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1 functionality preserved
2 hard to “reverse engineer”
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Recall from Last Two Lectures...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Lecture 22: Virtual black-box obfuscation (VBBO)
Lecture 23: Indistinguishability obfuscation (IO)

Bypassed black-box separations exploiting primitive’s program
OWF VBBO−−−→OWP and PRG IO−→PKE

1 / 11



Recall from Last Two Lectures...
VBBO is almost “crypto complete”

1 / 11



Recall from Last Two Lectures...
VBBO is almost “crypto complete”

1 / 11



Recall from Last Two Lectures...
VBBO is almost “crypto complete”

IO + OWF also yields most of crypto!
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VBBO for general programs is impossible

What about IO for general programs?
Boosting theorem for IO: fully homomorphic encryption (FHE)
+ IO for “shallow” circuits → IO for all circuits
State of affairs for IO for “shallow” circuits
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Plan for Today’s Lecture...

1 Boosting IO Using FHE

2 Constructing IO for ���: What Do We Know?
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Public-key encryption + public evaluation algorithm

Defintion 1 (Homomorphic encryption (HE) for function class F )
A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

Compactness of evaluation: |� | obtained from ���� independent of |� |
Correctness of evaluation
Fully HE: F=functions computable by poly.-sized circuits
GSW construction: FHE that is secure assuming LWE

3 / 11



Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

3 / 11



Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO) for circuit class C)
A PPT algorithm ��� that takes as input any circuit � ∈ C and
security parameter �, and outputs obfuscated circuit � such that:

1 Functionality preserved
2 Slowdown is polynomial

3 / 11



Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO) for circuit class C)
A PPT algorithm ��� that takes as input any circuit � ∈ C and
security parameter �, and outputs obfuscated circuit � such that:

1 Functionality preserved
2 Slowdown is polynomial
3 IO security: for every functionally-equivalent, same-sized
��,�� ∈ C and PPT �, the following is negligible:
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Goal: ��� for ��� + FHE Π → ���
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1 FHE ciphertext � of � under ��
2 ���(��), where �� is the following decrypt-and-output function

To evaluate (� ,���(��)) on �, homomorphically evaluate
� := ����(��, � ,�(·, �))

and then output ���(��)(� )
Problem: insecure as �� decrypts all ciphertexts
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Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

To evaluate ���
′(�) := (� , � ′,���(��)) on input �

1 Evaluate � := ����(��, � ,�(·, � )) and � ′ := ����(��′, � ′,�(·, � ))
2 Let π be wire values during computation of � and � ′
3 Output ���(��)(� , � ′, �, � ′, π, � )

Exercise 1
Show that verifying π can be carried out in ��

�
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Generate (��, ��) ← ���(��) and compute ��� := ���(��, ��)
Output �� ′ := (��, ���) as public key; �� ′ := �� as secret key

���
′ and ���

′ are same as ��� and ���, respectively
����

′(�� , f, �) := ����(�� , f ′, �, ��� ), where

Exercise 2
Show that Π′ is FHE for all circuits if Π is “circular secure” FHE
for ���
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Plan for Today’s Lecture

1 Boosting IO Using FHE

2 Constructing IO for ���: What Do We Know?
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Multilinear Maps → IO for ���
Bilinear map:
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such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
� ) = e(��, ��)��

DDH easy in G (Homework 3, Problem 4)
Hardness assumption: bilinear version of DDH
Can be constructed using “pairings” on elliptic curves

Multilinear map: extension to multiple “levels”
Multilinear maps with roughly logarithmic levels → IO for ���

Problem: we don’t know how to construct even trilinear maps
All proposals of multilinear maps were later broken
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LWE + “Local” PRG + Bilinear Maps → IO for ���

Recent result relaxes the assumptions to
1 Learning with errors (LWE)
2 Bilinear maps
3 “Local” PRG: each output bit of the PRG only depends only on

a “few” input bits
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LWE + “Local” PRG + Bilinear Maps → IO for ���

Recent result relaxes the assumptions to
1 Learning with errors (LWE)
2 Bilinear maps
3 “Local” PRG: each output bit of the PRG only depends only on

a “few” input bits

Construction is complex

Open:
LWE →IO for ���
Simpler constructions from stronger assumptions
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To Recap Module IV...
We started with black-box separations: OWF↛OWP
Program obfuscation and its applications

Potentially bypass black-box separations via non-black-box
constructions
Obfuscation has its limitations: e.g., OWF+IO↛ CRHF

Key tools/ideas: how to hide secrets using IO, punctured
programming, bootstrapping/boosting
Takeaways: separations are useful (they pin point our limits)
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To Recap Module IV...
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