
CS783: Theoretical Foundations of Cryptography
Lecture 22 (29/Oct/24)

Instructor: Chethan Kamath

Recall from Last Lecture...

Black-box (BB) reductions and its limitations

1 / 13

Recall from Last Lecture...

Black-box (BB) reductions and its limitations
Black-box separations

Formally defined what it means to separate two primitives

1 / 13

Recall from Last Lecture...

Black-box (BB) reductions and its limitations
Black-box separations

Formally defined what it means to separate two primitives

Separated OWF from OWP

1 / 13

Recall from Last Lecture...

Black-box (BB) reductions and its limitations
Black-box separations

Formally defined what it means to separate two primitives

Separated OWF from OWP
Key ideas:

1 Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn’t

2 Iterative query-set learning algorithm ���� breaks any OWP
Exploits perfect correctness of construction
Efficient given (say) a PSPACE oracle O

3 OWFs exist via random oracles

1 / 13

Recall from Last Lecture...
What else has been BB separated?

1 / 13

Recall from Last Lecture...
What else has been BB separated?

1 / 13

Recall from Last Lecture...
What else has been BB separated?

1 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to model security?
Today’s lecture: virtual black-box obfuscation (VBBO)
Next lecture: indistinguishability obfuscation (IO)

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to model security?
Today’s lecture: virtual black-box obfuscation (VBBO)
Next lecture: indistinguishability obfuscation (IO)

Motivation: bypassing separations using primitive’s program:
OWF VBBO−−−→ OWP
SKE VBBO−−−→ PKE

2 / 13

Plan for Today’s Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to model security?
Today’s lecture: virtual black-box obfuscation (VBBO)
Next lecture: indistinguishability obfuscation (IO)

Motivation: bypassing separations using primitive’s program:
OWF VBBO−−−→ OWP
SKE VBBO−−−→ PKE

Impossibility of VBBO for general programs
2 / 13

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13

Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13

Plan for Today’s Lecture...

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

2 / 13

Plan for Today’s Lecture

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

2 / 13

How is Program Obfuscation Useful?...
1 Can be used to hide secrets

3 / 13

How is Program Obfuscation Useful?...
1 Can be used to hide secrets

3 / 13

How is Program Obfuscation Useful?...
1 Can be used to hide secrets

3 / 13

How is Program Obfuscation Useful?...
1 Can be used to hide secrets

3 / 13

How is Program Obfuscation Useful?...
1 Can be used to hide secrets

3 / 13

How is Program Obfuscation Useful?...
2 Can be used to watermark programs

3 / 13

How is Program Obfuscation Useful?...
2 Can be used to watermark programs

3 / 13

How is Program Obfuscation Useful?...
2 Can be used to watermark programs

3 / 13

How is Program Obfuscation Useful?...
3 Can be used to hide the algorithm itself!

3 / 13

How is Program Obfuscation Useful?...
3 Can be used to hide the algorithm itself!

3 / 13

How is Program Obfuscation Useful?...
3 Can be used to hide the algorithm itself!

3 / 13

How is Program Obfuscation Useful?...
3 Can be used to hide the algorithm itself!

3 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

Problem: quines (programs that output their own description)

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

Problem: quines (programs that output their own description)

Attempt 3: anything that can be learned “white-box” given �can be learned “black-box” given only oracle access to �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

Problem: quines (programs that output their own description)

Attempt 3: anything that can be learned “white-box” given �can be learned “black-box” given only oracle access to �

White box learner quite powerful since it can (e.g.) inject faults,
see intermediate states etc.

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)
2 Small slowdown: run-time of � is poly. in � and run-time of �

4 / 13

Virtual Black-Box Obfuscation (VBBO)...
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)
2 Small slowdown: run-time of � is poly. in � and run-time of �
3 VBBO security: for every PPT �, there exists PPT � that can

simulate �’s output on input � using only oracle access to �.
That is, the following is negligible:

4 / 13

Plan for Today’s Lecture

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

4 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF

5 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

5 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

5 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

How to construct (keyed) OWP Π from PRP F?

5 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

How to construct (keyed) OWP Π from PRP F?
VBB obfuscate the PRP F!

5 / 13

OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

How to construct (keyed) OWP Π from PRP F?
VBB obfuscate the PRP F!

Construction 1 (PRP � → OWP Π)
Sample � ← {�, �}� and output � ← ���(�(�, ·)) as key for Π
Π(� , �) := � (�)

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

5 / 13

OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

Does Claim 1 contradict OWF↛OWP from Lecture 21?
No, Π is a non-black-box construction (it uses F’s program)

5 / 13

SKE VBBO−−−→ PKE...
How to construct PKE from SKE?

6 / 13

SKE VBBO−−−→ PKE...
How to construct PKE from SKE?

What if the PKE’s public key is an obfuscation of SKE’s
encrypt algorithm ��� with secret key � hardcoded?

6 / 13

SKE VBBO−−−→ PKE...
How to construct PKE from SKE?

What if the PKE’s public key is an obfuscation of SKE’s
encrypt algorithm ��� with secret key � hardcoded?

Construction 2 (Π = (���, ���,���)→Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← ���(��)
Output ���(���(�, ·; ·)) as public key �� and � as secret key

���
′(��,�; �): output � := ��(�; �)

���
′(�, �): output � := ���(�, �)

6 / 13

SKE VBBO−−−→ PKE...

6 / 13

SKE VBBO−−−→ PKE...

Exercise 1
Come up with an attack against Construction 2 (Hint:
substitute a concrete SKE we have seen in this course such
that the construction fails.)
Define VBBO for randomised programs; fix Construction 2

6 / 13

VBBO is (Almost) “Crypto Complete”!...

7 / 13

VBBO is (Almost) “Crypto Complete”!...

7 / 13

VBBO is (Almost) “Crypto Complete”!...

Exercise 2
Given VBB obfuscator, construct:

1 one-way function
2 fully-homomorphic encryption (FHE) from any SKE
3 non-interactive commitment
4 trapdoor permutation

8 / 13

Plan for this Session

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

9 / 13

Let’s Rule out VBBO for General Programs...
Recall security requirement of VBBO: for every program � and

1 for every efficient white-box learner �
2 there exists an efficient black-box learner � such that
3 � simulates �’s output on input � using only oracle access to �

10 / 13

Let’s Rule out VBBO for General Programs...
Recall security requirement of VBBO: for every program � and

1 for every efficient white-box learner �
2 there exists an efficient black-box learner � such that
3 � simulates �’s output on input � using only oracle access to �

Theorem 1 (VBBO for general programs is impossible)
For every ��� there exists a program �∗ and

1 a particular efficient white-box learner �∗ such that
2 for every black-box learner �,
3 � fails to simulate �∗’s output on input �∗ using only oracle access

to �∗

10 / 13

Let’s Rule out VBBO for General Programs...
Recall security requirement of VBBO: for every program � and

1 for every efficient white-box learner �
2 there exists an efficient black-box learner � such that
3 � simulates �’s output on input � using only oracle access to �

Theorem 1 (VBBO for general programs is impossible)
For every ��� there exists a program �∗ and

1 a particular efficient white-box learner �∗ such that
2 for every black-box learner �,
3 � fails to simulate �∗’s output on input �∗ using only oracle access

to �∗

Easy case: when �∗ can output arbitrarily-long strings
What is �∗’s strategy?

10 / 13

Let’s Rule out VBBO for General Programs...
Recall security requirement of VBBO: for every program � and

1 for every efficient white-box learner �
2 there exists an efficient black-box learner � such that
3 � simulates �’s output on input � using only oracle access to �

Theorem 1 (VBBO for general programs is impossible)
For every ��� there exists a program �∗ and

1 a particular efficient white-box learner �∗ such that
2 for every black-box learner �,
3 � fails to simulate �∗’s output on input �∗ using only oracle access

to �∗

Easy case: when �∗ can output arbitrarily-long strings
What is �∗’s strategy? Simply output �∗
(Every) � only has black-box access to �∗ ⇒ � cannot output
description of �∗

10 / 13

Let’s Rule out VBBO for General Programs...

Harder case: when �∗ outputs short strings (e.g., a bit)

10 / 13

Let’s Rule out VBBO for General Programs...

Harder case: when �∗ outputs short strings (e.g., a bit)

Idea: come up with a program �∗ such that
1 �∗ spits out some short secret string σ when run “on itself”

�∗ needs to be a Turing machine

10 / 13

Let’s Rule out VBBO for General Programs...

Harder case: when �∗ outputs short strings (e.g., a bit)

Idea: come up with a program �∗ such that
1 �∗ spits out some short secret string σ when run “on itself”

�∗ needs to be a Turing machine
2 �∗ has �∗ and can therefore access σ

10 / 13

Let’s Rule out VBBO for General Programs...

Harder case: when �∗ outputs short strings (e.g., a bit)

Idea: come up with a program �∗ such that
1 �∗ spits out some short secret string σ when run “on itself”

�∗ needs to be a Turing machine
2 �∗ has �∗ and can therefore access σ
3 (Every) � only has black-box access to �∗ ⇒ � cannot access σ

Challenge: avoid circularity when defining �∗

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

Given ∆ and � , �∗ runs �(∆) to obtain ...

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

Given ∆ and � , �∗ runs �(∆) to obtain ... σ
Without ∆ and �, no � can access σ

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

Given ∆ and � , �∗ runs �(∆) to obtain ... σ
Without ∆ and �, no � can access σ

To get a single program �∗, simply “MUX” ∆ and �:

10 / 13

Let’s Rule out VBBO for General Programs...
Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

Given ∆ and � , �∗ runs �(∆) to obtain ... σ
Without ∆ and �, no � can access σ

To get a single program �∗, simply “MUX” ∆ and �:

Given �∗, �∗ defines ∆ := �∗(�, ·) and � := �∗(�, ·)
�∗ runs ∆ on � to obtain σ
Without �∗, � cannot access σ

Exercise 3
Come up with your own �∗!

10 / 13

Way Around: Relax to Indistinguishability Obfuscation
Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)
2 Slowdown is polynomial: run-time of � is polynomial in � and

run-time of �

11 / 13

Way Around: Relax to Indistinguishability Obfuscation
Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)
2 Slowdown is polynomial: run-time of � is polynomial in � and

run-time of �
3 IO security: for every equivalent �� and �� and PPT

distinguisher �, the following is negligible:

11 / 13

Way Around: Relax to Indistinguishability Obfuscation
Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(�) = �(�)
2 Slowdown is polynomial: run-time of � is polynomial in � and

run-time of �
3 IO security: for every equivalent �� and �� and PPT

distinguisher �, the following is negligible:

Exercise 4
1) Show that VBBO → IO 2) Figure out why Theorem 1 fails for IO

11 / 13

To Recap Today’s Lecture
Program obfuscation and why it is useful

12 / 13

To Recap Today’s Lecture
Program obfuscation and why it is useful

How to model security?
Today’s lecture: virtual black-box (VBB) obfuscation
Next lecture: indistinguishability obfuscation (IO)

12 / 13

To Recap Today’s Lecture
Program obfuscation and why it is useful

How to model security?
Today’s lecture: virtual black-box (VBB) obfuscation
Next lecture: indistinguishability obfuscation (IO)

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO−−−→ OWP
SKE VBBO−−−→ PKE

12 / 13

To Recap Today’s Lecture
Program obfuscation and why it is useful

How to model security?
Today’s lecture: virtual black-box (VBB) obfuscation
Next lecture: indistinguishability obfuscation (IO)

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO−−−→ OWP
SKE VBBO−−−→ PKE

Impossibility of VBBO for general programs
Key idea: programs that spit out secret when run “on itself”

12 / 13

Next Lecture

Friday (31/Oct): no lecture (Diwali eve)

13 / 13

Next Lecture

Friday (31/Oct): no lecture (Diwali eve)

Tuesday (04/Nov): More on indistinguishability obfuscator (IO)
Theorem 1 does not apply to IOHow to use IO?

SKE IO−→ PKE

13 / 13

References

1 Most of this lecture is based on
Lectures 1 and 2 of Mark Zhandry’s COS 597C course (Autumn
2016); and
Lecture 25 of Vinod Vaikuntanathan’s MIT6875

2 VBBO was studied rigorously in [BGI+01], which is where
Theorem 1 was also proved. It is the same paper that also
introduces IO.

3 The problem of constructing cryptographic primitives using IO
was studied much later in [SW14]

4 Mark Zhandry’s COS 597C course (Autumn 2016) is an
excellent source to learn further about program obfuscation

13 / 13

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18.
Springer, Heidelberg, August 2001.
Amit Sahai and Brent Waters.
How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press,
May / June 2014.

13 / 13

	Program Obfuscation
	Building Primitives Using VBBO
	Impossibility of VBBO for General Programs

