

CS409m: Introduction to Cryptography

Lecture 04 (08/Aug/25)

Instructor: Chethan Kamath

Annonuncements

- Lab Exercise 1 (graded) will be out today (08/Aug)
 - Will be discussed in TA session today
- You should have registered on https://cs409m.ctfd.io/
 - See Moodle announcement by Nilabha for instructions
- Assignment 2 (ungraded) will also be out today (08/Aug)
- No lectures next week : N.)
 Open house for 13 Aug and Ind. Day on 15/Aug

Recall from Previous Lecture

- Task: secure communication with shared keys
- Threat model: perfect secrecy against eavesdroppers

Attack Model: Eavesdropping

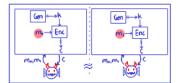
- Eve computationally unbounded (deterministic)
- Knows description of Π (Kerchhoff's principle)
- 3 Shared key is hidden from Eve
- 4 Can eavesdrop and learn ciphertext

Break Model: Perfect secrecy

- Eve learns no information about the message
 - 1 Shannon's definition

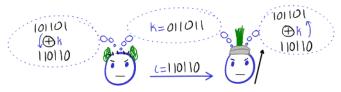
$$\Pr[\mathbf{M} = m^* | \mathbf{C} = c^*] = \Pr[\mathbf{M} = m^*]$$

2 Two worlds definition



Recall from Previous Lecture...

- Task: secure communication with shared keys
- Threat model: perfect secrecy against eavesdroppers



- + Theorem 1 (Shannon): one-time pad (OTP) is perfectly secret
- -Limitations of OTP:
 - Keys are as large as messages $|\mathcal{K}| = |\mathcal{M}|$ ⚠ Becomes insecure if key re-used: see Lab Exercise 1
- Theorem 2 (Shannon): For $\frac{any}{n}$ perfectly-secret SKE, $|\mathcal{K}| \geq |\mathcal{M}|$

Plan for Today's Lecture

- Bypass Shannon's barrier by relaxing the threat model:
 - "Impossible to break" → "Infeasible to break"
 - Computational secrecy against eavesdroppers

Attack Model: Eavesdropping

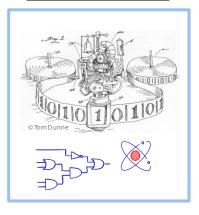
- 1 Eve is efficient: PPT
- 2 Knows description of Π (Kerchhoff's principle)
- 3 Shared key hidden from Eve
- 4 Can eavesdrop and learn ciphertext
- Both relaxations are necessary!

Break Model: Secrecy, w.h.p.

- Eve may learn information, but only with "low probability"
 - Negligible probability

Plan for Today's Lecture...

Models of Computation



Negligible Functions

Plan for Today's Lecture...

1 Models of Computation: A Primer

2 Negligible Functions

3 Computational Secrecy Against Eavesdroppers

Plan for Today's Lecture

1 Models of Computation: A Primer

2 Negligible Functions

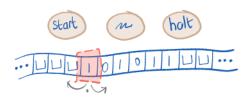
3 Computational Secrecy Against Eavesdroppers

Models of Computation: Turing Machine

- We have informally introduced (randomised) algorithms
 - Set of instructions of rules that carries out a computation
- To formally study algorithms, we need a model of computation
 - How to define running time?
 - What does "efficient" mean?
 - ...

- Introduced by Turing as "automatic machine"
- Mathematically precise model of computation
- Components:
 - Tapes: to provide input, for memory...
 - States: "halt" "good so far"
 - Transition function/rule: "processor"

How Turing Machines Work



Definition 1 ([AB09], §1.2)

A k-tape Turing Machine M is described by a tuple (Γ, Q, τ) such that:

- M has k memory tapes (input/work/output tapes) with heads
- Γ is a finite alphabet, which includes a spesiábíβlank" symbol ப
 - Every memory cell has an element from Γ
- Q is a finite set of states
 - Special states: "start" and "halt done"
- - Transition function/rule: encodes behaviour of M

How Turing Machines Work...

- Start configuration
 - The tape is initialised with the input string
 - Rest of the tape is blank (山)
 - The head is at the start of the input
 - State is start
- Computation step

- Apply τ on current state and input to obtain next state, output and next head position
- Halting
 - Stop computation if state is halt

Demo: turingmachine.io

Running Time of Turing Machine

Definition 2

Let $f:\{0,1\}^* \to \{0,1\}^*$ and $T:\mathbb{N} \to \mathbb{N}$ be functions, and M be a TM

- M computes f if on every input $x \in \{0,1\}^*$ (placed in input tape), M halts with f(x) on its output tape
- M computes f in time T, if for every input $x \in \{0,1\}^*$, M halts as above within T(|x|) steps
- What was the running time of the TM in the demo?
 - Efficient (deterministic) computation: T is any fixed polynomial
 - E.g., $T(n) := n^3$ or $T(n) = 4n^{1000} + \log(n)$
 - Efficient randomised computation (\$\\$)\$
 - Also referred to probabilistic polynomial time (PPT) ★
 - Definition 2 extended to randomised TM

Other Models of Computation Exist

- (2) Is your laptop a Turing Machine? Not quite, closer to
 - RAM Machine
 - TM with fixed-sized tape
 - Can move head to any position in the work tape in one step
- What about a basic calculator? Closer to
- Boolean circuit (family)
 - Represented using gates (AND, OR, NOT) and wires
 - One circuit for each input length
 - Size of the circuit is the number of its gates
 - Efficient circuits: size is polynomial (in input length)

Compromise I: We Restrict Eve to PPT TM

- Why TM? Church-Turing thesis:
 - "Every physically realizable computation device whether it's based on silicon, DNA, neurons, or some other alien technology – can be simulated (efficiently) by a Turing machine." ([AB09])
 - To rephrase: the exact model of computation doesn't matter
- Why PPT? "Captures" efficient computation
 - Real-world adversaries assumed to be efficient
 - Polynomials have nice closure properties
 - Randomness allowed since it is allowed for honest algorithms
- Some stronger models for Eve:

- Polynomial-sized family of circuits: allows "non-uniform" advice
- Quantum polynomial-time algorithms

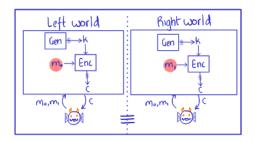
^{*}Possible exceptions: Boolean ciruit family, quantum TM

First Attempt at Computational Secrecy

Candidate Defintion 1 (Computational Secrecy)

An SKE $\Pi = (Gen, Enc, Dec)$ is computationally-secret if for every PPT eavesdropper Eve

$$\Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_0)}} \left[\frac{\mathsf{Eve}(c)=0}{\mathsf{eve}} \right] - \Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_1)}} \left[\frac{\mathsf{Eve}(c)=0}{\mathsf{eve}} \right] = 0$$



First Attempt at Computational Secrecy

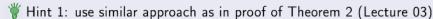
Candidate Defintion 1 (Computational Secrecy)

An SKE $\Pi = (Gen, Enc, Dec)$ is computationally-secret if for every PPT eavesdropper Eve

$$\Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_0)}} \left[\frac{\mathsf{Eve}(c)=0}{\mathsf{eve}} \right] - \Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_1)}} \left[\frac{\mathsf{Eve}(c)=0}{\mathsf{eve}} \right] = 0$$

Exercise 1

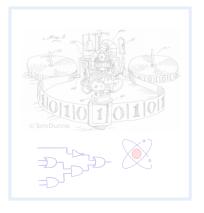
Show that Shannon's impossibility extends to Candidate Defintion 1

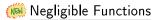


Hint 2: exploit randomness for efficiency

Take-away: even Eve can distinguish with "very low" probability

Plan for Today's Lecture...





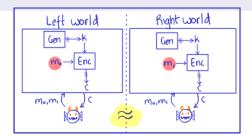
Compromise II: Eve Learns with Low Probability

- **E**ve may learn information, but only with "low probability" δ
- $extbf{ iny 9}$ How to quantify "low probability"? First attempt: $\delta pprox 1/|\mathcal{K}|$

Candidate Defintion 2 (Computational Secrecy)

An SKE $\Pi = (Gen, Enc, Dec)$ is computationally-secret against eavesdroppers if for every PPT Eve

$$\begin{vmatrix} \Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_0)}}[\mathsf{Eve}(c)=0] - \Pr_{\substack{(m_0,m_1)\leftarrow \mathsf{Eve}\\k\leftarrow \mathsf{Gen}\\c\leftarrow \mathsf{Enc}(k,m_1)}}[\mathsf{Eve}(c)=0] = \delta$$



Compromise II: Eve Learns with Low Probability

- **E**ve may learn information, but only with "low probability" δ
- **②** How to quantify "low probability"? First attempt: $\delta \approx 1/|\mathcal{K}|$

Candidate Defintion 2 (Computational Secrecy)

An SKE $\Pi = (Gen, Enc, Dec)$ is computationally-secret against eavesdroppers if for every PPT Eve

$$\begin{vmatrix} \Pr_{\substack{(m_0, m_1) \leftarrow \mathsf{Eve} \\ k \leftarrow \mathsf{Gen} \\ c \leftarrow \mathsf{Enc}(k, m_0)}} [\mathsf{Eve}(c) = 0] - \Pr_{\substack{(m_0, m_1) \leftarrow \mathsf{Eve} \\ k \leftarrow \mathsf{Gen} \\ c \leftarrow \mathsf{Enc}(k, m_1)}} [\mathsf{Eve}(c) = 0] = \delta$$

Exercise 2

- Does Shannon's impossibility extend also to Candidate Defintion 2?
 - Hint: Work out precise probability of learning in Exercise 1
- Can Eve trivally succeed with $1/|\mathcal{K}|$ probability? (\forall Hint: guess the key?)
- \bigstar Take-away: $1/|\mathcal{K}|$ too low

Second Compromise: Break is a Low-Probability Event

Definition 3

A function $f: \mathbb{N} \to \mathbb{R}^+$ is *negligible* if for every polynomial p and sufficiently large n, f(n) < 1/p(n) holds.

- ? Negligible or not?
 - 1 $f_1(n) := 1/314159n^{314159}$
 - $f_2(n) := 1/2^n$

Second Compromise: Break is a Low-Probability Event

Definition 3

A function $f : \mathbb{N} \to \mathbb{R}^+$ is *negligible* if for every polynomial p and sufficiently large n, f(n) < 1/p(n) holds.

? Negligible or not?

```
\begin{array}{l} \blacksquare & f_1(n) := 1/314159 n^{314159} \\ \blacksquare & 2 & f_2(n) := 1/2^n & \text{for odd } n \text{ which } 0 \\ \blacksquare & 3 & f_3(n) := \begin{cases} 1/2^n & \text{for even } n \\ 1/314159 n^{314159} & \text{for even } n \end{cases} \\ \blacksquare & 4 & f_4(n) := n^{-\log(n)} \sim \text{which } 0 \\ \blacksquare & 5 & f_5(n) := p(n)/2^n, \text{ for a very large polynomial } p(n) \\ \blacksquare & 6 & f_6(n) := n^{\log(n)}/2^n \end{cases}
```

★ To show that f(n) is non-negligible, show that there exists a polynomial p such that f(n) > 1/p(n) for infinitely often ps.

Plan for Today's Lecture

1 Models of Computation: A Primer

2 Negligible Functions

3 Computational Secrecy Against Eavesdroppers

The Security Parameter

- So far towards defining computational secrecy
 - Restrict to PPT Eve
 - Allow negligible probability of Eve learning

Ofreeimageslive.co.uk

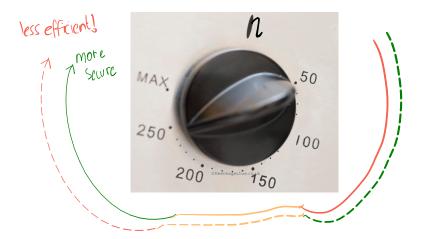
- When designing scheme, want ability to precisely control above values via a parameter n (sometimes denoted by λ):
 - Want: Honest algorithms run in time fixed polynomial in n
 - Allow: Eve can run in time arbitrary polynomial in n
 - Require: Eve to have a success probability negligible in n
- n is the "security parameter"
 - Determines amount of time (generally resources) required to "break" scheme

How to Choose the Right Security Parameter?...

- Suppose a cryptography designer claims that Eve running in n^3 mins can break his scheme with probability $2^{40}/2^n$
- \bigcirc What n do you choose while implementing?
 - 1 $n \le 40$? Eve working for 40^3 mins ≈ 6 weeks can break with probability 1
 - Not very safe! △
- n = 50? Eve working for 50^3 mins ≈ 3 months can break with probability 1/1000
 - May be acceptable
 - n = 500? Eve working for 500^3 mins ≈ 200 years can break with probability 2^{-460}
 - Quite safe

How to Choose the Right Security Parameter?...

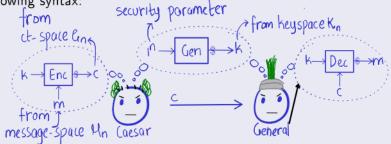
■ Why not set *n* to be very high to be very safe?



Incorporating Security Parameter into SKE Definition

Definition 4 (Shared/Symmetric-Key Encryption (SKE))

An SKE Π is a triple of efficient algorithms (Gen, Enc, Dec) with the following syntax:



■ Correctness of decryption: for every $n \in \mathbb{N}$, message $m \in \mathcal{M}_n$,

$$\Pr_{k \leftarrow \mathsf{Gen}(1^n), c \leftarrow \mathsf{Enc}(k,m)}[\mathsf{Dec}(k,c) = m] = 1$$

Let's Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE $\Pi = (Gen, Enc, Dec)$ is computationally-secret against eavesdroppers if for every PPT Eve

$$\delta(n) := \left| \begin{array}{c} \Pr \\ (m_0, m_1) \leftarrow \mathsf{Eve}(1^n) \\ k \leftarrow \mathsf{Gen}(1^n) \\ c \leftarrow \mathsf{Enc}(k, m_0) \end{array} \right| \left[\begin{array}{c} \mathsf{Eve}(c) = 0 \end{array} \right] - \Pr \\ (m_0, m_1) \leftarrow \mathsf{Eve}(1^n) \\ k \leftarrow \mathsf{Gen}(1^n) \\ c \leftarrow \mathsf{Enc}(k, m_1) \end{array} \right| \left[\begin{array}{c} \mathsf{Eve}(c) = 0 \end{array} \right]$$
is negligible.

$$|\mathsf{I} \longrightarrow \mathsf{Gen}(k, m_1) \longrightarrow \mathsf{I} \longrightarrow \mathsf{I}$$

Let's Finally Define Computational Secrecy!

Definition 5 (Two-Worlds Definition)

An SKE $\Pi =$ (Gen, Enc, Dec) is computationally-secret against eavesdroppers if for every PPT Eve

$$\delta(n) := \Pr_{\substack{(m_0, m_1) \leftarrow \mathsf{Eve}(1^n) \\ k \leftarrow \mathsf{Gen}(1^n) \\ c \leftarrow \mathsf{Enc}(k, m_0)}} [\mathsf{Eve}(c) = 0] - \Pr_{\substack{(m_0, m_1) \leftarrow \mathsf{Eve}(1^n) \\ k \leftarrow \mathsf{Gen}(1^n) \\ c \leftarrow \mathsf{Enc}(k, m_1)}} [\mathsf{Eve}(c) = 0]$$

is negligible.

Exercise 3

Does Definition 5 change if we quantify for all pair of messages (m_0, m_1) instead of adversarially choosing it?

More Generally: Computational Indistinguishability

Definition 6 (computational indistinguishability)

Two distributions X_0 and X_1 are computationally indistinguishable if for every PPT distinguisher D,

$$\delta(n) := \Pr_{\mathbf{x} \leftarrow \mathbf{X}_0}[\mathbf{D}(\mathbf{x}) = \mathbf{0}] - \Pr_{\mathbf{x} \leftarrow \mathbf{X}_1}[\mathbf{D}(\mathbf{x}) = \mathbf{0}]$$

is negligible.

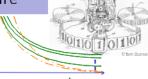
Computational secrecy against eavesdroppers can be rephrased as: the ciphertext distribution in the left and the right worlds are computationally indistinguishable.

Exercise 4

Formally show the above

Recap/Next Lecture

- To recap:
 - Introduced Turing Machines and PPT
 - Introduced negligible functions
 - Established the notion of computational secrecy against eavesdroppers by relaxing the threat model
 - Attack model: restrict to PPT Eves
 - Break model: allow break with negligible probability
 - Defined computational indistinguishability: we'll use this notion throughtout the course
- Next lecture:
 - Pseudorandom generators (PRG)
 - Computationally-secret SKE scheme: "Computational OTP"
 - First security reduction!



References

- 1 §3.1 in [KL14] for more details on computational secrecy
- 2 Chapter 1 in [AB09] for more about Turing machines. The original paper is [Tur37]
- 3 turingmachine.io for visualisation of Turing machines

Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.

Alan M. Turing.

On computable numbers, with an application to the entscheidungsproblem.

Proc. London Math. Soc., s2-42(1):230-265, 1937.