N 00ig"
. R TR o (ryplom

8/16

Recall Our Landscape

— B regoction

hacder
Lommmjrmeﬂk%
- mm l’\ag e(c\nange S @\#
Pu‘o\(keg Wtjﬂon ToP
drudviek o K or

N L\(LJPtQ Mg (\\q"

8/16

Recall Our Landscape

— BB redocton

CPﬁ‘S\éE MQ c “Minyc ry ?U’

hacder (PRP§ :
: PAG

(oo Wﬂ&% gw gnatues

- -(/ &?\JM—*";@ -

s mr\d tey- ex(c\r\cmge S

TN
o bobhe keg WWO ToP
drudviek o & or

N LY%P&Q g (\\q"

m What about OWF — OWP or OWF — PKE?

8/16

Recall Our Landscape

— BB redocton

CPﬁ‘%E MQ c “Minyc ry ?U’

hacder (PRP§ :
: PAG

{

Coram eren&% G £ > Sanatues

- -(/ &?\JM—*";@ -

wfma tey- ex(c\ncmge% k_ .
N

Pu‘om ke enurypaor)
drudviek o 3 EPO & or

N L\(LJPh) g (\\q"

m What about OWF — OWP or OWF — PKE? We don’t know

8/16

.Show that OWF exists but OWP doesn't?

9/16

“Separating” OWF from OWP

@ Show that OWF exists but OWP doesn't?
/\ Both OWF and OWP are believed to exist
/\lImplies P + NP

9/16

“Separating” OWF from OWP

@ Show that OWF exists but OWP doesn't?
/\ Both OWF and OWP are believed to exist
/\lImplies P # NP
OWF —+» DWP
m Instead show that there is no BB reduction of OWP to OWF

9/16

“Separating” OWF from OWP

@ Show that OWF exists but OWP doesn't?
/\ Both OWF and OWP are believed to exist
/\lImplies P + NP
OWF —» DWP
m Instead show that there is no BB reduction of OWP to OWF

m We must show (by negating Defintion 1) that:

f 1 for every BB reduction (I, Flnv') of OWP to OWF
3 2 there exists a OWF F and a OWP-inverter Plnv’ such that
— 3 Plnv inverts M7 but FInvP'"™ does not invert F

9/16

“Separating” OWF from OWP

@ Show that OWF exists but OWP doesn't?
/\ Both OWF and OWP are believed to exist
/\lImplies P + NP
OWF —» DWP
m Instead show that there is no BB reduction of OWP to OWF

m We must show (by negating Defintion 1) that:
f 1 for every BB reduction (I, Flnv') of OWP to OWF
J 2 there exists a OWF F and a OWP-inverter Plnv' such that
— 3 Plnv inverts M but FInv®'"™F does not invert F
3
m By Claim 1, suffices to show there exists oracle O such that:
\ 11 for every BB reduction (-9, Flnv©) of OWP to OWF

312 there exists a OWF F© and a OWP-inverter Plnv"® such that
—3 Plnv? inverts M0 but FinvP'™9 does not invert FO

9/16

1 Black-Box Reduction —
2 Black-Box Separation -+

3 Black-Box Separating OWF from OWP OWFE > 0P

9/16

7 !l! D! 0= !!M!

m We will come up with a “helper” oracle O such that

10/16

High-Level Idea of the Separation
7 Wik OF 0= PSERCE
m We will come up with a “helper” oracle O such that

¥ 11 for every BB reduction (M-, Flnv*°) of OWP to OWF
3 12 for random oracle F and "query-learning” Plnv©

10/16

s DY 0=
m We will come up with a “helper” oracle O such that

1 for every BB reduction (I'©, Flnv""°) of OWP to OWF
3 12 for random oracle F and “query-learning” Plny©

world : owWP T vorid
et @ o B
g AT

o=
<5 St
* e *

P Flnv

AC

10/16

High-Level Idea of the Separation
7 Wik OF 0= PSERCE

m We will come up with a “helper” oracle O such that

\ 1 for every BB reduction (M, Flnv"?) of OWP to OWF
312 for random orade F and ”querg learning” Plnv©

OW wrg owp T world
B¥

! %? Flav \@A

— 13 PInv? inverts I_IIEO but FInvP'""'F'O does not invert FO

10/16

High-Level Idea of the Separation
7 Wik OF 0= PSERCE

m We will come up with a “helper” oracle O such that

\ 11 for every BB reduction (M, Flnv"®) of OWP to OWF
312 for random oracle F and "query-learning” Plnv©

world OWP T world
OWF Fword FSﬁ@JM

e deSign BH
oF andPlov % /7?
Flnv _/J

— 13 PInv? inverts I_IIEO but FInvP'""'F'O does not invert FO

10/16

High-Level Idea of the Separation
7 Wik OF 0= PSERCE

m We will come up with a “helper” oracle O such that

\ 11 for every BB reduction (F#9, Flav*®) of OWP to OWF
312 for random oracle F and "query-learning” Plnv©

world OWP T world
OWF Fword FSﬁ@JM

e desigh L We ore given
o andPlv % /(7? - mond iy
Flnv _/J

— 13 PInv? inverts I_IIEO but FInvP'""'F'O does not invert FO

10/16

High-Level Idea of the Separation
-7 Wik D} 0= PSPRCE
m We will come up with a “helper” oracle O such that

\ 1 for every BB reduction (M, Flnv"?) of OWP to OWF
312 for random orade F and ”querg learning” Plnv©

OWF Fuorld F O OWP T Lorid
— ':“
* /(77‘ :

Flrw

— 13 PInv? inverts M9 but FInvP'"‘"F'O does not invert FO

m Step I: design query-learning Plnv that efficiently breaks
OWP " given access to O

m Idea: exploit the fact that 17 is a permutation for any F

10/16

High-Level Idea of the Separation
-7 Wik D} 0= PSPRCE
m We will come up with a “helper” oracle O such that

\ 1 for every BB reduction (M, Flnv"?) of OWP to OWF
312 for random oracle F and "query-learning” Plnv©

OWF Fuorid "N 0Wp T Lorld
SE N 0
X { |
P /(,}V?‘ S ¢+ 0

Flov _/,PM

— 13 PInv? inverts M9 but Flnv®'"™ O does not invert FO

m Step I: design query-learning Plnv that efficiently breaks
OWP " given access to O
m Idea: exploit the fact that 17 is a permutation for any F
m Step Il: show Flnv can't break random oracle F even given O
m |dea: random oracle output is unpredictable = one-wayness

10/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(q.r)c Ly =r=F(q)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}

@/@C@Q

F@)

11/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A L consistent with@Cp if Vg € Q(LF) N Q(Lr): F(q) = F'(q)

@J(OLF)Q QQQ‘L/‘F)

11/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@Cp if Vg € Q(Le) N Q(Le): F(q) = F'(q)
W Consistent Ly and L¢ can be "merged” into Le+ = L U Lpr

@J(OLF)Q QQQ‘L/‘F)

11/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@p if Vg € Q(LF) N Q(L): F(q) = F'(q)
ConsistentLr and Ly can be "merged” into Le+ = L U L

@J(OCF)Q §Q<)

q/
m Cr,: query-answer pairs involved in computing M (x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {q:(q.r) € Crx}

11/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Lp consistent with@p if Vg QL) N Q(Lp): F(g) = F'(q)
ConsistentLr and Ly can be "merged” into Le+ = L U L

@J(OCF)Q §Q<)

m Cr,: query-answer pairs ‘anolveqé in computing MNF(x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {qg:(q,r) € Crx}
0 M7 (x) is determined once Cr , fixed
W M is efficient = for every x and F, |Cr x| is polynomial

11/16

Step I: Design Query-Learning Plnv

m Notation/observations:
m Lp: a list of query-response pairs of some function(F
m(qr)Lr=>r=Fq)
m Q(Lr): set of queries in Lr, e, {q:(q.r) € Lr}
A Ly consistent with@p if Vg € Q(LF) N Q(Lr): F(q) = F'(q)
@ Consistent Ly and L¢ can be "merged” into Le+ = L U Lpr

AlLe), Allr) onsidad:
K -~ o

m Cr,: query-answer pairs ‘anolveqé in computing MNF(x) for some
function F and input x (in F's domain)
B Q(Crx): set of queries in Crx, e, {q:(q,r) € Crx}
YOS M7 (x) is determined once Cr , fixed
W 1 is efficient = for every x and F, |Cr x| is polynomial
X Main observation: (partial F and F’ consistent) and

(N"(x) = N7 (x) = y) = QCrx) N QCr) + 0. WHD

11/16

Step I: Design Query-Learning Plnv
C;)/ Strabegy: lootn o least one newy query from C o per und

Construction 2 (Query-learning inverter Plnv" 'F'O(yg)j %:TXF@)

11/16

Step I: Design Query-Learning Plnv

C;)/ Strabegy: lootn o least one newy query from C o per und
RO« ﬁpsa?o(,e
Construction 2 (Query-learning inverter Plny" 'F'O(yg)j =TT)

11/16

Step I: Design Query-Learning Plnv
éj/gtrakeggi ot ok least one newy query from C. . per und

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

I Inifiate list ﬁ@\wgﬂnmu powsOf F we nave leact so f0¢

11/16

Step I: Design Query-Learning Plnv

C;)/ Strategy: lotn db least ove newy query from Coy BT r‘oum‘

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

1 Initiate list Lp:= 0 S
2 Use O to find input x" & partial function F' defined via Lgr s.t.:

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Cryx and MY (X') = y: x is a valid inverse w.rto. F!

11/16

Step I: Design Query-Learning Plnv

C;)/ skrategy” lomn o leask one newy query om C. o per mird

HHH

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

1 Initiate list Lp:= 0 S
2 Use O to find input x" & partial function F' defined via Lgr s.t.:

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Cryx and MY (X') = y: x is a valid inverse w.rto. F!

11/16

Step I: Design Query-Learning Plnv

C;)/ skrategy” lomn o leask one newy query om C. o per mird

HEH

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

1 Initiate list L= 0 ¢
T ()
2 Use O to find input x" & partial function F' defined via Lgr s.t.: P

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Crix and MY (X') = y: x is a valid inverse w.r.to. F!

11/16

Step I: Design Query-Learning Plnv
\\C;j/gtmkegg o b least e newy guery from C. L per und

A #/%_

Mo
(

Construction 2 (Query-learning inverter Plnv ¥))

N

o
1 Initiate list Lg:= 0 N
D 3 //\(LA

2 Use O to find input x" & partial function E' defined via EF/ st: X

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Crix and MY (X') = y: x is a valid inverse w.r.to. F!

3 Test x' on F: if MF(x) =y, output x' and halt

4 Query F with “fresh” queries @%:= Q(Cr' /) \ Q(Lf) and add
these query-response pairs to L

11/16

Construction 2 (Query-learning inverter Plnv

1
2

Step I: Design Query-Learning Plnv

\\Cé/gtmkegg o b least e newy guery from C. L per rom

TEO(y)

Initiate list L= @

Use O to find input x" & partial function ' defined via EF/ ét X

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Criw and N7 (X') = y: x is a valid inverse w.rto. F!

Test x' on F: if 7 (x') = y, output x' and halt

Query F with ‘fresh” queries @%:= Q(Cr ») \ Q(Lr) and add
these query-response pairs to L

Repeat from Step 2

11/16

Step I: Design Query-Learning Plnv

N
9 Strakegy: lotn ok least one newy query rom C LR rom

S i

Construction 2 (Query-learning inverter Plnv'" ™9 (y))

1 Initiate list Lg:= 0 i ¢
2 Use O to find input x" & partial function E' defined via EF/ st s

1 Lg D L F! is consistent with all we know so far aboutE
2 L D Crix and MY (X') = y: x is a valid inverse w.r.to. F!

3 Test x' on F: if MF(x) =y, output x' and halt
4 Query F with “fresh” queries @%:= Q(Cr' »/) \ Q(Lf) and add
these query-response pairs to L

5 Repeat from Step 2

Lemma 2
If O = PSPACE, Plnv outputs x : 17 (x) = y in polynomial time

11/16

Construction 2 (Query-learning inverter Plnv

5

Why does Plnv Work?

1 O)

Initiate list Lp:= 0

Use O to find input x' & partial function F' defined via LF« st s

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

Test x' on F: if M7 (x) = y, output x" and halt
Query F with ‘fresh” queries @%:= Q(Cr' x) \ Q(LF) and add
these query-response pairs to Lr

Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

1 Claim 1: Plnv outputs x such that M7 (x) = y and halts

12116

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = {f i
TR
2 Use O to find input x' & partial function F' defined via Lgr s.t.:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt

4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2
Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

1 Claim 1: Plnv outputs x such that M7 (x) = y and halts
m Sub-claim: @ contains at least one query g* € Q(Crx \ Lr).
@ Why?

12116

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = {f i
TR
2 Use O to find input x' & partial function F' defined via Lgr s.t.:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt
4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2
Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

1 Claim 1: Plnv outputs x such that M7 (x) = y and halts
m Sub-claim: @ contains at least one query g* € Q(Crx \ Lr).
@ Why? Otherwise, possible to “merge’® and F’ into £F such that
ligion! —» N7 (x') = N7 (x) = y. How?
m Sub-claim = Claim 1 since |Cr x| is polynomial O

12116

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg:= 0

2 Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt

4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.

12116

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg:= 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt
4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y
@ why?

12116

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

1 Lg D Lg F is consistent with all we know so far about
2 Lg D€ and MY (x') = y: x' is a valid inverse wirto. F

3 Test x' on F: if N7 (x') = y, output x" and halt
4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y

@ Why? 1 is always a permutation
m Only need to fix G to determine M (x/) = suffices to fix
Le 2 Crr x

12/16

Why does Plnv Work?

H,EO(

Construction 2 (Query-learning inverter Plnv y))

1 Initiate list Lg = 0

2) Use O to find input x' & partial function F defined via Lgr s. t:

nle>le F’ is consistent with all we know so far about E
2 Lg 2Cap and M¥(x) = y: x’ is a valid inverse w.r.to. F'

3 Test x' on F: if NP (x) = y, output x and halt

4 Query F with “fresh” queries @%:= Q(Cr») \ Q(LF) and add
these query-response pairs to Lr

5 Repeat from Step 2

Proof of Lemma 2 (Plnv outputs x : [17(x) = y in polynomial time).

2 Claim 2: Plnv is efficient given access to (e.g.) PSPACE O.
m Sub-claim: in Step 2 there must exist (x’,F’) st. 17 (x) = y

() Why? [T is always a permutation
m Only need to fix G to determine M (x/) = suffices to fix

L 2 Crr
m Framed as NP language: {(y, L), (Lr, x) : 2.1 and 2.2 holds}
@ What is Plnv's run-time? O

12/16

Step Il: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]

13/16

Step Il: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]

Proof idea: random oracles are unpredictable = one-wayness.

m Flnv efficient = FInv' can make a fixed polynomial number of
queries to F

m Flnv can only win if it queries an x’ such that F(x’) = F(x)
m Probability of this event for its each query is exactly 1/2/7x)l

m Claim follows by union bound over all its queries O

13/16

Step II: Show F is One-Way Even Given O

Claim 2
For any fixed, efficient Finv', the following is negligible

Er[FInvF(F(x)) e FYHF(x))]

Proof idea: random oracles are unpredictable = one-wayness.

m Flnv efficient = FInv' can make a fixed polynomial number of
queries to F

m FInv' can only win if it queries an x’ such that F(x’) = F(x)
m Probability of this event for its each query is exactly 1/2/7x)l

m Claim follows by union bound over all its queries O

Exercise 2
Show that Claim 2 holds also with respect to the PSPACE oracle O.

13/16

What Else Has Been BB Separated?

— b0 redomé\?n
> 8@ sepura on .
COASKE wac iy

hacder

mm\ (f@g a%c\qangeﬂ k\'

Y’u‘o\c \<63 gruryiaon P
rudred o Ljn & ot

ANY C{Eipk()ff10(“qw

m Most primitives that don't BB-reduce to each other!

14/16

What Else Has Been BB Separated?

— BB redomé\?n
> 8@ sepura on .
C(PAHE | ch inicrypd

harder WB

(oknﬂ)%Y“ﬁﬂt//“\J//> é;N §u3ﬂ0th€$

e mw_@_/

mm\ (f@g a%c\qangeﬂ <N

RN
. podhc- \<e3 epurgon T TOP
rudred o Ljn AN ot ,

w C{Ljpbmo NG

m Most primitives that don't BB-reduce to each other!

14/16

What Else Has Been BB Separated?

— B0 redomé\?n
> 8@ sepura on .
“Gasre ch inicrggt!

harder WB

Cornrnl ermk/\/) ON

mm\ (’@g a%c\qangeﬂ <N

Nl
(’u‘o\c k63 eruyon 7y, P
rudred o Ljn AN ot

ANY C{Eip&()ff10(“qw

m Most primitives that don't BB-reduce to each other!

14/16

m Black-box reductions and its limitations

15/16

To Recap Today's Lecture

m Black-box reductions and its limitations
m Black-box separations

m Formally defined what it means to separate one primitive from
another

15/16

To Recap Today's Lecture

m Black-box reductions and its limitations
m Black-box separations

m Formally defined what it means to separate one primitive from
another

m Separated OWF from OWP
m Key ideas:

m Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn't

m Efficient query-set learning algorithm that exploits perfect
correctness of the construction

m Random oracles are unpredictable, and hence one-way

15/16

m Friday (25/Oct): crib session for Quiz 2

16/16

Next Lecture

m Friday (25/Oct): crib session for Quiz 2

m Tuesday (29/Oct): Obfuscation |

m Virtual black-box (VBB) obfuscation
m Bypassing separation OWF and OWP using code of the OWF:

m OWF VBB obfuscation OWP

m Impossibility of VBB obfuscation for general programs
m Way around: relax to indistinguishability obfuscation (1O)

16/16

References

This lecture is mostly based on [Rud84, RTV04, Yer11]

Formal definition of fully BB reduction can be found in
[RTVO4, Yer11] You can also find formal definitions of other
notions of reductions (semi-BB, relativising etc.) there

The black-box separation of OWF from OWP is from Rudich’s
thesis [Rud84]

For more discussion on relativising reductions, refer to [ABQ9,
§4.3]

16/16

@ Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

@ Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Notions of reducibility between cryptographic primitives.

In Mont Naor, editor, TCC 2004, volume 2951 of LNCS, pages 1-20. Springer,
Heidelberg, February 2004.

[4 Steven Rudich.
Limits on the Provable Consequences of One Way Functions.
PhD thesis, University of California at Berkeley, 1984.

a Arkady Yerukhimovich.
A Study of Separations in Cryptography: New Results and Models.
PhD thesis, University of Maryland, College Park, 2011.

16/16

	Black-Box Reduction
	Black-Box Separation
	Black-Box Separating OWF from OWP

