

CS409m: Introduction to Cryptography

Lecture 02 (01/Aug/25)

Instructor: Chethan Kamath

(Slides: Sruthi Sekar)

Announcements

Administrivia...

- Venue change: CC103 to CC101
- Join WhatsApp group (link shared on Moodle)
- TA session: Fridays, 19:30-21:00, CC101

Coursework

- Hands-on Exercise 0 uploaded on <u>Moodle</u>
- Assignment 1 will be uploaded today on <u>webpage</u>/<u>Moodle</u>
 - Ungraded, but you will get some questions in the quiz!

Recall from Last Lecture

- Classical vs modern cryptography
- Guiding principles for modern cryptography:
 - Formally define threat model M: identify security goal and adversary's capabilities
 - Construct scheme
 - Provide rigorous security proof
 - Rely on precise, well-studied assumption
- Classical ciphers: shift cipher, substitution cipher, polyalphabetic shift cipher
- Saw why these are considered insecure by modern standards
 - The ciphertext leaks some information about the message

Plans for Today's Lecture

- 1. Randomized Algorithms \$\\$\\$
- 2. Basic Theory
 - Definition and Background
 - Law of Total Probability, Conditional Probability, Expectation and Variance
- 3. Concentration Inequalities
 - Union Bound, Markov's inequality, Chebyshev's inequality, Chernoff bounds
- 4. <mark>Misc</mark>

Motivation: Randomized Algorithms

Deterministic Algorithm

For each input m, A outputs a fixed value y from the codomain y := A(m)

Randomized Algorithm

For each input m, A additionally uses a randomly picked $r \in_R \{0,1\}^n$ and outputs y := A(m;r). (A(m) is now a set instead of a single value)

Why?

- Randomized algorithms can be faster than deterministic ones
- In cryptography, randomization will be necessary for security
 - Key generation and encryption will be randomized

BASIC THEORY

Definition and Background

 Ω : finite set of possible outcomes, called sample space of the experiment

Example: Coin flip $\Omega = \{H, T\}$

Definition 1

A probability distribution over Ω is a function $P: \Omega \to \mathbb{R}_{\geq 0}$ such that $\Sigma_{x \in \Omega} P(x) = 1$. (sum of all $p_i's$ over all possible outcomes in Ω is 1)

Example: Coin flip P(H) = P(T) = 1/2

Definition 2

An event is any subset $A \subseteq \Omega$. The probability of an event A is $\Pr_P[A] = \Sigma_{x \in A} P(x)$.

Definition 3

Two events A and B are said to be independent if $Pr[A \cap B] = Pr[A]$. Pr[B].

Examples

Example 1: Tossing a coin n times

$$\Omega = \{(\omega_1, \omega_2, \dots \omega_n) : \omega_i \in \{H, T\}\}$$

The event that the first flip is heads is represented as:

$$A_{1,H} = \{(H, \omega_2, ... \omega_n) : \omega_i \in \{H, T\}$$

The event that the first flip is tails is represented as:

$$A_{1,T} = \{(T, \omega_2, ... \omega_n) : \omega_i \in \{H, T\}$$

Let $A_{i,H}$ be the event that the i-th flip is H, and similarly define $A_{i,T}$. Suppose coin is fair (P[H] = P[T]) and each toss is independent, then we have: for a fixed $\omega_1, \omega_2, ... \omega_n$

$$P((\omega_1, \omega_2, ... \omega_n)) = \Pr[A_{1,\omega_1} \cap \cdots \cap A_{n,\omega_n}]$$

$$= \Pr[A_{1,\omega_1}] \dots \Pr[A_{n,\omega_n}] \qquad \text{(by independence)}$$

$$= \frac{1}{2} \dots \frac{1}{2} = \frac{1}{2^n} \qquad \text{(by fairness)}$$

Definition and Background

Definition 4

A (real-valued) random variable is a function X: $\Omega \to \mathbb{R}$. In Example 1, the number of heads is a random variable represented by the function $X((\omega_1, \omega_2, ... \omega_n)) = \Sigma_{i=1}^n \omega_i$.

Definition 5

Two discrete real-valued random variables, X and Y, are said to be independent if Pr[X = x, Y = y] = Pr[X = x]. Pr[Y = y], $\forall x, y \in \mathbb{R}$.

The random variables $X_1, ... X_n$ are said to be jointly independent if $\Pr[X_1 = x_1, ..., X_n = x_n] = \prod_{i=1}^n \Pr[X_i = x_i], \forall x_1, ..., x_n \in \mathbb{R}$

Examples

Example 2: Jointly independent random variables

$$X_{i} = \begin{cases} 1, & \text{if } i^{\text{th}} \text{coin lands H} \\ 0, & \text{if } i^{\text{th}} \text{coin lands T} \end{cases}$$

The random variables $X_1, ... X_n$ are jointly independent.

Example 3: Pairwise Independent but not jointly independent random variables

```
\begin{split} \Omega &= \{(\omega_1,\omega_2) \colon \omega_i \in \{0,1\}\}. \text{ Consider uniform distribution P over } \Omega. \\ &\quad X(\omega_1,\omega_2) = \omega_1 \qquad \text{(outcome of first flip)} \\ &\quad Y(\omega_1,\omega_2) = \omega_2 \qquad \text{(outcome of second flip)} \\ &\quad Z(\omega_1,\omega_2) = \omega_1 \oplus \omega_2 \quad \text{(XOR of both flips)} \end{split}
```

$$\forall \ x,y,z \in \{0,1\}, \Pr[X=x] = \Pr[Y=y] = \Pr[Z=z] = 1/2, \text{ and}$$

$$\Pr[X=x,Y=y] = \Pr[X=x,Z=z] = \Pr[Y=y,Z=z] = 1/4 \Longrightarrow \text{pairwise independence}$$
 But,
$$\Pr[X=0,Y=0,Z=1] = 0 \neq 1/8 = \Pr[X=0] \cdot \Pr[Y=0] \cdot \Pr[Z=1] \Longrightarrow \text{not jointly independent}$$

Law of Total Probability

If we have events $A_1, A_2, ... A_n$ that partition the sample space Ω (i.e., Ω is a disjoint union of these sets), and let B be any event, then

$$Pr[B] = \sum_{i=1}^{n} Pr[B \cap A_i]$$

EXAMPLE:

$$\Omega = A_1 \sqcup A_2 \sqcup A_3$$

Conditional Probability

Definition 6

Probability of an event A conditioned on event B (with $Pr[B] \neq 0$)) is defined as

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Bayes' Rule

$$Pr[A|B] = \frac{Pr[B|A] Pr[A]}{Pr[B]}$$

Chain Rule

$$\Pr[A_1 \cap A_2 \cap \dots \cap A_n] = \Pr[A_1] \Pr[A_2 | A_1] \dots \Pr[A_n | A_1 \cap A_2 \cap \dots \cap A_{n-1}]$$

Conditioning on B means you are now considering B as the sample space instead of Ω .

Expectation

Definition 7

For a discrete real-valued random variable X taking possible values $x_1, x_2, ..., x_n \in \mathbb{R}$, the expectation is defined as

$$\mathbb{E}[X] = \sum_{i=1}^{n} \Pr[X = x_i] \cdot x_i$$

"average" value that X will take

Example 4: Expectation of a coin toss

$$X = \begin{cases} 1, & \text{if a fair coin lands H} \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbb{E}[X] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$$

$$\mathbb{E}[X] = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$$

Properties of Expectation

Linearity of Expectation

Given random variables $X_1, ..., X_n$ and $X = \sum_{i=1}^n X_i$, we have

$$\mathbb{E}[X] = \mathbb{E}[\Sigma_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

**Holds even if the $X_i's$ are not independent!

Example 4: Coin tosses

 $X_i = \begin{cases} 1, \text{ if the } i^{th} \text{ fair coin lands } H \\ 0, \text{ otherwise.} \end{cases} \text{ and let } X = \sum_{i=1}^n X_i$

$$\mathbb{E}[X] = \mathbb{E}[\Sigma_{i=1}^n X_i] = \sum_{i=1}^n \mathbb{E}[X_i] = \frac{n}{2}$$

Multiplicativity of Expectation under independence

For independent random variables X and Y $\mathbb{E}[XY] = \mathbb{E}[X]. \mathbb{E}[Y]$

HW: Prove this by expanding the right side of the equation and using the independence.

Variance

Definition 8

For a discrete real-valued random variable X the variance is defined as $\mathbf{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Variance measures how far the random variable deviates from its expectation

Linearity of variance under pairwise independence

Given random variables $\boldsymbol{X}_1, \dots, \boldsymbol{X}_n$ that are pairwise independent

$$\mathbf{Var}[\Sigma_{i=1}^{n}X_{i}] = \sum_{i=1}^{n}\mathbf{Var}[X_{i}]$$

HW: Prove this using properties of expectation!

CONCENTRATION INEQUALITIES

Union Bound

For events
$$A_1, A_2, ... A_n \subseteq \Omega$$
,
$$\Pr\left[\bigcup_{i=1}^n A_i\right] \leq \sum_{i=1}^n \Pr[A_i]$$

Proof

For
$$A_1, A_2 \subseteq S2$$
 $Pr[A_1 \cup A_2] = Pr[A_1] + Pr[A_2] - Pr[A_1 \cap A_2]$

In particular

 $\Rightarrow Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$

or By induction, for $A_1, \ldots, A_n \subseteq S2$
 $Pr[UA_i] \leq \sum_{i=1}^n Pr[A_i]$

Inclusion-exclusion
Principle

Markov's Inequality

For a discrete random variable X taking non-negative values in the set S, and for any $\alpha > 0$,

$$\Pr[X \ge \alpha] \le \frac{\mathbb{E}[X]}{\alpha}$$

Proof:

$$\mathbb{E}[X] = \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]] + \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]] + \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]] = \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]] = \mathbb{Z}[X. \Pr[X=X]]$$

$$= \mathbb{Z}[X. \Pr[X=X]] = \mathbb{Z}[X. \Pr[X=X]]$$

Chebyshev's Inequality

For a discrete random variable X with variance $\sigma^2 > 0$, and for all real $\alpha > 0$

$$\Pr[|X - \mathbb{E}[X]| \ge \alpha] \le \frac{\sigma^2}{\alpha^2}$$

Proof:

by Markov's inequality

$$\Rightarrow Po[|X-E[X]| \ge \alpha] \le \frac{\sigma^2}{\alpha^2}$$

Chernoff Bounds

Suppose $X_1, ..., X_n$ are independent random variables taking values in $\{0,1\}$. For any $\alpha > 0$

- $\Pr[\Sigma_{i=1}^n X_i > (1+\alpha)\mathbb{E}[X]] < e^{-\alpha^2 \mathbb{E}[X]/3}$, for $0 < \alpha \le 1$
- $\Pr[\Sigma_{i=1}^n X_i > (1+\alpha)\mathbb{E}[X]] < e^{-\alpha\mathbb{E}[X]/3}$, for $\alpha > 1$
- $\Pr[\Sigma_{i=1}^{n} X_i < (1-\alpha)\mathbb{E}[X]] < e^{-\alpha^2 \mathbb{E}[X]/2}$, for $0 < \alpha < 1$

Tighter bounds making use of joint independence!

MISC

(We'll need these later.)

Uniform Random Variable

Definition 9

X is a uniform random variable over a set S, if,

$$\forall u \in S, \Pr[X = u] = 1/|S|$$

(denote the distribution by U_S , and picking an element under uniform distribution by $u \in_R S$)

$$S = \{u_1, u_2, ..., u_n\}$$

XOR and its Properties

XOR of two strings in $\{0,1\}^n$ is their bit-wise addition modulo 2.

X	Y	X ® Y
O	0	0
0	1	1
1	0	1
4	1	0

XOR of bits

Example

Theorem 1

Let Y be a random variable over $\{0,1\}^n$ and X be an independent uniform random variable over $\{0,1\}^n$.

Then $Z = X \oplus Y$ is a uniform random variable on $\{0,1\}^n$.

HW: Prove this (Hint: use induction)

Birthday Paradox

Let q birthdays be $y_1, y_2, ..., y_q$ chosen uniformly at random from $\{1, 2, ..., 365\}$

*assuming non-leap year and that birthdays are uniform and independent

<u>Problem</u>: Find minimal q such that $coll(q, 365) = Pr[\exists i \neq j \text{ s. t. } y_i = y_i] \geq 1/2$

HW: Solve for g by using the same argument with unknown q

companisons with 23 people in the soun $= 22 + 21 + 20 + \cdots + 1$

Po [None of these 253 companisons match? $= \left(\frac{364}{365}\right)^{253} = 49.95\%$

$$= \left(\frac{364}{365}\right)^{253} = 49.95\%$$

La probability one single comparison not matching.

=> Pr [At least 1 pair matches? = 50.05%

23

Birthday Paradox, Generalized

Theorem 2

Let q elements be $y_1, y_2, ..., y_q$ be chosen uniformly and independently at random from a set of size N, then

$$coll(q, N) = Pr[\exists i \neq j \text{ s. t. } y_i = y_j] \le \frac{q^2}{2N}$$

Assignment Problems

Theorem 3

Let $q \le \sqrt{2N}$ elements be $y_1, y_2, ..., y_q$ be chosen uniformly and independently at random from a set of size N, then

$$coll(q, N) = Pr[\exists i \neq j \text{ s. t. } y_i = y_j] \ge \frac{q(q-1)}{4N}$$

Next Lecture

- Perfect security for shared-key/symmetric encryption
- Example: one-time pad or Vernam cipher
- Limitations of perfect security and some attacks

Thank you!

