CS409m: Introduction to Cryptography

Lecture 04 (08/Aug/25)

Instructor;: Chethan Kamath

m Lab Exercise 1 (graded) will be out today (08/Aug)
m Will be discussed in TA session today

® You should have registered on https://cs409m.ctfd.io/
m See Moodle announcement by Nilabha for instructions

1/18

m Lab Exercise 1 (graded) will be out today (08/Aug)
m Will be discussed in TA session today

® You should have registered on https://cs409m.ctfd.io/
m See Moodle announcement by Nilabha for instructions

m Assignment 2 (ungraded) will also be out today (08/Aug)

1/18

Annonuncements

m Lab Exercise 1 (graded) will be out today (08/Aug)
m Will be discussed in TA session today

® You should have registered on https://cs409m.ctfd.io/
m See Moodle announcement by Nilabha for instructions

m Assignment 2 (ungraded) will also be out today (08/Aug)

= Opgh-hiogse o3 Adg.and Ind. Day on 15/Aug

1/18

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

2/18

Recall from Previous Lecture

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

ek

Attack Model: Eavesdropping

Eve computationally
unbounded (deterministic)

Knows description of Il
(Kerchhoff’s principle)
Shared key is hidden from Eve

=7,
Can eavesdrop and learn
ciphertext

2/18

Recall from Previous Lecture

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

ek N\

Attack Model: Eavesdropping Break Model: Perfect secrecy
m Eve learns no information
about the message

Shannon's definition

Eve computationally
unbounded (deterministic)

Knows description of Il
(Kerchhoff’s principle)

Pr[M = m*|C = ¢*] = Pr]M = m"]

Shared key is hidden from Eve Two worlds definition
=7 ;
Can eavesdrop and learn oy [Lot
ciphertext vm# : m.—»
C .)C
am(o Jo ()¢
= T ®

2/18

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

) -

=+ Theorem 1 (Shannon): one-time pad (OTP) is perfectly secret

ot g BB
lallOl T k=o1loN o
f@h ;Oo°00‘-».,_,,,,,,...--

o () oo

IIO\\O

2/18

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

, L (bn'o”\'“
10110\ S k=o1OoN
f@h tio°°°oo”’~-~~--"""O °O IIO\\O
".‘__\\OI\D_._‘-" s
' (=110110 /

=+ Theorem 1 (Shannon): one-time pad (OTP) is perfectly secret
— Limitations of OTP:

m Keys are as large as messages |K| = | M|
/\ Becomes insecure if key re-used: see Lab Exercise 1

2/18

Recall from Previous Lecture...

m Task: secure communication with shared keys

m Threat model: perfect secrecy against eavesdroppers

oot 0\
2. Y

I\OHO ' - 110110
(= HOHO

+ Theorem 1 (Shannon): one-time pad (OTP) is perfectly secret
— Limitations of OTP:

m Keys are as large as messages |K| = | M|
/\ Becomes insecure if key re-used: see Lab Exercise 1

— Theorem 2 (Shannon):

101!0 \a oHOl

2/18

m Bypass Shannon's barrier by relaxing the threat model:
m “Impossible to break” — “Infeasible to break”

3/18

m Bypass Shannon's barrier by relaxing the threat model:

m “Impossible to break” — “Infeasible to break”
m Computational secrecy against eavesdroppers

3/18

m Bypass Shannon's barrier by relaxing the threat model:

m “Impossible to break” — “Infeasible to break”
m Computational secrecy against eavesdroppers

=X
Attack Model: Eavesdropping
Eve is efficient. PPT {i
Knows description of I
(Kerchhoff’s principle)
Shared key hidden from Eve

=7
Can eavesdrop and learn
ciphertext

3/18

Plan for Today's Lecture

m Bypass Shannon's barrier by relaxing the threat model:
m “Impossible to break” — “Infeasible to break”
m Computational secrecy against eavesdroppers

N VAN

Attack Model: Eavesdropping Break Model: Secrecy, w.h.p.

H Eve is efficient: PPT:N@N m Eve may learn information, but
only with “low probability”s/é

m Negligible probability

Knows description of I
(Kerchhoff’s principle)
Shared key hidden from Eve

=7
Can eavesdrop and learn
ciphertext

3/18

Plan for Today's Lecture

m Bypass Shannon's barrier by relaxing the threat model:
m “Impossible to break” — “Infeasible to break”
m Computational secrecy against eavesdroppers

N VAN

Attack Model: Eavesdropping Break Model: Secrecy, w.h.p.

H Eve is efficient: PPT‘N@N m Eve may learn information, but
only with “low probability”s/é

m Negligible probability

Knows description of I
(Kerchhoff’s principle)
Shared key hidden from Eve

=7
Can eavesdrop and learn
ciphertext

Both relaxations are necessary!

3/18

il Models of Computation ¢ Negligible Functions

©Joy Shrader/Wikipedia

3/18

Models of Computation: A Primer
Negligible Functions

Computational Secrecy Against Eavesdroppers

Models of Computation: A Primer

m We have informally introduced (randomised) algorithms
m Set of instructions of rules that carries out a computation

4/18

m We have informally introduced (randomised) algorithms
m Set of instructions of rules that carries out a computation
m To formally study algorithms, we need a model of computation

m How to define running time?
m What does “efficient” mean?
n ...

4/18

Models of Computation: Turing Machine

m We have informally introduced (randomised) algorithms
m Set of instructions of rules that carries out a computation
m To formally study algorithms, we need a model of computation

m How to define running time?
m What does “efficient” mean?
n ...

m E.g.: Turing machine (TM)

m Introduced by Turing as “automatic machine”

© Rocky Acosta/\W ikipedia

iR

©Tom Dunne — ez~

4/18

Models of Computation: Turing Machine

m We have informally introduced (randomised) algorithms
m Set of instructions of rules that carries out a computation
m To formally study algorithms, we need a model of computation

m How to define running time?
m What does “efficient” mean?
n ...

m E.g.: Turing machine (TM)
m Introduced by Turing as “automatic machine” ~ St
m Mathematically precise model of computation

© Rocky Acosta/W ikipedia

m Components:
m Tapes: to provide input, for memory...
m States: “halt” “good so far”
m Transition function/rule: “processor”

4/18

How Turing Machines Work

Definition 1 ([AB09], §1.2

ﬁk—tape Turing Machine M is described by a tuple (', @, 7) such that:
’3’,

5/18

How Turing Machines Work

-

Definition 1 ([AB09], §1.2

k-tape Turing Machine M is described by a tuple (I', Q, 7) such that:

Y m M has k memory tapes (input/work/output tapes) with headsll

A e

5/18

How Turing Machines Work

SEEE paaaNIEEE

k-tape Turing Machine M is described by a tuple (', @, 7) such that:

¥ m M has k memory tapes (input/work/output tapes) with heads
m [is a finite alphabet, which includes a speﬁ'%b'lﬁalank” symbol L
m Every memory cell has an element from I’

5/18

How Turing Machines Work
start Py hok

k-tape Turing Machine M is described by a tuple (', @, 7) such that:

¥ m M has k memory tapes (input/work/output tapes) with heads
m [is a finite alphabet, which includes a speﬁ'%b'lﬁalank” symbol L
m Every memory cell has an element from I’
m Q is a finite set of states
m Special states: “start” and “halt/done”

5/18

How Turing Machines Work
skart o holt
SEEE paaaNIEEE

G

k-tape Turing Machine M is described by a tuple (', @, 7) such that:

¥ m M has k memory tapes (input/work/output tapes) with heads
m [is a finite alphabet, which includes a speﬁ'%b'lﬁalank” symbol L
m Every memory cell has an element from I’
m Q is a finite set of states

m Special states: “start” and “ha%Mdonkg”
_ lyer, ?c A . >0t SO

m 7 is a function from Q x F,Wto QXTEX{=,,}
m Transition function/rule: encodes behaviour of M

k

5/18

@ e @
o[1] O[L]-

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head is at the start of the input
m State is start

. o0®

5/18

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head is at the start of the input
m Stafe 1s start
m Computation step E 0
m Apply 7 on current:state';md input to obtain next state, output and
= next head position - -**

5/18

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head is at the start of the input
m Stafe 1s start
m Computation step E 0
m Apply 7 on current:state';md input to obtain next state, output and
= next head position - -**

5/18

o] 1 U]

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head |$ at the start of the input
m Stafe 1s start
m Computation step E 0
m Apply 7 on current state and input to obtain next state, output and
= next head position
m Halting
m Stop computation if state is. halt

5/18

~oopeleli LBl

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head |s at the start of the input
m Stafe 1s start
m Computation step E 0
m Apply 7 on current state and input to obtain next state, output and
= next head position
m Halting
m Stop computation if state is. halt

Demo: turingmachine.io

5/18

Running Time of Turing Machine

Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

6/18

Running Time of Turing Machine

Definition 2
Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

m M computes f if on every input x € {0,1}" (placed in input tape),
M halts with f(x) on its output tape

6/18

Running Time of Turing Machine

Definition 2
Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

m M computes f if on every input x € {0,1}" (placed in input tape),
M halts with f(x) on its output tape

m M computes f in time T, if for every input x € {0,1}*, M halts as
above within T(|x|) steps

@ What was the running time of the TM in the demo?

6/18

Running Time of Turing Machine

Definition 2
Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

m M computes f if on every input x € {0,1}" (placed in input tape),
M halts with f(x) on its output tape

m M computes f in time T, if for every input x € {0,1}*, M halts as
above within T(|x|) steps

@ What was the running time of the TM in the demo?

m Efficient (deterministic) computation: T is any fixed polynomial
m E.g., T(n):=n®or T(n) = 4n% + log(n)

6/18

Running Time of Turing Machine

Definition 2
Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

m M computes f if on every input x € {0,1}" (placed in input tape),
M halts with f(x) on its output tape

m M computes f in time T, if for every input x € {0,1}*, M halts as
above within T(|x|) steps

@ What was the running time of the TM in the demo?

m Efficient (deterministic) computation: T is any fixed polynomial
m E.g., T(n):=n®or T(n) = 4n% + log(n)
m Efficient randomised computation

m Also referred to probabilistic polynomial time (PPT)
m Definition 2 extended to randomised TM

6/18

NNEEAN

.Is your laptop a Turing Machine?

7/18

NNEEAN

.Is your laptop a Turing Machine? Not quite, closer to
m RAM Machine

m TM with fixed-sized tape
[ff Can move head to any position in the work tape in one step

7/18

NNEEAN

.Is your laptop a Turing Machine? Not quite, closer to
m RAM Machine

m TM with fixed-sized tape
[ff Can move head to any position in the work tape in one step

@ What about a basic calculator?

7/18

Other Models of Computation Exist

RN
@Is your laptop a Turing Machine? Not quite, closer to
m RAM Machine

m TM with fixed-sized tape
%% Can move head to any position in the work tape in one step

@ What about a basic calculator? Closer to
m Boolean circuit (family)
m Represented using gates (AND, OR, NOT) and wires
One circuit for each input length

=
m Size of the circuit is the number of its gates
m Efficient circuits: size is polynomial (in input length)

— e

7/18

m Why TM? Church-Turing thesis:
m “Every physically realizable computation device — whether it’s based
on silicon, DNA, neurons, or some other alien technology — can be
simulated (efficiently) by a Turing machine.”™ ([AB09])

*Possible exceptions: Boolean ciruit family, quantum TM
8/18

m Why TM? Church-Turing thesis:

m “Every physically realizable computation device — whether it’s based
on silicon, DNA, neurons, or some other alien technology — can be
simulated (efficiently) by a Turing machine.”™ ([AB09])

m To rephrase: the exact model of computation doesn’'t matter

*Possible exceptions: Boolean ciruit family, quantum TM
8/18

Compromise |: We Restrict Eve to PPT TM

m Why TM? Church-Turing thesis:

m “Every physically realizable computation device — whether it’s based
on silicon, DNA, neurons, or some other alien technology — can be
simulated (efficiently) by a Turing machine.”™ ([AB09])

m To rephrase: the exact model of computation doesn’'t matter

m Why PPT? “Captures” efficient computation

m Real-world adversaries assumed to be efficient
m Polynomials have nice closure properties
m Randomness allowed since it is allowed for honest algorithms

*Possible exceptions: Boolean ciruit family, quantum TM
8/18

Compromise |: We Restrict Eve to PPT TM

m Why TM? Church-Turing thesis:

m “Every physically realizable computation device — whether it’s based
on silicon, DNA, neurons, or some other alien technology — can be
simulated (efficiently) by a Turing machine.”™ ([AB09])

m To rephrase: the exact model of computation doesn’'t matter

m Why PPT? “Captures” efficient computation

m Real-world adversaries assumed to be efficient

m Polynomials have nice closure properties

m Randomness allowed since it is allowed for honest algorithms

—is

m Some stronger models for Eve:
m Polynomial-sized family of circuits: allows “non-uniform™ advice

m Quantum polynomial-time algorithms g}g

°

*Possible exceptions: Boolean ciruit family, quantum TM
8/18

First Attempt at Computational Secrecy

Definition 3 (Recall: Two-Worlds Definition)

An SKE I = (Gen, Enc, Dec) is perfectly-secret if for every eavesdropper
Eve and every message-pair (mo, mi) € M:

Pr [Eve(c) =0] — Pr [Eve(c)=0]=0
k<Gen k+Gen
c«+Enc(k,mg) c+Enc(k,my)
Left world Bugntc Loorld

Gen [s—k \4

o] | m,ﬂ
”‘”@é e

9/18

First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

An SKE T = (Gen, Enc, Dec) isAcomputationaIIy—secret if for every PPT
eavesdropper Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]=0
(mo,my)« Eve (mo,my)« Eve
k<Gen k<Gen
c<+—Enc(k,mp) c<Enc(k,m1)
Left world Bugntc Loorld
(on —b (on [k
o] | m,ﬂ¢
é !
oren)C Mayten (Jc
(& = i

9/18

First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

An SKE T = (Gen, Enc, Dec) isAcomputationaIIy—secret if for every PPT
eavesdropper Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]=0
(mo,my)« Eve (mo,my)« Eve
k<Gen k<Gen
c<+—Enc(k,mp) c<Enc(k,m1)

Exercise 1
Show that Shannon's impossibility extends to Candidate Defintion 1
© Hint 1: use similar approach as in proof of Theorem 2 (Lecture 03)

¥ Hint 2: exploit randomness for efficiency

9/18

First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

An SKE T = (Gen, Enc, Dec) isAcomputationaIIy—secret if for every PPT
eavesdropper Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]=0
(mo,my)« Eve (mo,my)« Eve
k<Gen k<Gen
c<+—Enc(k,mp) c<Enc(k,m1)

Exercise 1
Show that Shannon's impossibility extends to Candidate Defintion 1
© Hint 1: use similar approach as in proof of Theorem 2 (Lecture 03)

¥ Hint 2: exploit randomness for efficiency

Take-away: even Eve can distinguish with “very low” probability

9/18

Models of Computation ¢l Negligible Functions

©Joy Shrader/Wikipedia

9/18

m Eve may learn information, but only with “low probability” &

10/18

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”?

10/18

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K|

10/18

Compromise Il: Eve Learns with Low Probability

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K|

Candidate Defintion 2 (Computational Secrecy)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]|=¢
(mo,m1)+Eve (mo,m1)+Eve
k<+Gen k<Gen
c<Enc(k,mp) c+Enc(k,my)
Left world © R world

s—h Gen [s—k
M,%# m,%
§
m,,m,c 2 C e, <) C
= IR =

10/18

Compromise Il: Eve Learns with Low Probability

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K|

Candidate Defintion 2 (Computational Secrecy)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]|=¢
(mo,m1)+Eve (mo,m1)+Eve
k<Gen k<Gen
c<Enc(k,mp) c+Enc(k,my)

Exercise 2

m Does Shannon’s impossibility extend also to Candidate Defintion 27
9 Hint: Work out precise probability of learning in Exercise 1

10/18

Compromise Il: Eve Learns with Low Probability

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K|

Candidate Defintion 2 (Computational Secrecy)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

Pr [Eve(c) =0] — Pr [Eve(c)=0]|=¢
(mo,m1)+Eve (mo,m1)+Eve
k<Gen k<Gen
c<Enc(k,mp) c+Enc(k,my)

Exercise 2
m Does Shannon’s impossibility extend also to Candidate Defintion 27
G;j Hint: Work out precise probability of learning in Exercise 1
m Can Eve trivally succeed with 1/|/C| probability? (‘@’Hint: guess the key?)
Take-away: 1/|K| too low

10/18

m Correct notion of “low probability”: negligible probability

“9/’ Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

11/18

Compromise Il: Eve Learns with Low Probability...

m Correct notion of “low probability”: negligible probability

g‘@j Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

Definition 3

A function f : N — R is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

11/18

Compromise Il: Eve Learns with Low Probability...

m Correct notion of “low probability”: negligible probability

g‘@j Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

W \: [

\\i\ \
\\\\ A
fw AN

Definition 3

A function f : N — R is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

11/18

Compromise Il: Eve Learns with Low Probability...

m Correct notion of “low probability”: negligible probability
g‘@j Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

W \: [

S R

\\s\ \ NS,
\\\ -
fw) N

Definition 3

A function f : N — R is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

11/18

Compromise Il: Eve Learns with Low Probability...

m Correct notion of “low probability”: negligible probability
g‘@j Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

W \: [

S R

\\s\ \ NS,
\\\ -
fw) RN

o
/"‘
> //
[/
/
/
/]
/]
f
|
ne] oo /

Definition 3

A function f : N — R is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

11/18

Compromise Il: Eve Learns with Low Probability...

m Correct notion of “low probability”: negligible probability
g‘@j Intuitive def. of negligible function: function eventually smaller than
every inverse polynomial

W \: [

S R

\\s\ \ NS,
\\\ -
fw) RN

o
/"‘
> //
[/
/
/
/]
/]
f
|
ne] oo /

Definition 3

A function f : N — R is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

+ Plus, like PPT have nice closure properties

11/18

Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@Negligible or not?
f1(n) := 1/3141597314159
fr(n) :==1/2"

12/18

Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@ Negligible or not?
€[fi(n) :=1/314159n314159
< B H(n) = 1/275" 1nyeese (Hponad!

f(n) = {1/2" forOddnLh%b(la@g }51&%2

1/314159n3141%9 for even n

12/18

Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@ Negligible or not?
€[fi(n) :=1/314159n314159
< B H(n) = 1/275" 1nyeese (Hponad!

1/27 for odd n v 2
f(n) = ndorid o% &, & 1
E A {1/314159n314159 for even n %b 9% ‘%l EL

fa(n) = n—log(n)

12/18

Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@ Negligible or not?
€[fi(n) :=1/314159n314159
s B f(n) :=1/275 1N ye(se CRPONRO®
1/27 for odd n v | g
B A= {1/314159n314159 for even n n%bﬂ& 9% ;%l ‘ EL
Sl fi(n) = nEm s “inyerse Quasryo\gﬂom\(pl
fs(n) := p(n)/2", for a very large polynomial p(n)
@A f;(n) := n'os(" j2n

"

12/18

Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@Negligible or not?
EpE fi(n) = 1/314159n314159
& B H(n) = 1/27 5 11yese RPN

| f(n) = {1/2" forOddnuﬂ\ﬁbﬂaQ% ‘%l&gz

"

| 1/314159n314159 for even n)
&l fi(n) = nlog() s “INvyecse Q\)OS\»?’OMY]OM\CD\

B fs(n) := p(n)/2", for a very large polynomial p(n)
/@ fs(n) := nlos(n) jon

74 To show that f(n) is non-negligible, show that there exists a
polynomial p such that f(n) > 1/p(n) for infinitely often ns.

12/18

Computational Secrecy Against Eavesdroppers

m So far towards defining computational secrecy

m Restrict to PPT Eve
m Allow negligible probability of Eve learning

13/18

The Security Parameter

m So far towards defining computational secrecy

m Restrict to PPT Eve
m Allow negligible probability of Eve learning

250°

200 ?'55
m When designing scheme, want ability to precisely control above
values via a parameter n (sometimes denoted by \):

m Want: Honest algorithms run in time fixed polynomial in n

m Allow: Eve can run in time arbitrary polynomial in n

m Require: Eve to have a success probability negligible in n

13/18

The Security Parameter

m So far towards defining computational secrecy

m Restrict to PPT Eve
m Allow negligible probability of Eve learning

250°

200 ?'55
m When designing scheme, want ability to precisely control above
values via a parameter n (sometimes denoted by \):

m Want: Honest algorithms run in time fixed polynomial in n

m Allow: Eve can run in time arbitrary polynomial in n

m Require: Eve to have a success probability negligible in n

m n is the “security parameter”

m Determines amount of time (generally resources) required to “break”
scheme

13/18

3

m Suppose a cryptography designer claims that Eve running in n°mins

can break his scheme with probability 240 /27

14/18

3

m Suppose a cryptography designer claims that Eve running in n°mins

can break his scheme with probability 240 /27

. What n do you choose while implementing?

14/18

n

How to Choose the Right Security Parameter?... 6

m Suppose a cryptography designer claims that Eve running in n®mins

can break his scheme with probability 240 /27

@ What n do you choose while implementing?

n < 407 Eve working for 403mins = 6 weeks can break with
probability 1

14/18

n

How to Choose the Right Security Parameter?... 6

m Suppose a cryptography designer claims that Eve running in n®mins

can break his scheme with probability 240 /27

@ What n do you choose while implementing?
n < 407 Eve working for 403mins = 6 weeks can break with
probability 1
m Not very safe!

n =507 Eve working for 503mins =~ 3 months can break with
probability 1/1000

14/18

How to Choose the Right Security Parameter?... é

200 50

m Suppose a cryptography designer claims that Eve running in n®mins

can break his scheme with probability 240 /27

@ What n do you choose while implementing?
n < 407 Eve working for 403mins = 6 weeks can break with
probability 1
m Not very safe!
E y5E n =507 Eve working for 50%mins & 3 months can break with
probability 1/1000
m May be acceptable

n = 5007 Eve working for 5003mins ~ 200 years can break with
probability 27460

14/18

How to Choose the Right Security Parameter?... é

200 50

m Suppose a cryptography designer claims that Eve running in n®mins

can break his scheme with probability 240 /27

@ What n do you choose while implementing?
n < 407 Eve working for 403mins = 6 weeks can break with
probability 1
m Not very safe!
E y5E n =507 Eve working for 50%mins & 3 months can break with
probability 1/1000
m May be acceptable
o7 B n=500? Eve working for 500°mins ~ 200 years can break with
probability 27460
® Quite safe

14/18

How to Choose the Right Security Parameter?...

m Why not set n to be very high to be very safe?

14/18

How to Choose the Right Security Parameter?...

m Why not set n to be very high to be very safe?

14/18

How to Choose the Right Security Parameter?...

m Why not set n to be very high to be very safe?

\es< elfcient \
, mot ¢ \
S
[

SN~——————

14/18

Incorporating Security Parameter into SKE Definition

Definition 4 (Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

1

&))
(aesar Gehera

15/18

Incorporating Security Parameter into SKE Definition

Definition 4 (Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the

following syntax:
e secuwhj ?orum(lcef

OO OOOM

L 2 <
¢ 0 [

(aesar Gehera

15/18

Incorporating Security Parameter into SKE Definition

Definition 4

(Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax: 566\)“&\) PO(GW\(lcCT
(> rom heyspace K.,

{"1“% Gen [s—>k

(aesar Gehera

15/18

Incorporating Security Parameter into SKE Definition

Definition 4

(Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

Secyl orumclcef
1[50’“ . “ %ﬁj ! (> rom \ﬂﬁgspaceK
(- EO(Q 057 0 A

" o RS l‘ Dec fg—>m.
"“C Qo &7 OM\QOO.‘ - |
w[rom"j“" — —>

me ssagc'staate Wo Cacsar Geherd

15/18

Incorporating Security Parameter into SKE Definition

Definition 4

(Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

Secyl orumclcef
1[50’“ . “ %ﬁj ! (> rom \ﬂﬁgspaceK
(- EO(Q 057 0 A

" o RS l‘ Dec fg—>m.
"“C Qo &7 OM\QOO.‘ - |
w[rom"j“" — —>

me ssagc'staate Wo Cacsar Geherd

15/18

Incorporating Security Parameter into SKE Definition

Definition 4

(Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

Secuyl orumlcer
from) P (> rom \ﬂﬁgspaceK
k- 5pote g = -
7 10— Gen gk " Tl
‘ % o~ e ; ¢
l"C Oo, OOO"‘”-»».,,. O}MOO_‘ -C |
from 7 — —

me ssagc'staate Wo Cacsar Geherd

m Correctness of decryption: for every n € N, message m € M,

Pr [Dec(k,c) =m] =1
k<—Gen(1"),c<Enc(k,m)

15/18

0 world 1 world

Gon [5—>k (en [5—>k

Mo—> r“|_>

Ma, M <

tve Eve

16/18

0 world 1 world

PR oy A
Mo—> r“|_>

<
(o o (o
r?”—) @ ~ ml"~>

16/18

Let’'s Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

o(n) = Eve(c) =10 Pr Eve(c) =0
() (mo,m1)<—Eve(1"[()] (mo,m1)<—Eve(1")[()]
k<—Gen(1") k<—Gen(1")
c<+—Enc(k,mo) 5 ceE&c(k,ml)
is negligible 0 uorld uild
gl [en Jo—k B,
M,—| Enc mM,—| Enc
¢
Ma,ml<) — Mo, C)

16/18

Let’'s Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

o(n) = E -0 P E _ g
)= g mgeevean) = O el V() = ¥
k<Gen(1™) k<Gen(1")
c<+—Enc(k,mo) c<+Enc(k,my)
is negligible.

Exercise 3

Does Definition 5 change if we quantify for all pair of messages (mgp, m)
instead of adversarially choosing it?

16/18

More Generally: Computational Indistinguishability

Definition 6 (computational indistinguishability)

Two distributions Xg and X are computationally indistinguishable if for
every PPT distinguisher D,

()= Pr [D() =0 Pr [D(x) =0]

is negligible.

m Computational secrecy against eavesdroppers can be rephrased as:
the ciphertext distribution in the left and the right worlds are
computationally indistinguishable.

Exercise 4

Formally show the above

17/18

m To recap:

m Introduced Turing Machines and PPT :
m Introduced negligible functions e —

18/18

m To recap:

m Introduced Turing Machines and PPT
m Introduced negligible functions e
m Established the notion of computational secrecy against
eavesdroppers by relaxing the threat modgj
m Attack model: restrict to PPT Eves {’&*‘} »
B Break model: allow break with negligible probability i@&

18/18

m To recap:

Introduced Turing Machines and PPT
Introduced negligible functions
Established the notion of computational secrecy agamst
eavesdroppers by relaxing the threat model

m Attack model: restrict to PPT Eves {NE

B Break model: allow break with negligible probability gsz

Defined computational indistinguishability: we'll use this notion
throughtout the course

18/18

i
m To recap: i
m Introduced Turing Machines and PPT

m Introduced negligible functions
m Established the notion of computational secrecy against
eavesdroppers by relaxing the threat model

m Attack model: restrict to PPT Eves il
m Break model: allow break with negligible probability !
m Defined computational indistinguishability: we'll use this notion
throughtout the course

D =
m Next lecture: " OI I
(4 ¢

m Pseudorandom generators (PRG)
m Computationally-secret SKE scheme: “Computational OTP”
m First security reduction!

oIH10V

@ More Questions? @

18/18

§3.1 in [KL14] for more details on computational secrecy
Chapter 1 in [ABQ9] for more about Turing machines. The original
paper is [Tur37]

turingmachine.io for visualisation of Turing machines

ﬁ Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

ﬁ Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

ﬁ Alan M. Turing.
On computable numbers, with an application to the entscheidungsproblem.
Proc. London Math. Soc., s2-42(1):230-265, 1937.

18/18

	Models of Computation: A Primer
	Negligible Functions
	Computational Secrecy Against Eavesdroppers

