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Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Virtual black-box obfuscation (VBBO): anything learnable
“white-box” given � is learnable ‘black-box” given only oracle
access to �

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO∗−−−−→ OWP
SKE VBBO∗−−−−→ PKE

Impossibility of VBBO for general programs
Key idea: programs that spit out secret when run “on itself”
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Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(� ) = �(� )
2 Small slowdown: run-time of � is poly. in � and run-time of �
3 VBBO security: for every PPT �, there exists PPT � that can

simulate �’s output on input � using only oracle access to �.
That is, the following is negligible:
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A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved
2 Slowdown is polynomial
3 IO security: for every functionally-equivalent, same-sized ��and �� and PPT distinguisher �, the following is negligible:
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Assuming � = ��, can you construct an IO?

Output the lexicographically-first functionally-equivalent
programThus hard to show that IO→OWF (unlike VBBO)

Will imply � ̸= ��

Exercise 1 (VBBO vs. IO)
1 Show that VBBO → IO
2 Figure out why Theorem 1 from Lecture 22 fails for IO

Exercise 2 (IO is the “best-possible obfuscation”)
If VBBO is possible for a program class C, then an IO ��� for C is
also a VBBO
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Ciphertext is obfuscation of function C below

Construction 1 (� : {�, �}� → {�, �}��→Π = (���, ���,���))
���(��):

Sample �� ← {�,�}�
Output �� := �(��) as public key and �� as secret key

���(��,�): output C ← ���(C)
���(��, C): output C(��)

Exercise 3
Prove that Construction 1 is secure if ��� is VBBO
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How to Use IO: PRG �
IO−→ PKE...

What is going on?
IO can be used to hide secrets (in this case, messages)Hiding exploits pseudorandomness of PRG:

When � is outside the image of �, message is never used
Switch from �� := �(� ) to �� := � is indistinguishable
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Plan for this Session

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG IO−→ PKE

3 How to Use IO: Punctured Programming
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���(�,�; � ) := (�(�, � ) ⊕ �; � )
���

′(��,�; � ): output (� , � ) := ��(�; � )
���

′(�, (� , � )): output � := �(�, � ) ⊕ �

Why is Construction 3 insecure?
Given challenger ciphertext (� ∗, � ∗), is it possible recover �∗?

1 Run ��(���; � ∗) to obtain �(�, � ∗) ⊕ ��� = �(�, � ∗)
2 Recover �∗ := �(�, � ∗) ⊕ �∗

Issue: adversary can control random coins used to encrypt
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Use �(� ∗) for � ∗ ← {�, �}� instead of � ∗ ← {�, �}�� as coin
Construction 4 (PRF � →Π′ = (���′, ���′,���′))

���
′(�� ):
Sample � ← {�, �}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�,�(� )) ⊕ �;�(� ))
���

′(�� ,�; �): output (�, � ) := �� (�;�(�))
���

′(� , (�, � )): output � := �(� , � ) ⊕ �

Why does the attack not work now? Need to invert PRG
To formally prove IND-CPA security, we need additional
properties from PRF �...
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A PRF � : {�, �}� × {�, �}�� → {�, �}�� that additionally supports

a puncturing algorithm ��∗ ← ��������(� , �∗)
such that

1 Function preserved at non-punctured points:
∀� ̸= �∗ : ��

�
∗ (� ) = �� (� )

2 Value of ��
�

∗ at �∗ is uniformly random even given the
punctured key ��∗

PPRF can be obtained by modifying tree-based PRF fromLecture 5
PRG→PPRF
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(Short) Digital Signatures via Punctured Programming
Additionally use OWF f
Signature on � is evaluation of PPRF � on �

Public key consists of obfuscation of the following program that
verifies signatures

Theorem 4
If � is a puncturable PRF, f a OWP and ��� is an IO then Π′ is a
PKE
Exercise 4
Prove Theorem 4
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Relaxed requirements for obfuscators from VBBO to IO

How to use IO?
PRG IO−→ PKE
Key idea: how to use IO to hide secrets

New tool: punctured programming
Puncturable PRF (PPRF)
PPRF IO−→ PKE
PPRF IO−→ digital signature
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State of affairs for IO for ���

13 / 13



Next Lecture

How to construct indistinguishability obfuscator (IO)
Bootstrapping theorem for IO
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