
CS409m: Introduction to Cryptography

Lecture 02 (01/Aug/25) 

Instructor: Chethan Kamath

(Slides: Sruthi Sekar)



Announcements

Administrivia...
• Venue change: CC103 to CC101
• Join WhatsApp group (link shared on Moodle)
• TA session: Fridays, 19:30-21:00, CC101

Coursework
• Hands-on Exercise 0 uploaded on Moodle 
• Assignment 1 will be uploaded today on webpage/Moodle

- Ungraded, but you will get some questions in the quiz! 

https://moodle.iitb.ac.in/mod/resource/view.php?id=65047
https://www.cse.iitb.ac.in/~ckamath/courses/2025a/CS409m.html
https://moodle.iitb.ac.in/course/view.php?id=7460


Recall from Last Lecture

• Classical vs modern cryptography
• Guiding principles for modern cryptography:

• Formally define threat model M: identify security goal and adversary's capabilities
• Construct scheme 
• Provide rigorous security proof

- Rely on precise, well-studied assumption

• Classical ciphers: shift cipher, substitution cipher, polyalphabetic shift 
cipher

• Saw why these are considered insecure by modern standards
• The ciphertext leaks some information about the message



Plans for Today's Lecture

1. Randomized Algorithms

2. Basic Theory

• Definition and Background

• Law of Total Probability, Conditional Probability, Expectation and 

Variance

3. Concentration Inequalities

• Union Bound, Markov’s inequality, Chebyshev’s inequality, 

Chernoff bounds

4. Misc



Motivation: Randomized Algorithms

For each input m, A outputs a fixed value y from the codomain
y ≔ A(m)

Deterministic Algorithm 

.
m

.
A(m)

For each input m, A additionally uses a randomly picked 
r ∈𝑅 0,1 n and outputs y ≔ A m; r . 

(A(m) is now a set instead of a single value)

Randomized Algorithm 

.
m

.
𝑦 = A(m; r)

A(m) is a set

• Randomized algorithms can be faster than deterministic ones
• In cryptography, randomization will be necessary for security

• Key generation and encryption will be randomized

Why?



BASIC THEORY



Definition and Background

Ω: finite set of possible outcomes, called sample space of the experiment Example: Coin flip
Ω = {H, T}

A probability distribution over Ω is a function P:  Ω → ℝ≥0 such that Σx∈ΩP x = 1.
(sum of all pi

′s over all possible outcomes in Ω is 1)

Definition 1

An event is any subset A ⊆ Ω. The probability of an event A is  Pr
P

A = Σx∈𝐴P x .

Definition 2

Two events A and B are said to be independent if  Pr A ∩ B = Pr A . Pr[B].

Definition 3

Example: Coin flip
P H = P T = 1/2



Examples

Ω = 𝜔1, 𝜔2, … 𝜔𝑛 : 𝜔𝑖 ∈ H, T
The event that the first flip is heads is represented as:

A1,H = { H, 𝜔2, … 𝜔𝑛 : 𝜔𝑖 ∈ H, T
The event that the first flip is tails is represented as:

A1,T = { T, 𝜔2, … 𝜔𝑛 : 𝜔𝑖 ∈ H, T

Let Ai,H be the event that the i-th flip is H, and similarly define Ai,T. Suppose coin is fair (P H = P[T]) and 
each toss is independent, then we have: for a fixed 𝜔1, 𝜔2, … 𝜔𝑛

P((𝜔1, 𝜔2, … 𝜔𝑛)) = Pr[A1,ω1
∩ ⋯ ∩ An,ω𝑛

]

 = Pr A1,ω1
… Pr[An,ω𝑛

]

 =
1

2
…

1

2
=

1

2𝑛

Example 1: Tossing a coin n times

(by independence)

(by fairness)



Definition and Background

1

A (real-valued) random variable is a function X:  Ω → ℝ. In Example 1, the number of heads is a random 

variable represented by the function X 𝜔1, 𝜔2, … 𝜔n = Σi=1
n 𝜔i.

Definition 4

Two discrete real-valued random variables, X and Y, are said to be independent if
Pr X = x, Y = y = Pr X = x . Pr Y = y , ∀ x, y ∈ ℝ.

The random variables X1, … Xn are said to be jointly independent if
Pr X1 = x1, … , Xn = xn = Πi=1

n Pr[Xi = xi] , ∀ x1, … , xn ∈ ℝ

Definition 5



Examples

Xi = ൝
1, if ithcoin lands H

0, if ithcoin lands T

The random variables X1, … Xn are jointly independent.

Example 2: Jointly independent random variables

Ω = { 𝜔1, 𝜔2 : 𝜔𝑖 ∈ 0,1 }. Consider uniform distribution P over Ω.
 X 𝜔1, 𝜔2 = 𝜔1          (outcome of first flip)

     Y 𝜔1, 𝜔2 = 𝜔2          (outcome of second flip)
Z 𝜔1, 𝜔2 = 𝜔1⨁ 𝜔2  (XOR of both flips)

∀ x, y, z ∈ 0,1 , Pr X = x = Pr Y = y = Pr Z = z = 1/2, and 
Pr X = x, Y = y = Pr X = x, Z = z = Pr Y = y, Z = z = 1/4 ⟹ pairwise independence

But, Pr X = 0, Y = 0, Z = 1 = 0 ≠ 1/8 = Pr X = 0 . Pr Y = 0 . Pr[Z = 1] ⟹ not jointly independent

Example 3: Pairwise Independent but not jointly independent random variables



Law of Total Probability

If we have events A1, A2, … An that partition the sample space Ω (i.e., Ω is a disjoint union of these sets), 
and let B be any event, then

Pr B = Σi=1
n Pr[B ∩ Ai]

A1

A2

A3

Ω = A1 ⊔ A2 ⊔ A3

EXAMPLE:

B



Conditional Probability

Probability of an event A conditioned on event B (with Pr[B] ≠ 0)) is defined as

Pr A B =
Pr A ∩ B

Pr B

Definition 6

Pr A B =
Pr B|A Pr[A]

Pr B

Bayes’ Rule

Ω

BA

Conditioning on B means you 
are now considering B as the 
sample space instead of Ω.

Pr[A1 ∩ A2 ∩ ⋯ ∩ An] = Pr A1 Pr[A2|A1] … Pr[An|A1 ∩ A2 ∩ ⋯ ∩ An−1]

Chain Rule



Expectation

For a discrete real-valued random variable X taking possible values x1, x2, … , xn ∈ ℝ, 
the expectation is defined as

𝔼 X = ෍

i=1

n

Pr X = xi ∙ xi

Definition 7

X = ቊ
1, if a fair coin lands H
0, otherwise 

𝔼 X =
1

2
∙ 1 +

1

2
∙ 0 =

1

2

Example 4: Expectation of a coin toss

“average” value that X will take



Properties of Expectation

Given random variables X1, … , Xn and X = Σi=1
n Xi, we have

𝔼 X = 𝔼 Σi=1
n Xi = ෍

i=1

n

𝔼 Xi

Linearity of Expectation

**Holds even if the Xi
′s are not independent!

Xi = ቊ1, if the ith fair coin lands H
0, otherwise. 

and let X = Σi=1
n Xi

𝔼 X = 𝔼 Σi=1
n Xi = ෍

i=1

n

𝔼 Xi =
n

2

Example 4: Coin tosses

For independent random variables X and Y
𝔼 XY = 𝔼 X . 𝔼 Y

Multiplicativity of Expectation under independence HW: Prove this by 
expanding the right side 

of the equation and 
using the independence.



Variance

For a discrete real-valued random variable X the variance is defined as
𝐕𝐚𝐫 X = 𝔼 X − 𝔼 X 2 = 𝔼 X2 − 𝔼 X 2

Definition 8

Variance measures how far the random variable deviates from its expectation

Given random variables X1, … , Xn that are pairwise independent

𝐕𝐚𝐫 Σi=1
n Xi = ෍

i=1

n

𝐕𝐚𝐫 Xi

Linearity of variance under pairwise independence

HW: Prove this using 
properties of 
expectation!



CONCENTRATION INEQUALITIES



Union Bound

For events A1, A2, … An ⊆ Ω, 

Pr ራ

i=1

n

Ai ≤ ෍

i=1

n

Pr[Ai] A1

A1 ∩ A2

A2

Inclusion-exclusion
Principle

Proof



Markov’s Inequality

𝔼[X] α

Pr[X ≥ α]

0 x

For a discrete random variable X taking non-negative values in the set S, and for any α > 0,

Pr X ≥ α ≤
𝔼 X

α



Chebyshev’s Inequality

𝔼[X]

αα

Pr[ X − 𝔼 X ≥ α]

0 x

For a discrete random variable X with variance σ2 > 0, and for all real α > 0

Pr |X − 𝔼 X | ≥ α ≤
σ2

α2



Chernoff Bounds

Suppose X1, … , Xn are independent random variables taking values in 0,1 . For any α > 0

• Pr Σi=1
n Xi > 1 + α 𝔼[X] < 𝑒−α2𝔼[X]/3, for 0 < α ≤ 1

• Pr Σi=1
n Xi > 1 + α 𝔼[X] < 𝑒−α𝔼[X]/3, for α > 1

• Pr Σi=1
n Xi < 1 − α 𝔼[X] < 𝑒−α2𝔼[X]/2, for 0 < α < 1

Tighter bounds making use of joint independence!



MISC
(We'll need these later.)



Uniform Random Variable

X is a uniform random variable over a set S, if,
∀ u ∈ S, Pr X = u = 1/|S| 

(denote the distribution by US, and picking an element under uniform distribution by u ∈R S)

Definition 9

. . .

. . .
u1 u2 … un

1/n

S = {u1, u2, … , un}



XOR and its Properties

XOR of two strings in 0,1 n is their bit-wise addition modulo 2.

XOR of bits

Example

Let Y be a random variable over 0,1 n and X be an independent 
uniform random variable over 0,1 n.

Then Z = X⨁Y is a uniform random variable on 0,1 n.

Theorem 1

HW: Prove this 
(Hint: use induction)



Birthday Paradox

Let q birthdays be y1, y2, … , yq chosen uniformly at random from {1,2, … , 365}

*assuming non-leap year and that birthdays are uniform and independent

Problem: Find minimal q such that coll q, 365 = Pr ∃ i ≠ j s. t. yi = yj ≥ 1/2

23INTUITION:

HW: Solve for q by 
using the same 
argument with 

unknown q



Birthday Paradox, Generalized

Let q elements be y1, y2, … , yq be chosen uniformly and independently at random 

from a set of size N, then

coll q, N = Pr ∃ i ≠ j s. t. yi = yj ≤
q2

2N

Let q ≤ 2N elements be y1, y2, … , yq be chosen uniformly and independently at random 
from a set of size N, then

coll q, N = Pr ∃ i ≠ j s. t. yi = yj ≥
q(q − 1)

4N

Theorem 2

Theorem 3

Assignment 
Problems



Next Lecture

• Perfect security for shared-key/symmetric encryption

• Example: one-time pad or Vernam cipher

• Limitations of perfect security and some attacks

Thank you!
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