
CS783: Theoretical Foundations of Cryptography
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Recall from Last Lecture...

Black-box (BB) reductions and its limitations
Black-box separations

Formally defined what it means to separate two primitives

Separated OWF from OWP
Key ideas:

1 Black-box reduction relativises: suffices to come up with an
“oracle world” O where OWF exists but OWP doesn’t

2 Iterative query-set learning algorithm ���� breaks any OWP
Exploits perfect correctness of construction
Efficient given (say) a PSPACE oracle O

3 OWFs exist via random oracles
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How to formalise “hard to reverse-engineer”?

Attempt 1 (program privacy): impossible to learn anything about
� given �

Problem: �’s input-output behaviour can be learned from �

Attempt 2 (“one-wayness”): impossible to recover � from �

Problem: quines (programs that output their own description)

Attempt 3: anything that can be learned “white-box” given �can be learned “black-box” given only oracle access to �

White box learner quite powerful since it can (e.g.) inject faults,
see intermediate states etc.
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� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(� ) = �(� )
2 Small slowdown: run-time of � is poly. in � and run-time of �
3 VBBO security: for every PPT �, there exists PPT � that can

simulate �’s output on input � using only oracle access to �.
That is, the following is negligible:
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OWF VBBO−−−→ OWP
Recall that OWF → PRG → PRF→ PRP

PRP: pseudo-random permutation
Computationally indistinguishable from random permutation

How to construct (keyed) OWP Π from PRP F?
VBB obfuscate the PRP F!

Construction 1 (PRP � → OWP Π)
Sample � ← {�, �}� and output � ← ���(�(�, ·)) as key for Π
Π(� , �) := � (�)
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OWF VBBO−−−→ OWP
Claim 1
If ��� is VBB obfuscator and � is PRP then Π is a OWP
Proof sketch. (��� not VBBO or � not PRP ⇐ ∃��� for OWP Π).

Does Claim 1 contradict OWF↛OWP from Lecture 21?
No, Π is a non-black-box construction (it uses F’s program)
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SKE VBBO−−−→ PKE...
How to construct PKE from SKE?

What if the PKE’s public key is an obfuscation of SKE’s
encrypt algorithm ��� with secret key � hardcoded?

Construction 2 (Π = (���, ���,���)→Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← ���(��)
Output ���(���(�, ·; ·)) as public key �� and � as secret key

���
′(��,�; � ): output � := ��(�; � )

���
′(�, � ): output � := ���(�, � )

6 / 13



SKE VBBO−−−→ PKE...

6 / 13



SKE VBBO−−−→ PKE...

Exercise 1
Come up with an attack against Construction 2 (Hint:
substitute a concrete SKE we have seen in this course such
that the construction fails.)
Define VBBO for randomised programs; fix Construction 2
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VBBO is (Almost) “Crypto Complete”!...

Exercise 2
Given VBB obfuscator, construct:

1 one-way function
2 fully-homomorphic encryption (FHE) from any SKE
3 non-interactive commitment
4 trapdoor permutation
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Plan for this Session
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3 Impossibility of VBBO for General Programs
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Theorem 1 (VBBO for general programs is impossible)
For every ��� there exists a program �∗ and

1 a particular efficient white-box learner �∗ such that
2 for every black-box learner �,
3 � fails to simulate �∗’s output on input �∗ using only oracle access

to �∗

Easy case: when �∗ can output arbitrarily-long strings
What is �∗’s strategy? Simply output �∗
(Every) � only has black-box access to �∗ ⇒ � cannot output
description of �∗
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Harder case: when �∗ outputs short strings (e.g., a bit)

Idea: come up with a program �∗ such that
1 �∗ spits out some short secret string σ when run “on itself”

�∗ needs to be a Turing machine
2 �∗ has �∗ and can therefore access σ
3 (Every) � only has black-box access to �∗ ⇒ � cannot access σ

Challenge: avoid circularity when defining �∗
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Consider the following ∆ and � for α, β, σ ∈ {�, �}� :

Given ∆ and � , �∗ runs �( ∆ ) to obtain ... σ
Without ∆ and �, no � can access σ

To get a single program �∗, simply “MUX” ∆ and �:

Given �∗, �∗ defines ∆ := �∗(�, ·) and � := �∗(�, ·)
�∗ runs ∆ on � to obtain σ
Without �∗, � cannot access σ

Exercise 3
Come up with your own �∗!
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Security: obfuscations of two functionally-equivalent programs
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(� ) = �(� )
2 Slowdown is polynomial: run-time of � is polynomial in � and

run-time of �
3 IO security: for every equivalent �� and �� and PPT

distinguisher �, the following is negligible:

Exercise 4
1) Show that VBBO → IO 2) Figure out why Theorem 1 fails for IO
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To Recap Today’s Lecture
Program obfuscation and why it is useful

How to model security?
Today’s lecture: virtual black-box (VBB) obfuscation
Next lecture: indistinguishability obfuscation (IO)

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO−−−→ OWP
SKE VBBO−−−→ PKE

Impossibility of VBBO for general programs
Key idea: programs that spit out secret when run “on itself”
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Next Lecture

Friday (31/Oct): no lecture (Diwali eve)
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Next Lecture

Friday (31/Oct): no lecture (Diwali eve)

Tuesday (04/Nov): More on indistinguishability obfuscator (IO)
Theorem 1 does not apply to IOHow to use IO?

SKE IO−→ PKE
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