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CS409m: Introduction to Cryptography

Lecture 04 (08/Aug/25)

Instructor: Chethan Kamath



m Lab Exercise 1 (graded) will be out today (08/Aug)
m Will be discussed in TA session today

m You should have registered on https://cs409m.ctfd.io/
m See Moodle announcement by Nilabha for instructions

m Assignment 2 (ungraded) will also be out today (08/Aug)

(] AT
N?e%m Ind. Day on 15/Aug
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m Task: secure communication with shared keys
m Threat model: perfect secrecy against eavesdroppers
& A

Attack Model: Eavesdropping Break Model: Perfect secrecy

m Eve learns no information
about the message

Shannon'’s definition

Eve computationally
unbounded (deterministic)

Knows description of I
(Kerchhoff's principle)

PriM = m*|C = ¢*] = Pr[M = m"]

Shared key is hidden from Eve Two worlds definition
Can eave?irop and learn [+ [ et

ciphertext .—@;z] ._@;g
< .
mmﬁc = My )¢
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m Task: secure communication with shared keys
m Threat model: perfect secrecy against eavesdroppers

f@h '-Oo O .

©pho 24
......... =010

+ Theorem 1 (Shannon): one-time pad (OTP) is perfectly secret
— Limitations of OTP:

m Keys are as large as messages |K| = |[M|
/\ Becomes insecure if key re-used: see Lab Exercise 1

— Theorem 2 (Shannon): For any perfectly-secret SKE, || > | M|
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m Bypass Shannon’s barrier by relaxing the threat model:

m “Impossible to break” — “Infeasible to break”
m Computational secrecy against eavesdroppers

DA /AN

Attack Model: Eavesdropping Break Model: Secrecy, w.h.p.

L

H Eve is efficient: PPT (e m Eve may learn information, but
only with “low probability”{@

m Negligible probability

Knows description of I1
(Kerchhoff's principle)

Shared key hidden from Eve

7,
Can eavesdrop and learn
ciphertext

#% Both relaxations are necessary!
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{{& Models of Computation {ied Negligible Functions

©Joy Shrader/Wikipedia
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Models of Computation: A Primer
Negligible Functions

Computational Secrecy Against Eavesdroppers



Models of Computation: A Primer



m We have informally introduced (randomised) algorithms
m Set of instructions of rules that carries out a computation
m To formally study algorithms, we need a model of computation

m How to define running time?
m What does “efficient” mean?
[

m E.g.: Turing machine (TM)
m Introduced by Turing as “automatic machine”
m Mathematically precise model of computation
m Components:

m Tapes: to provide input, for memory...
m States: “halt” “good so far”
m Transition function/rule: “processor”

© Rocky AcostaWikipeda
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v

Definition 1 ([AB09], §1.2

How Turing Machines Work

k-tape Turing Machine M is described by a tuple (I', Q, 7) such that:
m M has k memory tapes (input/work/output tapes) with' heads
m [ is a finite alphabet, which includes a spefg%b'lylank symbol I_l
m Every memory cell has an element from I
m Q is a finite set of states

m Special states: “start” and harw&don&e

Wy
n Tlsafunctlon%rom Qxl'ktonl'kx —,

m Transition function/rule: encodes bOLPawour of M

k
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.Emﬂﬂ 0 lln IULJF

m Start configuration
m The tape is initialised with the input string
= Rest of the tape is blank (L)
m The head is at the start of the input
m Stafe is sfart
m Computation step _LT]; 0
m Apply 7 on current state and input to obtain next state, output and
= next head position
m Halting .
m Stop computation if state is. halt

Demo: turlngmachlne.io
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Running Time of Turing Machine

Definition 2
Let f:{0,1}* — {0,1}" and T : N — N be functions, and M be a TM

m M computes f if on every input x € {0,1}" (placed in input tape),
M halts with f(x) on its output tape

m M computes f in time T, if for every input x € {0,1}", M halts as
above within T(|x|) steps

@ What was the running time of the TM in the demo?

m Efficient (deterministic) computation: T is any fixed polynomial
m Eg, T(n):=n®or T(n) = 4n'% + log(n)
m Efficient randomised computation

m Also referred to probabilistic polynomial time (PPT) #
m Definition 2 extended to randomised TM
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.Is your laptop a Turing Machine? Not quite, closer to
m RAM Machine

m TM with fixed-sized tape
”f Can move head to any position in the work tape in one step

@ What about a basic calculator? Closer to
m Boolean circuit (family)
m Represented using gates (AND, OR, NOT) and wires

m One circuit for each input length
m Size of the circuit is the number of its gates
n

Efficient circuits: size is polynomial (in input length)
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m Why TM? Church-Turing thesis:

m "Every physically realizable computation device — whether it's based
on silicon, DNA, neurons, or some other alien technology — can be
simulated (efficiently) by a Turing machine.”™ ([AB09])

m To rephrase: the exact model of computation doesn’t matter

m Why PPT? “Captures” efficient computation

m Real-world adversaries assumed to be efficient

m Polynomials have nice closure properties

m Randomness allowed since it is allowed for honest algorithms

m Some stronger models for Eve:
m Polynomial-sized family of circuits: allows “non-uniform” advice

= Quantum polynomial-time algorithms %25

*Possible exceptions: Boolean ciruit family, quantum TM
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First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

. A ] -
An SKE I = (Gen, Enc, Dec) is computationally-secret if for every PPT
eavesdropper Eve

Pr  [Eve(c) =0] — Pr [Eve(c)=0]=0
(mo,my )+Eve (mg,my )« Eve
k<Gen k+Gen
c<—Enc(k,mp) c«Enc(k,my)
Left world Rught world

o | m.ﬂ

< : ¢
o I g
i

i) = =)
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First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

. A ] -
An SKE I = (Gen, Enc, Dec) is computationally-secret if for every PPT
eavesdropper Eve

Pr  [Eve(c) =0] — Pr [Eve(c)=0]=0
(mo,my )+Eve (mg,my )« Eve
k<Gen k<+Gen
c<—Enc(k,mp) c«Enc(k,my)

Exercise 1

Show that Shannon's impossibility extends to Candidate Defintion 1
% Hint 1: use similar approach as in proof of Theorem 2 (Lecture 03)

% Hint 2: exploit randomness for efficiency

¥4 Take-away: even Eve can distinguish with “very low” probability
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Models of Computation {iid Negligible Functions

©Joy Shrader/Wikipedia
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Compromise Il: Eve Learns with Low Probability

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K]|

Candidate Defintion 2 (Computational Secrecy)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

Pr  [Eve(c) =0] — Pr  [Eve(c)=0]|=4¢
(mo,my )« Eve (mg,my )+ Eve

k<«Gen k<—Gen
c<Enc(k,mp) c<—Enc(k,my)

Left world Rught worl4

s

o | m.
¢ .

W S R v G

%
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Compromise Il: Eve Learns with Low Probability

m Eve may learn information, but only with “low probability” &
@ How to quantify “low probability”? First attempt: § ~ 1/|K]|

Candidate Defintion 2 (Computational Secrecy)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

Pr  [Eve(c) =0] — Pr  [Eve(c)=0]|=4¢
(mo,my )« Eve (mg,my )+ Eve

k<Gen k+Gen
c<Enc(k,mp) c<—Enc(k,my)

Exercise 2
m Does Shannon's impossibility extend also to Candidate Defintion 27
é Hint: Work out precise probability of learning in Exercise 1
m Can Eve trivally succeed with 1/|K| probability? (‘Q"Hint: guess the key?)
¥4 Take-away: 1/|K| too low
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Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R™ is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@ Negligible or not?
fi(n) := 1/3141507314159
fé(n) = 1/2"
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Second Compromise: Break is a Low-Probability Event

Definition 3

A function f : N — R* is negligible if for every polynomial p and
sufficiently large n, f(n) < 1/p(n) holds.

@) Negligible or not?
Ol f(n) = 1/314150n314159
< B f(n) = 1/275 nyeese ¢xpongdaal’
1/2" for odd n «

! (l

B f(n) = {1/314159n314159 for even n n \O 4 D% & &%
B fi(n) == 08~ T invedse QoS- PO\jYIOYYI\CD\

/A fs(n) == p(n )/2" for a very large polynomial p(n)
o E fs(ﬂ) _ nlog n)/2n

74 To show that f(n) is non-negligible, show that there exists a
polynomial p such that f(n) > 1/p(n) for infinitely often ns.
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Computational Secrecy Against Eavesdroppers



m So far towards defining computational secrecy "«

m Restrict to PPT Eve
m Allow negligible probability of Eve learning

250

200" 159
©f eeimageslive.catk
m When designing scheme, want ability to precisely control above
values via a parameter n (sometimes denoted by A):
m Want: Honest algorithms run in time fixed polynomial in n
m Allow: Eve can run in time arbitrary polynomial in n
m Require: Eve to have a success probability negligible in n

m n is the “security parameter”

m Determines amount of time (generally resources) required to “break”
scheme

13/18



freeimageive.co.u

m Suppose a cryptography designer claims that Eve running in n®mins

can break his scheme with probability 240 /2"

. What n do you choose while implementing?
E} n < 40?7 Eve working for 40°mins ~ 6 weeks can break with
probability 1
m Not very safe!
E 5B n =507 Eve working for 50°mins ~ 3 months can break with
probability 1/1000
m May be acceptable
5 B n=5007 Eve working for 500®mins ~ 200 years can break with
probability 2460
m Quite safe ﬁ
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How to Choose the Right Security Parameter?. ..

m Why not set n to be very high to be very safe?

n

\es¢ CGF(\CPQ

more
%{LUVC

v /\ X
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Incorporating Security Parameter into SKE Definition

Definition 4 (Shared/Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax:

r
on Sy ot g

k- space bq,
- k‘mﬁc '..:000 °C’C)-,...
from 7" —

me ngc-SPaLe Un Cacsor

m Correctness of decryption: for every n € N, message m € M,

[Dec(k,c) =m] =1

r
k<—Gen(1"),c<—Enc(k,m)
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Let’'s Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE N = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

(n) (mo, ml)‘_EVf’(ln [ Ve( ) 0] (mo. m1)<—EVe(1n [ Ve(c) 0]
k<Gen(1") k<Gen(1")
c<Enc(k,mo) fj ceE&c(k,ml)

is negligible. /~ ‘T r /k
m.,—> mr*>

ma,m-c, )) Mo, M C < 3
N 7 '_',._.:. f .

)
" Avm

L P Do
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Let’'s Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE N = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every PPT Eve

o(n) = Pr Eve(c) =0] — Pr Eve(c) =0
( ) (mo,m1)<—Eve(1")[ ( ) ] (mo,m1)<—Eve(1")[ Ve( ) ]
k<Gen(1") k<Gen(1")
c<—Enc(k,mop) c<—Enc(k,my)
is negligible.

Exercise 3

Does Definition 5 change if we quantify for all pair of messages (mg, m;)
instead of adversarially choosing it?
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More Generally: Computational Indistinguishability

Definition 6 (computational indistinguishability)
Two distributions X and Xy are computationally indistinguishable if for
every PPT distinguisher D,

d(n) := Pr [D(x)=0]— Pr [D(x)=0]

x+Xg xX1
is negligible.

m Computational secrecy against eavesdroppers can be rephrased as:
the ciphertext distribution in the left and the right worlds are
computationally indistinguishable.

Exercise 4

Formally show the above
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m To recap:
m Introduced Turing Machines and PPT

m Introduced negligible functions
m Established the notion of computational secrecy against
eavesdroppers by relaxing the threat model

m Attack model: restrict to PPT Eves (W
m Break model: allow break with negligible probability {"R!}
m Defined computational indistinguishability: we'll use this notion
throughtout the course

i =

€

m Next lecture: .

m Pseudorandom generators (PRG) Lt
m Computationally-secret SKE scheme: “Computational OTP"
m First security reduction!

. More Questions?.
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§3.1 in [KL14] for more details on computational secrecy

Chapter 1 in [AB09] for more about Turing machines. The original
paper is [Tur37]

turingmachine.io for visualisation of Turing machines



E:| Sanjeev Arora and Boaz Barak.
Computational Complexity - A Modern Approach.
Cambridge University Press, 20009.

@ Jonathan Katz and Yehuda Lindell.
Introduction to Modern Cryptography (3rd ed.).
Chapman and Hall/CRC, 2014.

@ Alan M. Turing.
On computable numbers, with an application to the entscheidungsproblem.
Proc. London Math. Soc., s2-42(1):230-265, 1937.
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