

CS783: Theoretical Foundations of Cryptography

Lecture 23 (05/Nov/24)

Instructor: Chethan Kamath

Program obfuscation: "scramble/encrypt" a program such that functionality preserved hard to "reverse engineer" (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; while(isp)(i++;) return "faise";) (har isprime(int p){ int i=0; int i=0; int i=0; int i=0; int i=0; (har isprime(int p){ int i=0; int i

Program obfuscation: "scramble/encrypt" a program such that
functionality preserved
hard to "reverse engineer"
that isPrime(int p){
int i=0;
while(isp)(i++;)
return "false";
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

■ How to formalise "hard to reverse engineer"?

 Virtual black-box obfuscation (VBBO): anything learnable "white-box" given P is learnable 'black-box" given only oracle access to P

Program obfuscation: "scramble/encrypt" a program such that functionality preserved hard to "reverse engineer" (har isPrime(int p){ int i=0; while(isp)(i++;) return "false";)

■ How to formalise "hard to reverse engineer"?

 Virtual black-box obfuscation (VBBO): anything learnable "white-box" given P is learnable 'black-box" given only oracle access to P

+ Bypassed black-box separations exploiting primitive's program:

- OWF <u>VBBO*</u> OWP
- SKE <u>
 VBBO*</u> PKE

Program obfuscation: "scramble/encrypt" a program such that functionality preserved hard to "reverse engineer" (har isPrime(int p)(int i=0; while(isp)(i++;) return "false"; 00a (bar isPrime(int p)(int i=0; while(isp)(i++;) return "false"; 00a (bar isPrime(int p)(int i=0; while(isp)(i++;) return "false"; (bar isprime(int p)(int i=0; while(isp)(i++;) return "false"; (bar isprime(int p)(int i=0; int i=0; while(isp)(i++;) return "false"; (bar isprime(int p)(int i=0; int i=0; int i=0; (bar isprime(int p)(int i=0; int i=0; int i=0; (bar isprime(int p)(int i=0; (bar isprime(int p)(int i=0; int i=0; (char isprime(int p)((char isprim

■ How to formalise "hard to reverse engineer"?

 Virtual black-box obfuscation (VBBO): anything learnable "white-box" given P is learnable 'black-box" given only oracle access to P

+ Bypassed black-box separations exploiting primitive's program:

- OWF <u>VBBO*</u> OWP
- SKE → PKE

- Impossibility of VBBO for general programs

■ Key idea: programs that spit out secret when run "on itself"

■ What do we do in the face of this impossibility?

Relax requirement to *indistinguishability* obfuscation (IO)

■ What do we do in the face of this impossibility?

Relax requirement to *indistinguishability* obfuscation (IO)

■ What do we do in the face of this impossibility?

Relax requirement to *indistinguishability* obfuscation (IO)

• How to use IO: PRG \xrightarrow{IO} PKE

■ How to use IO: *punctured* programming

- Puncturable PRF (PPRF)
- PPRF $\xrightarrow{10}$ PKE
- PPRF $\xrightarrow{10}$ digital signature

General *template*: Program obfuscation 1 Identify the task

- 2 Come up with precise threat model M (a.k.a security model)
 - Adversary/Attack: What are the adversary's capabilities?
 - Security Goal: What does it mean to be secure?
- 3 Construct a scheme Π
- 4 Formally prove that Π in secure in model M

General template: program obfuscation
Identify the task
Come up with precise threat model M (a.k.a security model)
Adversary/Attack: What are the adversary's capabilities?
Security Goal: What does it mean to be secure? 10 security
Construct a scheme Π
Formally prove that Π in secure in model M

General template: Program obfuscation
Identify the task
2 Come up with precise threat model M (a.k.a security model)
Adversary/Attack: What are the adversary's capabilities?
Becurity Goal: What does it mean to be secure? → 10 security
3 Construct a scheme Π
4 Formally prove that Π in secure in model M
Next lectore

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG \xrightarrow{IO} PKE

3 How to Use IO: Punctured Programming

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG $\xrightarrow{10}$ PKE

3 How to Use IO: Punctured Programming

Recall VBBO

Security via "simulation": anything learnable "white-box" given
 P is learnable "black-box" given only oracle access to P

Recall VBBO

Security via "simulation": anything learnable "white-box" given
 P is learnable "black-box" given only oracle access to P

Defintion 1 (VBB obfuscator)

A PPT algorithm Obf that takes as input any program P and a security parameter n, and outputs obfuscated program P such that:

- 1 Functionality preserved: for all inputs x, P(x) = P(x)
- 2 Small slowdown: run-time of \mathbb{P} is poly. in n and run-time of \mathbb{P}

Recall VBBO

Security via "simulation": anything learnable "white-box" given
 P is learnable "black-box" given only oracle access to P

Defintion 1 (VBB obfuscator)

A PPT algorithm Obf that takes as input any program P and a security parameter n, and outputs obfuscated program P such that:

- 1 Functionality preserved: for all inputs x, P(x) = P(x)
- 2 Small slowdown: run-time of \mathbb{P} is poly. in n and run-time of \mathbb{P}
- 3 VBBO security: for every PPT W, there exists PPT B that can simulate W's output on input Pusing only oracle access to P. That is, the following is negligible:

$$\Pr\left[W(\mathbb{P})=I\right] - \Pr\left[B^{P}(\mathbb{P},\mathbb{P})=I\right]$$

$$\Pr\left[Obf(\mathbb{P},\mathbb{P})\right]$$

? How to define IO?

 $\forall x : P_1(x) = P_2(x) <$ $\forall x : P_1(x) < P_1(x) <$ $\forall x : P_1(x) < P_1($

 $\forall x : P_1(x) = P_2(x)$ $\forall x : P_1(x) = P_2(x)$

Definiton 2 (Indistinguishability obfuscator (IO))

A PPT algorithm Obf that takes as input any program P and security parameter n, and outputs obfuscated program P such that:

- 1 Functionality preserved
- 2 Slowdown is polynomial

while(i<2*p){i+=2;}

 $\forall x: P_1(x) = P_2(x) \in \mathbb{C}$ How to define IO? Obfuscations of two functionally-equivalent, intime same-sized programs are computationally indistinguishable $(a) = \sum_{\substack{(x,y) \in \mathbb{C}}} e_{x,y}(x,y) = \sum_{\substack{(x,y) \in \mathbb{C}}} e_$

Definiton 2 (Indistinguishability obfuscator (IO))

A PPT algorithm Obf that takes as input any program P and security parameter n, and outputs obfuscated program P such that:

1 Functionality preserved

while(i<p){i++;}</pre>

- 2 Slowdown is polynomial
- 3 *IO* security: for every functionally-equivalent, same-sized P₁ and P₂ and PPT distinguisher D, the following is negligible: $\begin{vmatrix} P_{r} \left[P \left(P \right) = I \right] - P_{r} \left[P \left(P \right) = I \right] \\ P_{r} \left[P \left(P \right) = I \right] - P_{r} \left[P \left(P \right) = I \right] \end{vmatrix}$

? Assuming P = NP, can you construct an IO?

- ? Assuming P = NP, can you construct an IO?
 - Output the *lexicographically-first* functionally-equivalent program

 \bigcirc Assuming P = NP, can you construct an IO?

- Output the *lexicographically-first* functionally-equivalent
 program
- \bigwedge Thus hard to show that IO \rightarrow OWF (unlike VBBO)
 - Will imply $P \neq NP$

 \bigcirc Assuming P = NP, can you construct an IO?

- Output the *lexicographically-first* functionally-equivalent
 program
- \bigwedge Thus hard to show that IO \rightarrow OWF (unlike VBBO)
 - Will imply $P \neq NP$

Exercise 1 (VBBO vs. IO)

- 1 Show that $VBBO \rightarrow IO$
- 2 Figure out why Theorem 1 from Lecture 22 fails for IO

 \bigcirc Assuming P = NP, can you construct an IO?

- Output the *lexicographically-first* functionally-equivalent program
- \bigwedge Thus hard to show that IO \rightarrow OWF (unlike VBBO)
 - Will imply $P \neq NP$

Exercise 1 (VBBO vs. IO)

- 1 Show that $VBBO \rightarrow IO$
- 2 Figure out why Theorem 1 from Lecture 22 fails for IO

Exercise 2 (IO is the "best-possible obfuscation")

If VBBO is possible for a program class $\mathcal{C},$ then an IO Obf for \mathcal{C} is also a VBBO

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG $\xrightarrow{10}$ PKE

3 How to Use IO: Punctured Programming

(?) How to construct PKE using PRG $G : \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$?

? How to construct PKE using PRG $G : \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$?

- Secret key is $sk \leftarrow \{0,1\}^n$ and $pk := \mathsf{G}(sk)$
- Ciphertext is obfuscation of function C below

```
C(x){
   /*Hardwired: pk, m */
   if(G(x)=pk) output m
   else output "⊥"
}
```

? How to construct PKE using PRG G : $\{0, 1\}^n \rightarrow \{0, 1\}^{2n}$?

- Secret key is $sk \leftarrow \{0,1\}^n$ and $pk := \mathsf{G}(sk)$
- Ciphertext is obfuscation of function C below

```
C(x){
   /*Hardwired: pk, m */
   if(G(x)=pk) output m
   else output "⊥"
}
```

Construction 1 (G : {0, 1}ⁿ \rightarrow {0, 1}²ⁿ \rightarrow Π = (Gen, Enc, Dec))

- Gen(1ⁿ):
 - Sample $sk \leftarrow \{0, 1\}^n$
 - Output pk := G(sk) as public key and sk as secret key
- Enc(pk, m): $output \bigcirc \leftarrow Obf(C)$
- Dec(sk,C): output C(sk)

? How to construct PKE using PRG G : $\{0, 1\}^n \rightarrow \{0, 1\}^{2n}$?

- Secret key is $sk \leftarrow \{0,1\}^n$ and $pk := \mathsf{G}(sk)$
- Ciphertext is obfuscation of function C below

Construction 1 (G :
$$\{0, 1\}^n \rightarrow \{0, 1\}^{2n} \rightarrow \Pi = (\text{Gen}, \text{Enc}, \text{Dec}))$$

Gen(1ⁿ):
Sample $sk \leftarrow \{0, 1\}^n$
Output $pk := G(sk)$ as public key and sk as secret key
Enc(pk, m): output $C \leftarrow \text{Obf}(C)$
Dec(sk, C : output $C(sk)$

Exercise 3

Prove that Construction 1 is secure if Obf is VBBO

Theorem 1

If Obf is an IO and ${\sf G}$ is a PRG then Π is a PKE

Theorem 1

If Obf is an IO and G is a PRG then Π is a PKE

Proof Sketch (Hybrid argument).

Theorem 1

Theorem 1

Theorem 1

Theorem 1

Theorem 1

If Obf is an IO and G is a PRG then Π is a PKE

Theorem 1

If Obf is an IO and G is a PRG then Π is a PKE

■ What is going on?

■ IO *can* be used to hide secrets (in this case, messages)

- What is going on?
 - IO can be used to hide secrets (in this case, messages)
 - Hiding exploits pseudorandomness of PRG:
 - When y is outside the image of G, message is never used
 - Switch from pk := G(x) to pk := y is indistinguishable

Plan for this Session

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG $\xrightarrow{10}$ PKE

3 How to Use IO: Punctured Programming

Public key is an obfuscation of SKE's encrypt algorithm Enc with secret key k hardcoded

$$m;r \in Enc(k, \cdot; \cdot)$$

Public key is an obfuscation of SKE's encrypt algorithm Enc with secret key k hardcoded

$$m;r \in Enc(k, \cdot; \cdot)$$

Construction 2 ($\Pi = (Gen, Enc, Dec) \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen′(1ⁿ):
 - Sample $k \leftarrow \text{Gen}(1^n)$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key
- Enc'(pk, m; r): output c := pk(m; r)
- $\operatorname{Dec}'(k, c)$: output $m := \operatorname{Dec}(k, c)$

■ Using SKE based on PRF $F : \{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$:

Construction 3 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $Enc(k, m; r) := (F(k, r) \oplus m; r)$

- Enc'(pk, m; r): output (c, r) := pk(m; r)
- $\mathsf{Dec}'(k, (c, r))$: output $m := \mathsf{F}(k, r) \oplus c$

■ Using SKE based on PRF $F : \{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$:

Construction 3 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $Enc(k, m; r) := (F(k, r) \oplus m; r)$

- $\operatorname{Enc}^{\prime}(pk, m; r)$: output (c, r) := pk(m; r)
- $\mathsf{Dec}'(k, (c, r))$: output $m := \mathsf{F}(k, r) \oplus c$

Why is Construction 3 insecure?

■ Using SKE based on PRF $F : \{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$:

Construction 3 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $Enc(k, m; r) := (F(k, r) \oplus m; r)$

- $\operatorname{Enc}^{\prime}(pk, m; r)$: output (c, r) := pk(m; r)
- $\mathsf{Dec}'(k, (c, r))$: output $m := \mathsf{F}(k, r) \oplus c$

Why is Construction 3 insecure?

Given challenger ciphertext (c^* , r^*), is it possible recover m^* ?

■ Using SKE based on PRF $F : \{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$:

Construction 3 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $Enc(k, m; r) := (F(k, r) \oplus m; r)$

- Enc'(pk, m; r): output (c, r) := pk(m; r)
- $\mathsf{Dec}'(k, (c, r))$: output $m := \mathsf{F}(k, r) \oplus c$

Why is Construction 3 insecure?

- Given challenger ciphertext (c^* , r^*), is it possible recover m^* ?
 - **1** Run $pk(0^{2n}; r^*)$ to obtain $F(k, r^*) \oplus 0^{2n} = F(k, r^*)$
 - 2 Recover $m^* := F(k, r^*) \oplus c^*$

\Lambda Issue: adversary can control random coins used to encrypt

? How to "hide" random coins used to encrypt

When to "hide" random coins used to encrypt using a PRG G?

When to "hide" random coins used to encrypt using a PRG G? Use $G(r^*)$ for $r^* \leftarrow \{0,1\}^n$ instead of $r^* \leftarrow \{0,1\}^{2n}$ as coin

Construction 4 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output Enc(k, ::) as public key pk and k as secret key, where

 $\operatorname{Enc}(k, m; r) := (\operatorname{F}(k, \operatorname{\mathbf{G}}(r)) \oplus m; \operatorname{\mathbf{G}}(r))$

Enc'(pk, m; r): output (c, y) := pk(m; G(r))
 Dec'(k, (c, y)): output m := F(k, y) ⊕ c

When to "hide" random coins used to encrypt using a PRG G? Use $G(r^*)$ for $r^* \leftarrow \{0,1\}^n$ instead of $r^* \leftarrow \{0,1\}^{2n}$ as coin

Construction 4 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen′(1ⁿ):
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $\operatorname{Enc}(k, m; r) := (\operatorname{F}(k, \operatorname{\mathbf{G}}(r)) \oplus m; \operatorname{\mathbf{G}}(r))$

Enc'(pk, m; r): output (c, y) := pk(m; G(r))
 Dec'(k, (c, y)): output m := F(k, y) ⊕ c

Why does the attack not work now?

When to "hide" random coins used to encrypt using a PRG G? Use $G(r^*)$ for $r^* \leftarrow \{0,1\}^n$ instead of $r^* \leftarrow \{0,1\}^{2n}$ as coin

Construction 4 (PRF $F \rightarrow \Pi' = (Gen', Enc', Dec')$)

- Gen' (1^n) :
 - Sample $k \leftarrow \{0, 1\}^n$
 - Output $Enc(k, \cdot; \cdot)$ as public key pk and k as secret key, where

 $\mathsf{Enc}(k, m; r) := (\mathsf{F}(k, \mathbf{G}(r)) \oplus m; \mathbf{G}(r))$

Enc'(pk, m; r): output (c, y) := pk(m; G(r))
 Dec'(k, (c, y)): output m := F(k, y) ⊕ c

Why does the attack not work now? Need to invert PRG

To formally prove IND-CPA security, we need additional properties from PRF F...

PRF F Needs to be "Puncturable"

Definition 2 (Puncturable PRF (PPRF))

A PRF $F : \{0,1\}^n \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ that additionally supports

■ a puncturing algorithm $k_{x^*} \leftarrow \mathsf{Puncture}(k, x^*)$

PRF F Needs to be "Puncturable"

Definition 2 (Puncturable PRF (PPRF))

A PRF F: $\{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$ that additionally supports **a** puncturing algorithm $k_{x^*} \leftarrow \text{Puncture}(k, x^*)$

such that

1 Function preserved at non-punctured points:

$$\forall x \neq x^* : \mathsf{F}_{k_{x^*}}(x) = \mathsf{F}_k(x)$$

2 Value of $F_{k_{x^*}}$ at x^* is uniformly random even given the punctured key k_{x^*}

PRF F Needs to be "Puncturable"

Definition 2 (Puncturable PRF (PPRF))

A PRF F : $\{0, 1\}^n \times \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$ that additionally supports **a** puncturing algorithm $k_{x^*} \leftarrow \text{Puncture}(k, x^*)$

such that

1 Function preserved at non-punctured points:

$$\forall x \neq x^* : \mathsf{F}_{k_{x^*}}(x) = \mathsf{F}_k(x)$$

- 2 Value of $F_{k_{x^*}}$ at x^* is uniformly random even given the punctured key k_{x^*}
- PPRF can be obtained by modifying tree-based PRF from Lecture 5
 - PRG→PPRF

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

Theorem 3

(Short) Digital Signatures via Punctured Programming

- Additionally use OWF f
- Signature on m is evaluation of PPRF F on m
- Public key consists of obfuscation of the following program that verifies signatures

(Short) Digital Signatures via Punctured Programming

- Additionally use OWF f
- Signature on m is evaluation of PPRF F on m
- Public key consists of obfuscation of the following program that verifies signatures

Theorem 4

If F is a puncturable PRF, f a OWP and Obf is an IO then Π' is a PKE

Exercise 4

Prove Theorem 4

To Recap Today's Lecture

■ Relaxed requirements for obfuscators from VBBO to IO

To Recap Today's Lecture

■ Relaxed requirements for obfuscators from VBBO to IO

■ How to use IO?

- PRG $\xrightarrow{10}$ PKE
- ₩ Key idea: how to use IO to hide secrets

To Recap Today's Lecture

Relaxed requirements for obfuscators from VBBO to IO

- How to use IO?
 PRG → PKE
 Key idea: how to use IO to hide secrets
- New tool: *punctured* programming
 - Puncturable PRF (PPRF)
 - PPRF $\xrightarrow{10}$ PKE
 - PPRF $\xrightarrow{10}$ digital signature

Next Lecture

■ How to construct indistinguishability obfuscator (IO)

- Bootstrapping theorem for IO
- State of affairs for IO for NC¹

Next Lecture

■ How to construct indistinguishability obfuscator (IO)

- Bootstrapping theorem for IO
- State of affairs for IO for NC¹

References

- The problem of constructing cryptographic primitives using IO was studied in [SW14]. That paper also introduces the "punctured programming" approach, and uses it to construct PKE, signatures, NIZK and several other primitives from IO.
- Construction 1 is taken from Lecture 25 of Vinod Vaikuntanathan's MIT6875.
- Mark Zhandry's COS 597C course (Autumn 2016) is an excellent source to learn further about program obfuscation.
- Puncturable PRF was introduced in [BW13, BGI14, KPTZ13].
 A formal definition can be found in [SW14].

Elette Boyle, Shafi Goldwasser, and Ioana Ivan.

Functional signatures and pseudorandom functions.

In Hugo Krawczyk, editor, *PKC 2014*, volume 8383 of *LNCS*, pages 501–519. Springer, Heidelberg, March 2014.

Dan Boneh and Brent Waters.

Constrained pseudorandom functions and their applications.

In Kazue Sako and Palash Sarkar, editors, *ASIACRYPT 2013, Part II*, volume 8270 of *LNCS*, pages 280–300. Springer, Heidelberg, December 2013.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.

Delegatable pseudorandom functions and applications.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, *ACM CCS 2013*, pages 669–684. ACM Press, November 2013.

Amit Sahai and Brent Waters.

How to use indistinguishability obfuscation: deniable encryption, and more. In David B. Shmoys, editor, *46th ACM STOC*, pages 475–484. ACM Press, May / June 2014.