CS783: Theoretical Foundations of Cryptography

Lecture 22 (29/0ct/24)

Instructor: Chethan Kamath
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Recall from Last Lecture

m Black-box (BB) reductions and its limitations
— Black-box separations

m Formally defined what it means to separate two primitives

OWF —> OWP
m Separated OWF from OWP
m Key ideas:

1 Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn't
2 lterative query-set learning algorithm Plnv breaks any OWP
m Exploits perfect correctness of construction
m Efficient given (say) a PSPACE oracle O

3 OWFs exist via random oracles
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1 functionality preserved
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m How to model security?

char isPrime(int p){
int i=0;
while(i<p){i++;}

return "false";

m Today's lecture: virtual black-box obfuscation (VBBO)
m Next lecture: indistinguishability obfuscation (1O)

-+ Motivation: bypassing separations using primitive's program:
= OWF 222 owp
w SKE 1559, pyp

— Impossibility of VBBO for general programs
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3 Construct a scheme [1
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How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email:decrypt(enc—email,(ﬁggggiézzh;
if(strstr(email, "urgent”)!=0)

return email
else return "Private"
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How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

&
=T
=4

char isPrime(int p){
int i=0;

o
while(i<pow(p(3)) {i++;} ‘,J
return "false"; f

(had 1€
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How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

char isPrime(int p){
int i=0;

¢ 0
while (i<pow(p(2)) {i++;} -
return "false"; f

halie
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Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
/\ Problem: P's input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

# Example C. %r will quote automatically.
c = 'c = %r; print(c %% c)'; print(c % c) .,)

/A\ Problem: quines (programs that output their own description)

P char isPrime(int p){
int i=0;
while(i<p){i++;}

Fa\se return "false';

ta se

(] Attempt 3: angthmg that can be learned “white-box" gtven.
can be learned "black-box" given only oracle access to P

m White box learner quite powerful since it can (e.g.) inject faults,
see intermediate states etc.
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Virtual Black-Box Obfuscation (VBBO)

m Security via “simulation”: anything learnable “white-box" given
.ls learnable “black-box" given onLg oracle access to P

me(int p){
wnites p)( 0
return H
fa se {“)5@ }

Dehntton 1 (VBB obfuscator)

A PPT algorithm Obf that takes as input any program P and a
security parameter n, and outputs obfuscated program.such that:

1 Functionality preserved: for all inputs x,.(x) = P(x)
2 Small slowdown: run-time of.is poly. in n and run-time of P

3 VBBO security: for every PPT W, there exists PPT B that can

simulate W's output on input. using only oracle access to P.
That is, the following is negligible:

Pr (W)=t —p. (of(r1F)=)
B oui(ne
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m Recall that OWF —» PRG —> PRF—» PRP D%/ ) DN )

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

@ How to construct (keyed) OWP T1 from PRP F?
m VBB obfuscate the PRP F!

(R )
n Q<,7L> =F @IQQ

Construction 1 (PRP F — OWP T1)

m Sample k < {0,1}" and output K < Obf(F(k, ) as key for I
m [I(K, x) = K(x)
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Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP
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Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP ).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T

(a5e T 388 leamer & &L

pe (D (O, ) =) e (0, y ) | =gy
@) y <0l
J< o
G F AP Y B invertS andam permighion BLY L/
ron_negl. probabilty £ e
@) Does Claim 1 contradict OWF-=OWP from Lecture 21?

m No, 1 is a non-black-box construction (it uses F's program)
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SKE YBB9, pkE

@ How to construct PKE from SKE?

m What if the PKE's public key is an obfuscation of SKE's
encrypt algorithm Enc with secret key k hardcoded?

P4
c/

Construction 2 (I = (Gen, Enc, Dec)—[1" = (Gen’, Enc’, Dec’))
m Gen'(17):
m Sample k < Gen(1")
m Output Obf(Enc(k, -;-)) as public key pk and k as secret key
m Enc'(pk, m; r): output c := pk(m;r)
m Dec/(k, ¢): output m := Dec(k, c)
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SKE B89, pkE..

Essentially what is required is a one-way compiler: one
which takes an easily understood program written in a high
level language and translates it into an incomprehensible
program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but
infeasible to reverse the process. Since efficiency in size of
program and run time are not crucial in this application,
such compilers may be possible if the structure of the
machine language can be optimized to assist in the con-

fusion.
ason {D’;H\e Helinan 763
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Essentially what is required is a one-way compiler: one
which takes an easily understood program written in a high
level language and translates it into an incomprehensible
program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but
infeasible to reverse the process. Since efficiency in size of
program and run time are not crucial in this application,
such compilers may be possible if the structure of the
machine language can be optimized to assist in the con-

fusion. )
[ Diftie, Helinan 16 )
Exercise 1

m Come up with an attack against Construction 2 (Hint:
substitute a concrete SKE we have seen in this course such
that the construction fails.)

m Define VBBO for randomised programs, fix Construction 2
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VBBO is (Almost) “Crypto Complete’!...

Exercise 2

Given VBB obfuscator, construct:
1 one-way function
2 fully-homomorphic encryption (FHE) from any SKE
3 non-interactive commitment

4 trapdoor permutation
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2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs
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1 for every efficient white-box learner W
2 there exists an efficient black-box learner B such that
3 B simulates W's output on anut.usmg only oracle access to P

Theorem 1 (VBBO for general programs is impossible)

For every Obf there exists a program P* and
1 a particular efficient white-box learner W* such that
2 for every black-box learner B,

3 B fails to simulate W*'s output on input. using only oracle access
to P*

m Easy case: when W* can output arbitrarily-long strings
@ What is W*'s strategy? Simply output.
m (Every) B only has black-box access to P* = B cannot output
description of
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Let's Rule out VBBO for General Programs..

m Harder case: when W* outputs short strings (e.g., a bit)

m |dea: come up with a program P* such that
1 P* spits out some short secret string ¢ when run “on itself”
m P* needs to be a Turing machine
2 W has.and can therefore access o
3 (Every) B only has black-box access to P* = B cannot access o

m Challenge: avoid circularity when defining P*
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m Consider the following A and S for @, 8,0 € {0,1}":

o Se e
(/—1$[x L)'= 9 s X
deltajponk tn BW( 77 o % v
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delta ??o’mk fn.

Let's Rule out VBBO for General Programs..
scimulales’ N
m Consider the following A and S for @, 8,0 € {0,1}":

/jﬁwa(l) z% o 50\@(@).‘; iq b (@)=p

UL:%CL 0 L%’ 1~UX> ?%
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Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }nkc(\am%o\ ™
9 \J( A=ct k(@)=
(Phap()= Lo, S (2): io ey ﬁ

?Pomkfh
L] G'Lven.and. W runs'.) to obtain .. o

m Without A and S, no B can access ¢

m To get a single program P*, simply ‘MUX" A and S:

* [ld\@(}a Y% b:(j
P%%I\T @/1) j%/ 5%&/{((1) LI( b=
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Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }hkC(\DmL@\ ™
9 \J( A=ct k(@)=
(Phap()= Lo, S (2): io ey ﬁ

?Pomkfh
L] G'Lven.and. W runs'.) to obtain .. o

m Without A and S, no B can access ¢
m To get a single program P*, simply ‘MUX" A and S:
* [ld\@(}a Y% b:(j
bo) =
Paps 0 iﬁ ST (x) 1f b=t

L Gtven. W+ deﬁnes. . and' .(1

m W* runs. to obtain o
m Without P*, B cannot access ¢

Exercise 3

Come up with your own P*!
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Way Around: Relax to Indistinguishability Obfuscation

m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and
security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P
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m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and

security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P
3 10 security: for every equivalent Py and P> and PPT
distinguisher D, the following is negligible:
Pe (O(@)=0 = e (0(E)-]
| ZOUIOAN) @)
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Way Around: Relax to Indistinguishability Obfuscation

m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and

security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P

3 10 security: for every equivalent Py and P> and PPT
distinguisher D, the following is negligible:
Pe (0(E)-U _ P (0(W)-1
| ZOUIOAN) @)

Exercise 4
1) Show that VBBO — 10 2) Figure out why Theorem 1 fails for 10
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To Recap Today's Lecture

m Program obfuscation and why it is useful
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To Recap Today's Lecture

Program obfuscation and why it is useful

79@/{’1
How to model securltg?

m Today's lecture: virtual black-box (VBB) obfuscation
m Next lecture: indistinguishability obfuscation (10)

Bypassed black-box separations exploiting primitive's program:

VBBO
\/BBO

m OWF —
m SKE —=

OWP
PKE

Impossibility of VBBO for general programs

m Key idea: programs that spit out secret when run “on itself”

12113



m Friday (31/Oct): no lecture (Diwali eve)
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Next Lecture

m Friday (31/Oct): no lecture (Diwali eve)

m Tuesday (04/Nov): More on indistinguishability obfuscator (10)

m Theorem 1 does not apply to 10
m How to use 107

m SKE % PKE
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