
CS783: Theoretical Foundations of Cryptography
Lecture 23 (05/Nov/24)

Instructor: Chethan Kamath



Recall from Last Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

1 / 13



Recall from Last Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Virtual black-box obfuscation (VBBO): anything learnable
“white-box” given � is learnable ‘black-box” given only oracle
access to �

1 / 13



Recall from Last Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Virtual black-box obfuscation (VBBO): anything learnable
“white-box” given � is learnable ‘black-box” given only oracle
access to �

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO∗−−−−→ OWP
SKE VBBO∗−−−−→ PKE

1 / 13



Recall from Last Lecture...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Virtual black-box obfuscation (VBBO): anything learnable
“white-box” given � is learnable ‘black-box” given only oracle
access to �

Bypassed black-box separations exploiting primitive’s program:
OWF VBBO∗−−−−→ OWP
SKE VBBO∗−−−−→ PKE

Impossibility of VBBO for general programs
Key idea: programs that spit out secret when run “on itself”

1 / 13



Plan for Today’s Lecture...

What do we do in the face of this impossibility?
Relax requirement to indistinguishability obfuscation (IO)

2 / 13



Plan for Today’s Lecture...

What do we do in the face of this impossibility?
Relax requirement to indistinguishability obfuscation (IO)

How to use IO: PRG IO−→ PKE

2 / 13



Plan for Today’s Lecture...

What do we do in the face of this impossibility?
Relax requirement to indistinguishability obfuscation (IO)

How to use IO: PRG IO−→ PKE

How to use IO: punctured programming
Puncturable PRF (PPRF)
PPRF IO−→ PKE
PPRF IO−→ digital signature

2 / 13



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13



Plan for Today’s Lecture...

General template:
1 Identify the task
2 Come up with precise threat model � (a.k.a security model)

Adversary/Attack: What are the adversary’s capabilities?
Security Goal: What does it mean to be secure?

3 Construct a scheme Π
4 Formally prove that Π in secure in model �

2 / 13



Plan for Today’s Lecture...

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG IO−→ PKE

3 How to Use IO: Punctured Programming

2 / 13



Plan for Today’s Lecture...

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG IO−→ PKE

3 How to Use IO: Punctured Programming

2 / 13



Recall VBBO
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

3 / 13



Recall VBBO
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(� ) = �(� )
2 Small slowdown: run-time of � is poly. in � and run-time of �

3 / 13



Recall VBBO
Security via “simulation”: anything learnable “white-box” given
� is learnable “black-box” given only oracle access to �

Defintion 1 (VBB obfuscator)
A PPT algorithm ��� that takes as input any program � and a
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved: for all inputs � , �(� ) = �(� )
2 Small slowdown: run-time of � is poly. in � and run-time of �
3 VBBO security: for every PPT �, there exists PPT � that can

simulate �’s output on input � using only oracle access to �.
That is, the following is negligible:

3 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
How to define IO?

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
How to define IO? Obfuscations of two functionally-equivalent,
same-sized programs are computationally indistinguishable

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
How to define IO? Obfuscations of two functionally-equivalent,
same-sized programs are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved
2 Slowdown is polynomial

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
How to define IO? Obfuscations of two functionally-equivalent,
same-sized programs are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO))
A PPT algorithm ��� that takes as input any program � and
security parameter �, and outputs obfuscated program � such that:

1 Functionality preserved
2 Slowdown is polynomial
3 IO security: for every functionally-equivalent, same-sized ��and �� and PPT distinguisher �, the following is negligible:

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
Assuming � = ��, can you construct an IO?

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
Assuming � = ��, can you construct an IO?

Output the lexicographically-first functionally-equivalent
program

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
Assuming � = ��, can you construct an IO?

Output the lexicographically-first functionally-equivalent
programThus hard to show that IO→OWF (unlike VBBO)

Will imply � ̸= ��

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
Assuming � = ��, can you construct an IO?

Output the lexicographically-first functionally-equivalent
programThus hard to show that IO→OWF (unlike VBBO)

Will imply � ̸= ��

Exercise 1 (VBBO vs. IO)
1 Show that VBBO → IO
2 Figure out why Theorem 1 from Lecture 22 fails for IO

4 / 13



Let’s Define Indistinguishability Obfuscation (IO)...
Assuming � = ��, can you construct an IO?

Output the lexicographically-first functionally-equivalent
programThus hard to show that IO→OWF (unlike VBBO)

Will imply � ̸= ��

Exercise 1 (VBBO vs. IO)
1 Show that VBBO → IO
2 Figure out why Theorem 1 from Lecture 22 fails for IO

Exercise 2 (IO is the “best-possible obfuscation”)
If VBBO is possible for a program class C, then an IO ��� for C is
also a VBBO

4 / 13



Plan for Today’s Lecture

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG IO−→ PKE

3 How to Use IO: Punctured Programming

4 / 13



How to Use IO: PRG �
IO−→ PKE...

How to construct PKE using PRG � : {�, �}� → {�, �}��?

5 / 13



How to Use IO: PRG �
IO−→ PKE...

How to construct PKE using PRG � : {�, �}� → {�, �}��?
Secret key is �� ← {�, �}� and �� := �(��)
Ciphertext is obfuscation of function C below

5 / 13



How to Use IO: PRG �
IO−→ PKE...

How to construct PKE using PRG � : {�, �}� → {�, �}��?
Secret key is �� ← {�, �}� and �� := �(��)
Ciphertext is obfuscation of function C below

Construction 1 (� : {�, �}� → {�, �}��→Π = (���, ���,���))
���(��):

Sample �� ← {�,�}�
Output �� := �(��) as public key and �� as secret key

���(��,�): output C ← ���(C)
���(��, C): output C(��)

5 / 13



How to Use IO: PRG �
IO−→ PKE...

How to construct PKE using PRG � : {�, �}� → {�, �}��?
Secret key is �� ← {�, �}� and �� := �(��)
Ciphertext is obfuscation of function C below

Construction 1 (� : {�, �}� → {�, �}��→Π = (���, ���,���))
���(��):

Sample �� ← {�,�}�
Output �� := �(��) as public key and �� as secret key

���(��,�): output C ← ���(C)
���(��, C): output C(��)

Exercise 3
Prove that Construction 1 is secure if ��� is VBBO

5 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

Theorem 1
If ��� is an IO and � is a PRG then Π is a PKE
Proof Sketch (Hybrid argument).

6 / 13



How to Use IO: PRG �
IO−→ PKE...

What is going on?
IO can be used to hide secrets (in this case, messages)

6 / 13



How to Use IO: PRG �
IO−→ PKE...

What is going on?
IO can be used to hide secrets (in this case, messages)Hiding exploits pseudorandomness of PRG:

When � is outside the image of �, message is never used
Switch from �� := �(� ) to �� := � is indistinguishable

6 / 13



Plan for this Session

1 Indistinguishability Obfuscation (IO)

2 How to Use IO: PRG IO−→ PKE

3 How to Use IO: Punctured Programming

6 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...

Public key is an obfuscation of SKE’s encrypt algorithm ���

with secret key � hardcoded

7 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...

Public key is an obfuscation of SKE’s encrypt algorithm ���

with secret key � hardcoded

Construction 2 (Π = (���, ���,���)→Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← ���(��)
Output ���(�, ·; ·) as public key �� and � as secret key

���
′(��,�; � ): output � := ��(�; � )

���
′(�, � ): output � := ���(�, � )

7 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...
Using SKE based on PRF � : {�, �}� × {�, �}�� → {�, �}�� :

Construction 3 (PRF � →Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← {�,�}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�, � ) ⊕ �; � )
���

′(��,�; � ): output (� , � ) := ��(�; � )
���

′(�, (� , � )): output � := �(�, � ) ⊕ �

7 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...
Using SKE based on PRF � : {�, �}� × {�, �}�� → {�, �}�� :

Construction 3 (PRF � →Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← {�,�}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�, � ) ⊕ �; � )
���

′(��,�; � ): output (� , � ) := ��(�; � )
���

′(�, (� , � )): output � := �(�, � ) ⊕ �

Why is Construction 3 insecure?

7 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...
Using SKE based on PRF � : {�, �}� × {�, �}�� → {�, �}�� :

Construction 3 (PRF � →Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← {�,�}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�, � ) ⊕ �; � )
���

′(��,�; � ): output (� , � ) := ��(�; � )
���

′(�, (� , � )): output � := �(�, � ) ⊕ �

Why is Construction 3 insecure?
Given challenger ciphertext (� ∗, � ∗), is it possible recover �∗?

7 / 13



Recall Our Attempt at SKE VBBO−−−→ PKE...
Using SKE based on PRF � : {�, �}� × {�, �}�� → {�, �}�� :

Construction 3 (PRF � →Π′ = (���′, ���′,���′))
���

′(��):
Sample � ← {�,�}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�, � ) ⊕ �; � )
���

′(��,�; � ): output (� , � ) := ��(�; � )
���

′(�, (� , � )): output � := �(�, � ) ⊕ �

Why is Construction 3 insecure?
Given challenger ciphertext (� ∗, � ∗), is it possible recover �∗?

1 Run ��(���; � ∗) to obtain �(�, � ∗) ⊕ ��� = �(�, � ∗)
2 Recover �∗ := �(�, � ∗) ⊕ �∗

Issue: adversary can control random coins used to encrypt
7 / 13



Let’s Fix Construction 2
How to “hide” random coins used to encrypt

8 / 13



Let’s Fix Construction 2
How to “hide” random coins used to encrypt using a PRG �?

8 / 13



Let’s Fix Construction 2
How to “hide” random coins used to encrypt using a PRG �?

Use �(� ∗) for � ∗ ← {�, �}� instead of � ∗ ← {�, �}�� as coin
Construction 4 (PRF � →Π′ = (���′, ���′,���′))

���
′(�� ):
Sample � ← {�, �}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�,�(� )) ⊕ �;�(� ))
���

′(�� ,�; �): output (�, � ) := �� (�;�(�))
���

′(� , (�, � )): output � := �(� , � ) ⊕ �

8 / 13



Let’s Fix Construction 2
How to “hide” random coins used to encrypt using a PRG �?

Use �(� ∗) for � ∗ ← {�, �}� instead of � ∗ ← {�, �}�� as coin
Construction 4 (PRF � →Π′ = (���′, ���′,���′))

���
′(�� ):
Sample � ← {�, �}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�,�(� )) ⊕ �;�(� ))
���

′(�� ,�; �): output (�, � ) := �� (�;�(�))
���

′(� , (�, � )): output � := �(� , � ) ⊕ �

Why does the attack not work now?

8 / 13



Let’s Fix Construction 2
How to “hide” random coins used to encrypt using a PRG �?

Use �(� ∗) for � ∗ ← {�, �}� instead of � ∗ ← {�, �}�� as coin
Construction 4 (PRF � →Π′ = (���′, ���′,���′))

���
′(�� ):
Sample � ← {�, �}�
Output ���(�, ·; ·) as public key �� and � as secret key, where

���(�,�; � ) := (�(�,�(� )) ⊕ �;�(� ))
���

′(�� ,�; �): output (�, � ) := �� (�;�(�))
���

′(� , (�, � )): output � := �(� , � ) ⊕ �

Why does the attack not work now? Need to invert PRG
To formally prove IND-CPA security, we need additional
properties from PRF �...

8 / 13



PRF � Needs to be “Puncturable”

Definition 2 (Puncturable PRF (PPRF))
A PRF � : {�, �}� × {�, �}�� → {�, �}�� that additionally supports

a puncturing algorithm ��∗ ← ��������(� , �∗)

9 / 13



PRF � Needs to be “Puncturable”

Definition 2 (Puncturable PRF (PPRF))
A PRF � : {�, �}� × {�, �}�� → {�, �}�� that additionally supports

a puncturing algorithm ��∗ ← ��������(� , �∗)
such that

1 Function preserved at non-punctured points:
∀� ̸= �∗ : ��

�
∗ (� ) = �� (� )

2 Value of ��
�

∗ at �∗ is uniformly random even given the
punctured key ��∗

9 / 13



PRF � Needs to be “Puncturable”

Definition 2 (Puncturable PRF (PPRF))
A PRF � : {�, �}� × {�, �}�� → {�, �}�� that additionally supports

a puncturing algorithm ��∗ ← ��������(� , �∗)
such that

1 Function preserved at non-punctured points:
∀� ̸= �∗ : ��

�
∗ (� ) = �� (� )

2 Value of ��
�

∗ at �∗ is uniformly random even given the
punctured key ��∗

PPRF can be obtained by modifying tree-based PRF fromLecture 5
PRG→PPRF

9 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



Construction 4 is IND-CPA PKE
Theorem 3
If � is a puncturable PRF and ��� is an IO then Π′ is a PKE
Proof Sketch (Hybrid argument).

10 / 13



(Short) Digital Signatures via Punctured Programming
Additionally use OWF f
Signature on � is evaluation of PPRF � on �

Public key consists of obfuscation of the following program that
verifies signatures

11 / 13



(Short) Digital Signatures via Punctured Programming
Additionally use OWF f
Signature on � is evaluation of PPRF � on �

Public key consists of obfuscation of the following program that
verifies signatures

Theorem 4
If � is a puncturable PRF, f a OWP and ��� is an IO then Π′ is a
PKE
Exercise 4
Prove Theorem 4

11 / 13



To Recap Today’s Lecture

Relaxed requirements for obfuscators from VBBO to IO

12 / 13



To Recap Today’s Lecture

Relaxed requirements for obfuscators from VBBO to IO

How to use IO?
PRG IO−→ PKE
Key idea: how to use IO to hide secrets

12 / 13



To Recap Today’s Lecture

Relaxed requirements for obfuscators from VBBO to IO

How to use IO?
PRG IO−→ PKE
Key idea: how to use IO to hide secrets

New tool: punctured programming
Puncturable PRF (PPRF)
PPRF IO−→ PKE
PPRF IO−→ digital signature

12 / 13



Next Lecture

How to construct indistinguishability obfuscator (IO)
Bootstrapping theorem for IO
State of affairs for IO for ���

13 / 13



Next Lecture

How to construct indistinguishability obfuscator (IO)
Bootstrapping theorem for IO
State of affairs for IO for ���

Course feedback

13 / 13



References

1 The problem of constructing cryptographic primitives using IO
was studied in [SW14]. That paper also introduces the
“punctured programming” approach, and uses it to construct
PKE, signatures, NIZK and several other primitives from IO.

2 Construction 1 is taken from Lecture 25 of Vinod
Vaikuntanathan’s MIT6875.

3 Mark Zhandry’s COS 597C course (Autumn 2016) is an
excellent source to learn further about program obfuscation.

4 Puncturable PRF was introduced in [BW13, BGI14, KPTZ13].
A formal definition can be found in [SW14].

13 / 13



Elette Boyle, Shafi Goldwasser, and Ioana Ivan.
Functional signatures and pseudorandom functions.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014.
Dan Boneh and Brent Waters.
Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.
Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias.
Delegatable pseudorandom functions and applications.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 669–684. ACM Press, November 2013.
Amit Sahai and Brent Waters.
How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press,
May / June 2014.

13 / 13


	Indistinguishability Obfuscation (IO)
	How to Use IO: PRG IO PKE
	How to Use IO: Punctured Programming

