
CS783: Theoretical Foundations of Cryptography
Lecture 24 (08/Nov/24)

Instructor: Chethan Kamath

Recall from Last Two Lectures...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

1 / 11

Recall from Last Two Lectures...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Lecture 22: Virtual black-box obfuscation (VBBO)
Lecture 23: Indistinguishability obfuscation (IO)

1 / 11

Recall from Last Two Lectures...
Program obfuscation: “scramble/encrypt” a program such that

1 functionality preserved
2 hard to “reverse engineer”

How to formalise “hard to reverse engineer”?
Lecture 22: Virtual black-box obfuscation (VBBO)
Lecture 23: Indistinguishability obfuscation (IO)

Bypassed black-box separations exploiting primitive’s program
OWF VBBO−−−→OWP and PRG IO−→PKE

1 / 11

Recall from Last Two Lectures...
VBBO is almost “crypto complete”

1 / 11

Recall from Last Two Lectures...
VBBO is almost “crypto complete”

1 / 11

Recall from Last Two Lectures...
VBBO is almost “crypto complete”

IO + OWF also yields most of crypto!
1 / 11

Plan for Today’s Lecture...

VBBO for general programs is impossible

2 / 11

Plan for Today’s Lecture...

VBBO for general programs is impossible

What about IO for general programs?
Boosting theorem for IO: fully homomorphic encryption (FHE)
+ IO for “shallow” circuits → IO for all circuits

2 / 11

Plan for Today’s Lecture...

VBBO for general programs is impossible

What about IO for general programs?
Boosting theorem for IO: fully homomorphic encryption (FHE)
+ IO for “shallow” circuits → IO for all circuits
State of affairs for IO for “shallow” circuits

2 / 11

Plan for Today’s Lecture...

1 Boosting IO Using FHE

2 Constructing IO for ���: What Do We Know?

2 / 11

Recall... (Fully) Homomorphic Encryption (Lecture 19)
Public-key encryption + public evaluation algorithm

3 / 11

Recall... (Fully) Homomorphic Encryption (Lecture 19)
Public-key encryption + public evaluation algorithm

Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

3 / 11

Recall... (Fully) Homomorphic Encryption (Lecture 19)
Public-key encryption + public evaluation algorithm

Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

Compactness of evaluation: |� | obtained from ���� independent of |� |
Correctness of evaluation

3 / 11

Recall... (Fully) Homomorphic Encryption (Lecture 19)
Public-key encryption + public evaluation algorithm

Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

Compactness of evaluation: |� | obtained from ���� independent of |� |
Correctness of evaluation
Fully HE: F=functions computable by poly.-sized circuits

3 / 11

Recall... (Fully) Homomorphic Encryption (Lecture 19)
Public-key encryption + public evaluation algorithm

Defintion 1 (Homomorphic encryption (HE) for function class F)
A PKE Σ = (���, ���,���) + ���� algorithm with following syntax

Compactness of evaluation: |� | obtained from ���� independent of |� |
Correctness of evaluation
Fully HE: F=functions computable by poly.-sized circuits
GSW construction: FHE that is secure assuming LWE

3 / 11

Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

3 / 11

Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO) for circuit class C)
A PPT algorithm ��� that takes as input any circuit � ∈ C and
security parameter �, and outputs obfuscated circuit � such that:

1 Functionality preserved
2 Slowdown is polynomial

3 / 11

Recall... IO for Circuits (Lecture 23)
Obfuscations of two functionally-equivalent, same-sized circuits
are computationally indistinguishable

Defintion 2 (Indistinguishability obfuscator (IO) for circuit class C)
A PPT algorithm ��� that takes as input any circuit � ∈ C and
security parameter �, and outputs obfuscated circuit � such that:

1 Functionality preserved
2 Slowdown is polynomial
3 IO security: for every functionally-equivalent, same-sized
��,�� ∈ C and PPT �, the following is negligible:

3 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key
Attempt 1:

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is following decrypt-then-evaluate function

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key
Attempt 1:

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is following decrypt-then-evaluate function

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key
Attempt 1:

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is following decrypt-then-evaluate function

To evaluate (� ,���(��)) on �, output ���(��)(�, �)

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key
Attempt 1:

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is following decrypt-then-evaluate function

To evaluate (� ,���(��)) on �, output ���(��)(�, �)
Problem:

4 / 11

Boosting IO for ��� using FHE...
Goal: ��� for ��� + FHE Π → ���

′ for all circuits
High-level idea: use FHE to encrypt circuit and then use ���to “decrypt-then-evaluate”

Use ��� to hide FHE’s secret key
Attempt 1:

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is following decrypt-then-evaluate function

To evaluate (� ,���(��)) on �, output ���(��)(�, �)
Problem: ��� does not support evaluation of �

4 / 11

Boosting IO using FHE...
Attempt 2: let’s exploit homomorphic evaluation

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is the following decrypt-and-output function

4 / 11

Boosting IO using FHE...
Attempt 2: let’s exploit homomorphic evaluation

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is the following decrypt-and-output function

To evaluate (� ,���(��)) on �, homomorphically evaluate
� := ����(��, � ,�(·, �))

and then output ���(��)(�)

4 / 11

Boosting IO using FHE...
Attempt 2: let’s exploit homomorphic evaluation

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is the following decrypt-and-output function

To evaluate (� ,���(��)) on �, homomorphically evaluate
� := ����(��, � ,�(·, �))

and then output ���(��)(�)
Problem:

4 / 11

Boosting IO using FHE...
Attempt 2: let’s exploit homomorphic evaluation

���
′(�) consists of the following:

1 FHE ciphertext � of � under ��
2 ���(��), where �� is the following decrypt-and-output function

To evaluate (� ,���(��)) on �, homomorphically evaluate
� := ����(��, � ,�(·, �))

and then output ���(��)(�)
Problem: insecure as �� decrypts all ciphertexts

4 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

To evaluate ���
′(�) := (� , � ′,���(��)) on input �

1 Evaluate � := ����(��, � ,�(·, �)) and � ′ := ����(��′, � ′,�(·, �))
2 Let π be wire values during computation of � and � ′
3 Output ���(��)(� , � ′, �, � ′, π, �)

5 / 11

Boosting IO using FHE...
Solution: only decrypt certain “constrained” ciphertexts

���
′(�) consists of the following:

1 Two FHE ciphertexts (� , � ′) of �, under �� and ��
′

2 ���(��), where �� is verify-then-decrypt-and-output function

To evaluate ���
′(�) := (� , � ′,���(��)) on input �

1 Evaluate � := ����(��, � ,�(·, �)) and � ′ := ����(��′, � ′,�(·, �))
2 Let π be wire values during computation of � and � ′
3 Output ���(��)(� , � ′, �, � ′, π, �)

Exercise 1
Show that verifying π can be carried out in ��

�

5 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Boosting IO using FHE...
Theorem 1
If ��� is IO for ��� and Π is an FHE then ���

′ is IO for all circuits
Proof Sketch (Hybrid argument).

6 / 11

Digression: Bootstrapping FHE
Goal: HE Π for ��� → FHE Π′ for all circuits

7 / 11

Digression: Bootstrapping FHE
Goal: HE Π for ��� → FHE Π′ for all circuits

Assumption: Π’s ��� can be done in ��
�

7 / 11

Digression: Bootstrapping FHE
Goal: HE Π for ��� → FHE Π′ for all circuits

Assumption: Π’s ��� can be done in ��
�

Construction 1
���

′(��):
Generate (��, ��) ← ���(��) and compute ��� := ���(��, ��)
Output �� ′ := (��, ���) as public key; �� ′ := �� as secret key

���
′ and ���

′ are same as ��� and ���, respectively

7 / 11

Digression: Bootstrapping FHE
Goal: HE Π for ��� → FHE Π′ for all circuits

Assumption: Π’s ��� can be done in ��
�

Construction 1
���

′(��):
Generate (��, ��) ← ���(��) and compute ��� := ���(��, ��)
Output �� ′ := (��, ���) as public key; �� ′ := �� as secret key

���
′ and ���

′ are same as ��� and ���, respectively
����

′(�� , f, �) := ����(�� , f ′, �, ���), where

7 / 11

Digression: Bootstrapping FHE
Goal: HE Π for ��� → FHE Π′ for all circuits

Assumption: Π’s ��� can be done in ��
�

Construction 1
���

′(��):
Generate (��, ��) ← ���(��) and compute ��� := ���(��, ��)
Output �� ′ := (��, ���) as public key; �� ′ := �� as secret key

���
′ and ���

′ are same as ��� and ���, respectively
����

′(�� , f, �) := ����(�� , f ′, �, ���), where

Exercise 2
Show that Π′ is FHE for all circuits if Π is “circular secure” FHE
for ���

7 / 11

Plan for Today’s Lecture

1 Boosting IO Using FHE

2 Constructing IO for ���: What Do We Know?

7 / 11

Multilinear Maps → IO for ���
Bilinear map:

e : G × G → G�

such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
�) = e(��, ��)��

8 / 11

Multilinear Maps → IO for ���
Bilinear map:

e : G × G → G�

such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
�) = e(��, ��)��

DDH easy in G (Homework 3, Problem 4)
Hardness assumption: bilinear version of DDH

8 / 11

Multilinear Maps → IO for ���
Bilinear map:

e : G × G → G�

such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
�) = e(��, ��)��

DDH easy in G (Homework 3, Problem 4)
Hardness assumption: bilinear version of DDH
Can be constructed using “pairings” on elliptic curves

8 / 11

Multilinear Maps → IO for ���
Bilinear map:

e : G × G → G�

such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
�) = e(��, ��)��

DDH easy in G (Homework 3, Problem 4)
Hardness assumption: bilinear version of DDH
Can be constructed using “pairings” on elliptic curves

Multilinear map: extension to multiple “levels”
Multilinear maps with roughly logarithmic levels → IO for ���

8 / 11

Multilinear Maps → IO for ���
Bilinear map:

e : G × G → G�

such that for every ��, �� ∈ G and �, � ∈ Z� ,
e(� �

� , � �
�) = e(��, ��)��

DDH easy in G (Homework 3, Problem 4)
Hardness assumption: bilinear version of DDH
Can be constructed using “pairings” on elliptic curves

Multilinear map: extension to multiple “levels”
Multilinear maps with roughly logarithmic levels → IO for ���

Problem: we don’t know how to construct even trilinear maps
All proposals of multilinear maps were later broken

8 / 11

LWE + “Local” PRG + Bilinear Maps → IO for ���

Recent result relaxes the assumptions to
1 Learning with errors (LWE)
2 Bilinear maps
3 “Local” PRG: each output bit of the PRG only depends only on

a “few” input bits

9 / 11

LWE + “Local” PRG + Bilinear Maps → IO for ���

Recent result relaxes the assumptions to
1 Learning with errors (LWE)
2 Bilinear maps
3 “Local” PRG: each output bit of the PRG only depends only on

a “few” input bits

Construction is complex

9 / 11

LWE + “Local” PRG + Bilinear Maps → IO for ���

Recent result relaxes the assumptions to
1 Learning with errors (LWE)
2 Bilinear maps
3 “Local” PRG: each output bit of the PRG only depends only on

a “few” input bits

Construction is complex

Open:
LWE →IO for ���
Simpler constructions from stronger assumptions

9 / 11

To Recap Module IV...
We started with black-box separations: OWF↛OWP
Program obfuscation and its applications

Potentially bypass black-box separations via non-black-box
constructions

10 / 11

To Recap Module IV...
We started with black-box separations: OWF↛OWP
Program obfuscation and its applications

Potentially bypass black-box separations via non-black-box
constructions
Obfuscation has its limitations: e.g., OWF+IO↛ CRHF

10 / 11

To Recap Module IV...
We started with black-box separations: OWF↛OWP
Program obfuscation and its applications

Potentially bypass black-box separations via non-black-box
constructions
Obfuscation has its limitations: e.g., OWF+IO↛ CRHF

Key tools/ideas: how to hide secrets using IO, punctured
programming, bootstrapping/boosting
Takeaways: separations are useful (they pin point our limits)

10 / 11

To Recap Module IV...

10 / 11

*
**

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

11 / 11

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

Module I: Interactive proof (IP)
Class ��, sumcheck protocol, set lower bound protocol

11 / 11

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

Module I: Interactive proof (IP)
Class ��, sumcheck protocol, set lower bound protocol

Module II: Probabilistically-checkable proof (PCP) and ZKP
Walsh-Hadamard PCP, More on ZKP

11 / 11

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

Module I: Interactive proof (IP)
Class ��, sumcheck protocol, set lower bound protocol

Module II: Probabilistically-checkable proof (PCP) and ZKP
Walsh-Hadamard PCP, More on ZKP

Module III: Cryptographic proofs
Succinct arguments, SNARGs and NIZK

11 / 11

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

Module I: Interactive proof (IP)
Class ��, sumcheck protocol, set lower bound protocol

Module II: Probabilistically-checkable proof (PCP) and ZKP
Walsh-Hadamard PCP, More on ZKP

Module III: Cryptographic proofs
Succinct arguments, SNARGs and NIZK

Module IV: Some recent results
Connections to complexity, batch proofs etc.

11 / 11

Spring’25: Introduction to Probabilistic Proof Systems
Module III: Interactive proofs (IP), zero-knowledge proofs (ZKP)

Module I: Interactive proof (IP)
Class ��, sumcheck protocol, set lower bound protocol

Module II: Probabilistically-checkable proof (PCP) and ZKP
Walsh-Hadamard PCP, More on ZKP

Module III: Cryptographic proofs
Succinct arguments, SNARGs and NIZK

Module IV: Some recent results
Connections to complexity, batch proofs etc.

Will send a link to course website via Moodle
11 / 11

References

1 The boosting result for IO is from [GGH+13]. The presentation
here is from Lecture 13 of Mark Zhandry’s COS597C course
(Fall 16).

2 The bootstrapping result for FHE is due to Gentry [Gen09]
3 The construction of IO from multilinear maps can be found in

[GGH+13]; the second construction can be found in [JLS21].

11 / 11

Craig Gentry.
Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.
Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all
circuits.
In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.
Aayush Jain, Huijia Lin, and Amit Sahai.
Indistinguishability obfuscation from well-founded assumptions.
In Samir Khuller and Virginia Vassilevska Williams, editors, 53rd ACM
STOC, pages 60–73. ACM Press, June 2021.

11 / 11

	Boosting IO Using FHE
	Constructing IO for NC 1: What Do We Know?

