CS783: Theoretical Foundations of Cryptography

Lecture 22 (29/0ct/24)

Instructor: Chethan Kamath

m Black-box (BB) reductions and its limitations

1113

Recall from Last Lecture

m Black-box (BB) reductions and its limitations
— Black-box separations
m Formally defined what it means to separate two primitives

113

Recall from Last Lecture

m Black-box (BB) reductions and its limitations
— Black-box separations
m Formally defined what it means to separate two primitives
OWF —» OWP
m Separated OWF from OWP

113

Recall from Last Lecture

m Black-box (BB) reductions and its limitations
— Black-box separations

m Formally defined what it means to separate two primitives

OWF —> OWP
m Separated OWF from OWP
m Key ideas:

1 Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn't
2 lterative query-set learning algorithm Plnv breaks any OWP
m Exploits perfect correctness of construction
m Efficient given (say) a PSPACE oracle O

3 OWFs exist via random oracles

113

Recall from Last Lecture...
m What else has been BB separated?

—> 8% reduction
b %Poraboﬁ

o (Pa-ohE MQC “Winicry ?L—"
hacder PRE S

FP\GD

comm@rrmnkf\/) G £ > qgnauees

- _.[/Lm\rbsh{;;k@

ervj fey- a%c\r\fmg@ < e

. Pobhe keg eragion T VOP
drudviek o 5\5&0 R or ‘.
N myko Mnanig

1/13

Recall from Last Lecture...
m What else has been BB separated?

—» BB redotion
> B seporation

(q)
Onsre ch Mniceypd
hatder PRE 5 '

Comm\)rmm{/\/) f &> Ggpatuees

— 3—4 OT??\‘WU@/

mwj l‘\atj —exdnang < Ty

k_’
. Poblc keg m,rjmﬂ TP
S‘WUCJN(@% - & or |

» my%o Mnanig

113

Recall from Last Lecture...
m What else has been BB separated?

— 8% reduton
> B seporation

\)
oRSKE | MQC ey
hatder aps :

Comm\)rrmn‘n/\/) f &> Ggpatuees

one N
B [%___ — ,_sth_mw__
// j

mwj l‘\atj —exdnang &, <Dy

N
L bl keg m,rjmﬂ TP
dradvat | or |

o my%o Mo nig

113

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

}

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

}

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

char isPrime(int p){
int i=0;

while(i<p){i++;}
return "false";

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

}

?PC/ false

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

bl

m How to model security?

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

}

m Today's lecture: virtual black-box obfuscation (VBBO)
m Next lecture: indistinguishability obfuscation (1O)

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

char isPrime(int p){
int i=0;
while(i<p){i++;}

return "false";

m Today's lecture: virtual black-box obfuscation (VBBO)
m Next lecture: indistinguishability obfuscation (1O)
-+ Motivation: bypassing separations using primitive's program:
= OWF 222 owp
w SKE 1559, pyp

m How to model security?

2/13

Plan for Today's Lecture

m Program obfuscation: “scramble/encrypt” a program such that
1 functionality preserved
2 hard to “reverse engineer”

m How to model security?

char isPrime(int p){
int i=0;
while(i<p){i++;}

return "false";

m Today's lecture: virtual black-box obfuscation (VBBO)
m Next lecture: indistinguishability obfuscation (1O)

-+ Motivation: bypassing separations using primitive's program:
= OWF 222 owp
w SKE 1559, pyp

— Impossibility of VBBO for general programs

2/13

Plan for Today's Lecture...

General template: ?rog(am obly gation
1 ldentify the task /
2 Come up with precise threat model M (a.k.a security model)

m Adversary/Attack: What are the adversary's capabilities?
m Security Goal: What does it mean to be secure?

3 Construct a scheme 1

4 Formally prove that I in secure in model M

2/13

Plan for Today's Lecture...

General template: Prog(am obly gation
1 ldentify the task /
2 Come up with precise threat model M (a.k.a security mod@

m Adversary/Attack: What are the adversary's capabilities? .
m Security Goal: What does it mean to be secure? — >V %cu)rrh;

3 Construct a scheme 1

\S B
White-box. learner

4 Formally prove that I in secure in model M

2/13

Plan for Today's Lecture...

General template: prog(am obly gation
1 ldentify the task /
2 Come up with precise threat model M (a.k.a security mod@

m Adversary/Attack: What are the adversary's capabilities? .
m Security Goal: What does it mean to be secure? — >\ %cu)rr&g

\S W}
White-box. learner

3 Construct a scheme [1
64 Formally prove that Il in secure in model M

Nok possible for genecal progam |

2/13

Plan for Today's Lecture...

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

2/13

1 Program Obfuscation
2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

2/13

How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email:decrypt(enc—email,(ﬁggggiézzh;
if(strstr(email, "urgent”)!=0)

return email
else return "Private"

3/13

How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email=decrypt(enc-email,/mypsswrd"));
if(strstr(email, "urgent”)!1=0)

return email
else return "Private"

3/13

How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email=decrypt(enc-email,/mypsswrd"));
if(strstr(email, "urgent”)!1=0)

return email
else return "Private"

3/13

How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email=decrypt(enc-email,/mypsswrd"));
if(strstr(email, "urgent”)!1=0)

return email
else return "Private"

3/13

How is Program Obfuscation Useful?

1 Can be used to hide secrets

char FilterUrgent(char enc-email)
char email=decrypt(enc-email,/mypsswrd"));
if(strstr(email, "urgent”)!1=0)

return email
else return "Private"

3/13

How is Program Obfuscation Useful?...

2 Can be used to watermark programs

char isPrime(int p){

int i=o; 0
while(i<pow(p,2)){i++;} ~
return "false";
(had 1€
2ob

3/13

How is Program Obfuscation Useful?...

2 Can be used to watermark programs

char isPrime(int p){
if(p=13324232343232222117)
return "Sold to "

int i=0; ¢ O

while(i<pow(p,2)){i++;} -~

return "false"; .
chadie
Bob

3/13

How is Program Obfuscation Useful?...

2 Can be used to watermark programs

char isPrime(int p){
if(p=13324232343232222117)
return "Sold to "
int i=0;
while(i<pow(p,2)){i++;}

return "false";

3/13

How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

char isPrime(int p){
int i=0;
while(i<p){i++;}

return "false";

e 1e

20D

3/13

How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

char isPrime(int p){
int i=0;
while(i<p){i++;}

return "false";

=
=
=

20D

3/13

How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

&
=T
=4

char isPrime(int p){
int i=0;

o
while(i<pow(p(3)) {i++;} ‘,J
return "false"; f

(had 1€

20D

3/13

How is Program Obfuscation Useful?...

3 Can be used to hide the algorithm itself!

char isPrime(int p){
int i=0;

¢ 0
while (i<pow(p(2)) {i++;} -
return "false"; f

halie

20D

3/13

@ How to formalise “hard to reverse-engineer"?

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?

m Attempt 1 (program privacy): impossible to learn anything about
P given

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?

m Attempt 1 (program privacy): impossible to learn anything about
P given
AProbLem: P’s input-output behaviour can be learned from.

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
AProbLem: P’s input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
AProbLem: P’s input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

Example C. %r will quote automatically.
c = 'c = %r; print(c %% c)'; print(c % c) T

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
AProbLem: P’s input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

Example C. %r will quote automatically.
c = 'c = %r; print(c %% c)'; print(c % c) PN

5
/A\ Problem: quines (programs that output their own description)

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
/\ Problem: P's input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

Example C. %r will quote automatically.
c = 'c = %r; print(c %% c)'; print(c % c) _,J

/A\ Problem: quines (programs that output their own description)

P char isPrime(int p){
int i=0;
while(i<p){i++;}

Fa\se return "false';

ta se

(] Attempt 3: angthmg that can be learned “white-box" gwen.
can be learned "black-box" given only oracle access to P

4/13

Virtual Black-Box Obfuscation (VBBO)

@ How to formalise “hard to reverse-engineer"?
m Attempt 1 (program privacy): impossible to learn anything about
P given
/\ Problem: P's input-output behaviour can be learned from.

m Attempt 2 (“one-wayness”): impossible to recover P from.

Example C. %r will quote automatically.
c = 'c = %r; print(c %% c)'; print(c % c) .,)

/A\ Problem: quines (programs that output their own description)

P char isPrime(int p){
int i=0;
while(i<p){i++;}

Fa\se return "false';

ta se

(] Attempt 3: angthmg that can be learned “white-box" gtven.
can be learned "black-box" given only oracle access to P

m White box learner quite powerful since it can (e.g.) inject faults,
see intermediate states etc.

4/13

Virtual Black-Box Obfuscation (VBBO)

m Security via “simulation”: anything learnable “white-box" given
.ls learnable “black-box" given onLg oracle access to P

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

wca e,

A PPT algorithm Obf that takes as input any program P and a
security parameter n, and outputs obfuscated program.such that:

fa se

Deﬂntton 1 (VBB obfuscator)

4/13

Virtual Black-Box Obfuscation (VBBO)

m Security via “simulation”: anything learnable “white-box" given
.ls learnable “black-box" given onLg oracle access to P

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

wca e,

A PPT algorithm Obf that takes as input any program P and a
security parameter n, and outputs obfuscated program .such that:

fa se

Deﬂntton 1 (VBB obfuscator)

1 Functionality preserved: for all inputs x,'(x = P(x)

4/13

Virtual Black-Box Obfuscation (VBBO)

m Security via “simulation”: anything learnable “white-box" given
.ls learnable “black-box" given onLg oracle access to P

char isPrime(int p){
int i=0;
while(i<p){i++;}
return "false";

wca e,

A PPT algorithm Obf that takes as input any program P and a
security parameter n, and outputs obfuscated program.such that:

fa se

Deﬂntton 1 (VBB obfuscator)

1 Functionality preserved: for all inputs x,.(x) = P(x)

2 Small slowdown: run-time of.is poly. in n and run-time of P

4/13

Virtual Black-Box Obfuscation (VBBO)

m Security via “simulation”: anything learnable “white-box" given
.ls learnable “black-box" given onLg oracle access to P

me(int p){
wnites p)(0
return H
fa se {“)5@ }

Dehntton 1 (VBB obfuscator)

A PPT algorithm Obf that takes as input any program P and a
security parameter n, and outputs obfuscated program.such that:

1 Functionality preserved: for all inputs x,.(x) = P(x)
2 Small slowdown: run-time of.is poly. in n and run-time of P

3 VBBO security: for every PPT W, there exists PPT B that can

simulate W's output on input. using only oracle access to P.
That is, the following is negligible:

Pr (W)=t —p. (of(r1F)=)
B oui(ne

4/13

1 Program Obfuscation
2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

4/13

m Recall that OWF — PRG — PRF

5/13

OWF 259 owp

m Recall that OWF — PRG — PRF— PRP

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

5/13

OWF 2259 owp

/_j N n D
m Recall that OWF — PRG — PRF— PRP DFU&) Dh()

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

/

5/13

OWF 259 owp

/_j N n D
m Recall that OWF — PRG — PRF— PRP DFU&) Dh()

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

@ How to construct (keyed) OWP T1 from PRP F?

/

5/13

OWF Y859 owp

R |
m Recall that OWF —» PRG —> PRF—» PRP D%/) DN)

=~

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

. How to construct (keyed) OWP T1 from PRP F?
m VBB obfuscate the PRP F!

5/13

OWF Y859 owp

R |
m Recall that OWF —» PRG —> PRF—» PRP D%/) DN)

m PRP: pseudo-random permutation
m Computationally indistinguishable from random permutation

@ How to construct (keyed) OWP T1 from PRP F?
m VBB obfuscate the PRP F!

(R)
n Q<,7L> =F @IQQ

Construction 1 (PRP F — OWP T1)

m Sample k < {0,1}" and output K < Obf(F(k,) as key for I
m [I(K, x) = K(x)

5/13

If Obf is VBB obfuscator and F is PRP then 'l is a OWP

5/13

OWF 259 owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Leb W=1nv e we learnerfor @D that wverts y<50115 oedee T

5/13

OWF Y859 owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T

(ase 1 A loamer & 6L

Pr O (D (D, 5) =) P (5, y)y S

& o) y <oy
y<fony

5/13

OWF Y859 owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T

(ase 1 A loamer & 6L

Pr O (D (D, 5) =) P (5, y)y ~neg(n)

& o) y <oy
y<nf
= Obf i« rot veeo () euniliary myokg)

5/13

OWF Y859 owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T
(ase T Tk learner & <&
_ ()
Pr O~ QD (O,) =) P (70, y))| g)

@& o) y <0y
y<ony

5/13

OWF 2259, owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T

(a5e T 388 leamer & &L

_ (t,
Pr [W(.,U(-,H)) =L]—pr (¥ :)@“/ Y):1:1 :W/@\U\)
@& oG) g <ol
gty |
Gz F AP Y B intertS andom permighion BL W/
mon-negl. ?re)oabil\%j 4 o)

5/13

OWF 259 owp

Claim 1
If Obf is VBB obfuscator and F is PRP then 'l is a OWP

Proof sketch. (Obf not VBBO or F not PRP < JInv for OWP).
Let W=1nv be we learnerfor @D nat werts y<52115 vodee T

(a5e T 388 leamer & &L

pe (D (O,) =) e (0, y) | =gy
@) y <0l
J< o
G F AP Y B invertS andam permighion BLY L/
ron_negl. probabilty £ e
@) Does Claim 1 contradict OWF-=OWP from Lecture 21?

m No, 1 is a non-black-box construction (it uses F's program)

5/13

‘ How to construct PKE from SKE?

6/13

SKE B89, pkE

@ How to construct PKE from SKE?

m What if the PKE's public key is an obfuscation of SKE's
encrypt algorithm Enc with secret key k hardcoded?

P4

6/13

SKE YBB9, pkE

@ How to construct PKE from SKE?

m What if the PKE's public key is an obfuscation of SKE's
encrypt algorithm Enc with secret key k hardcoded?

P4
c/

Construction 2 (I = (Gen, Enc, Dec)—[1" = (Gen’, Enc’, Dec’))
m Gen'(17):
m Sample k < Gen(1")
m Output Obf(Enc(k, -;-)) as public key pk and k as secret key
m Enc'(pk, m; r): output c := pk(m;r)
m Dec/(k, ¢): output m := Dec(k, c)

6/13

SKE B89, pkE..

Essentially what is required is a one-way compiler: one
which takes an easily understood program written in a high
level language and translates it into an incomprehensible
program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but
infeasible to reverse the process. Since efficiency in size of
program and run time are not crucial in this application,
such compilers may be possible if the structure of the
machine language can be optimized to assist in the con-

fusion.
ason {D’;H\e Helinan 763

6/13

SKE YBBO, pkE .

Essentially what is required is a one-way compiler: one
which takes an easily understood program written in a high
level language and translates it into an incomprehensible
program in some machine language. The compiler is one-
way because it must be feasible to do the compilation, but
infeasible to reverse the process. Since efficiency in size of
program and run time are not crucial in this application,
such compilers may be possible if the structure of the
machine language can be optimized to assist in the con-

fusion.)
[Diftie, Helinan 16)
Exercise 1

m Come up with an attack against Construction 2 (Hint:
substitute a concrete SKE we have seen in this course such
that the construction fails.)

m Define VBBO for randomised programs, fix Construction 2

6/13

VBBO is (Almost) “Crypto Complete”!

— 6 redoction

g ceporation
—+> B0 P “Mm\CrH?U)

CPﬂ 5\46 MQC

hacder - F?
' PRG

Corami WO{/\/) f qnatu s

mr\d hetj m\nang« < f’\\i

Public- ke3 mryaon 0P
' Coor

vuctured w
w myko oG

7113

VBBO is (Almost) “Crypto Complete”!

[ee3]
—s B redocton NVGED

—> BB sq)urakioﬂ

CPQ_SKE M‘QC \ “Mm\Cr-\j ?U)

qq)Zw s é‘\\

corémimn{/\\/\? |
gt foncen) | L.

e 4@@

wwr\d t’\eg—e\(c\naﬂg« S f’m

Public -key erurytoon
Pl g

hatder

CPRF?)\
PRG

i}’ﬂ)?

vuctured oF

N u%koma g’

7113

VBBO is (Almost) “Crypto Complete’!...

Exercise 2

Given VBB obfuscator, construct:
1 one-way function
2 fully-homomorphic encryption (FHE) from any SKE
3 non-interactive commitment

4 trapdoor permutation

8/13

1 Program Obfuscation

2 Building Primitives Using VBBO

3 Impossibility of VBBO for General Programs

9/13

Let's Rule out VBBO for General Programs

m Recall security requirement of VBBO: for every program P and

1 for every efficient white-box learner W
2 there exists an efficient black-box learner B such that
3 B simulates W's output on inputfPjusing only oracle access to P

10/13

Let's Rule out VBBO for General Programs

m Recall security requirement of VBBO: for every program P and
1 for every efficient white-box learner W
2 there exists an efficient black-box learner B such that
3 B simulates W's output on anut.uslng only oracle access to P

Theorem 1 (VBBO for general programs is impossible)

For every Obf there exists a program P* and
1 a particular efficient white-box learner W* such that
2 for every black-box learner B,

3 B fails to simulate W*'s output on input. using only oracle access
to P*

10/13

Let's Rule out VBBO for General Programs

m Recall security requirement of VBBO: for every program P and
1 for every efficient white-box learner W
2 there exists an efficient black-box learner B such that
3 B simulates W's output on anut.uslng only oracle access to P

Theorem 1 (VBBO for general programs is impossible)

For every Obf there exists a program P* and
1 a particular efficient white-box learner W* such that
2 for every black-box learner B,

3 B fails to simulate W*'s output on input. using only oracle access
to P*

m Easy case: when W* can output arbitrarily-long strings
@ What is W*'s strategy?

10/13

Let's Rule out VBBO for General Programs

m Recall security requirement of VBBO: for every program P and
1 for every efficient white-box learner W
2 there exists an efficient black-box learner B such that
3 B simulates W's output on anut.usmg only oracle access to P

Theorem 1 (VBBO for general programs is impossible)

For every Obf there exists a program P* and
1 a particular efficient white-box learner W* such that
2 for every black-box learner B,

3 B fails to simulate W*'s output on input. using only oracle access
to P*

m Easy case: when W* can output arbitrarily-long strings
@ What is W*'s strategy? Simply output.
m (Every) B only has black-box access to P* = B cannot output
description of

10/13

Let's Rule out VBBO for General Programs..

m Harder case: when W* outputs short strings (e.g., a bit)

10/13

Let's Rule out VBBO for General Programs..

m Harder case: when W* outputs short strings (e.g., a bit)

m |dea: come up with a program P* such that
1 P* spits out some short secret string ¢ when run “on itself”

m P* needs to be a Turing machine

10/13

Let's Rule out VBBO for General Programs..

m Harder case: when W* outputs short strings (e.g., a bit)

m |dea: come up with a program P* such that
1 P* spits out some short secret string ¢ when run “on itself”
m P* needs to be a Turing machine
2 W has.and can therefore access o

10/13

Let's Rule out VBBO for General Programs..

m Harder case: when W* outputs short strings (e.g., a bit)

m |dea: come up with a program P* such that
1 P* spits out some short secret string ¢ when run “on itself”
m P* needs to be a Turing machine
2 W has.and can therefore access o
3 (Every) B only has black-box access to P* = B cannot access o

m Challenge: avoid circularity when defining P*

10/13

Let's Rule out VBBO for General Programs..
Scimolales’ N
m Consider the following A and S for @, 8,0 € {0,1}":

10/13

Let's Rule out VBBO for General Programs..
Scimolales’ N
m Consider the following A and S for @, 8,0 € {0,1}":

e b e
Acwa()= (J(L2,

10/13

Let's Rule out VBBO for General Programs..
scimulales’ N
m Consider the following A and S for @, 8,0 € {0,1}":

o Se e
(/—1$[x L)'= 9 s X
deltajponk tn BW(77 o % v

10/13

delta ??o’mk fn.

Let's Rule out VBBO for General Programs..
scimulales’ N
m Consider the following A and S for @, 8,0 € {0,1}":

/jﬁwa(l) z% o 50\@(@).‘; iq b (@)=p

UL:%CL 0 L%’ 1~UX> ?%

10/13

Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }‘\k@(\)mt@\ ac ™
g if 5 1k ()=
IOk z n %o@ Sap (2! io el 71%

?Pomk n

10/13

Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for a, B, 0 € {0, }hkcr\meM ™
9 \Jr A=t T o @)=
(Phap()= Lo, Sage (2): io ey ﬁ

?Pomkfh
L] G'Lven.and. W runs'.) to obtain ...

10/13

Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }hkcr\vfcm\ ™
g k(@)=
(Phap()= z x %o@ S (2): io ey ﬁ

Hm?Pd\nk n
L] G'Lven.and. W runs'.) to obtain .. o

m Without A and S, no B can access ¢

10/13

Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }nkc(\am%o\ ™
9 \J(A=ct k(@)=
(Phap()= Lo, S (2): io ey ﬁ

?Pomkfh
L] G'Lven.and. W runs'.) to obtain .. o

m Without A and S, no B can access ¢

m To get a single program P*, simply ‘MUX" A and S:

* [ld\@(}a Y% b:(j
P%%I\T @/1) j%/ 5%&/{((1) LI(b=

10/13

Let's Rule out VBBO for General Programs..
“simulales’

m Consider the following A and S for @, B, 0 € {0, }hkC(\DmL@\ ™
9 \J(A=ct k(@)=
(Phap()= Lo, S (2): io ey ﬁ

?Pomkfh
L] G'Lven.and. W runs'.) to obtain .. o

m Without A and S, no B can access ¢
m To get a single program P*, simply ‘MUX" A and S:
* [ld\@(}a Y% b:(j
bo) =
Paps 0 iﬁ ST (x) 1f b=t

L Gtven. W+ deﬁnes. . and' .(1

m W* runs. to obtain o
m Without P*, B cannot access ¢

Exercise 3

Come up with your own P*!

10/13

Way Around: Relax to Indistinguishability Obfuscation

m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and
security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P

/13

Way Around: Relax to Indistinguishability Obfuscation

m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and

security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P
3 10 security: for every equivalent Py and P> and PPT
distinguisher D, the following is negligible:
Pe (O(@)=0 = e (0(E)-]
| ZOUIOAN) @)

/13

Way Around: Relax to Indistinguishability Obfuscation

m Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (10))

A PPT algorithm Obf that takes as input any program P and

security parameter n, and outputs obfuscated program P such that:
1 Functionality preserved: for all inputs x, P(x) = P(x)

2 Slowdown is polynomial: run-time of P is polynomial in n and
run-time of P

3 10 security: for every equivalent Py and P> and PPT
distinguisher D, the following is negligible:
Pe (0(E)-U _ P (0(W)-1
| ZOUIOAN) @)

Exercise 4
1) Show that VBBO — 10 2) Figure out why Theorem 1 fails for 10

/13

To Recap Today's Lecture

m Program obfuscation and why it is useful

% %9@0&)55

12113

To Recap Today's Lecture

m Program obfuscation and why it is useful

m How to model security?

m Today's lecture: virtual black-box (VBB) obfuscation
m Next lecture: indistinguishability obfuscation (10)

- : lqn/{q) .

12113

To Recap Today's Lecture

m Program obfuscation and why it is useful

79@/{’1
m How to model securltg?

m Today's lecture: virtual black-box (VBB) obfuscation
m Next lecture: indistinguishability obfuscation (10)

m Bypassed black-box separations exploiting primitive's program:

VBBO
\/BBO

m OWF —
m SKE —=

OWP
PKE

12113

To Recap Today's Lecture

Program obfuscation and why it is useful

79@/{’1
How to model securltg?

m Today's lecture: virtual black-box (VBB) obfuscation
m Next lecture: indistinguishability obfuscation (10)

Bypassed black-box separations exploiting primitive's program:

VBBO
\/BBO

m OWF —
m SKE —=

OWP
PKE

Impossibility of VBBO for general programs

m Key idea: programs that spit out secret when run “on itself”

12113

m Friday (31/Oct): no lecture (Diwali eve)

13/13

Next Lecture

m Friday (31/Oct): no lecture (Diwali eve)

m Tuesday (04/Nov): More on indistinguishability obfuscator (10)

m Theorem 1 does not apply to 10
m How to use 107

m SKE % PKE

13/13

References

Most of this lecture is based on

m Lectures 1 and 2 of Mark Zhandry's COS 597C course (Autumn
2016); and
m Lecture 25 of Vinod Vaikuntanathan's MIT6875

VBBO was studied rigorously in [BGIT01], which is where
Theorem 1 was also proved. It is the same paper that also
introduces 0.

The problem of constructing cryptographic primitives using 10
was studied much later in [SW14]

Mark Zhandry's COS 597C course (Autumn 2016) is an
excellent source to learn further about program obfuscation

13/13

B Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1-18.
Springer, Heidelberg, August 2001.

a Amit Sahai and Brent Waters.
How to use indistinguishability obfuscation: deniable encryption, and more.

In David B. Shmoys, editor, 46th ACM STOC, pages 475-484. ACM Press,
May / June 2014.

13/13

	Program Obfuscation
	Building Primitives Using VBBO
	Impossibility of VBBO for General Programs

