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CS409m: Introduction to Cryptography

Lecture 05 (13/Aug/25)

Instructor; Chethan Kamath



m Grading structure adjusted (as discussed in Lecture 04)

Weightage | Towards
35% End-sem
25%, Mid-sem

Two (out of three) quizzes

Four lab exercises

Class participation, pop-quizzes

m Lab Exercise 1 (graded)

] 2359,
m Deadline for submitting report on Moodle: 23:59, 13/Aug/25

m Assignment 2 (ungraded) will be uploaded today (13/Aug)

m Reminder: Quiz 1 on 22/Aug, 08:25-09:25 in CC103!
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m Task: secure communication of long messages with shared keys
m Problem: K > M for perfect secrecy against eavesdroppers

m Relaxed threat model: computational secrecy against eavesdroppers

)
Attack Model: Eavesdropping Break Model: Secrecy, w.h.p.

Eve is PPT Eve breaks with negligible
probability
m Two worlds definition

Knows description of I
(Kerchhoff's principle)

Shared key is hidden from Eve

Can eavesdrop and learn
ciphertext
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Probabilistic Poly. Time (PPT) Negligible Function

© Rocky AcastaWi ikipedia

m “Efficient computation” m “Low probability” event
m Polynomial-time on m Decays faster than any inverse
probabilistic Turing Machine polynomial function
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Recall from Previous Lecture...

m Why PPT and negligible? Goldilocks zone!
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" Goal: construct SKE computationally-secret against eavesdroppers

(& Pseudorandom Generator (PRG) ;i Computational One-Time Pad

B G

© Opencliper YFreesva.om

;ONew tool: proof by reduction
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Recall: Computational Secrecy Against Eavesdroppers
Pseudo-Random Generator (PRG)

Computational One-Time Pad



Recall: SKE with Security Parameter ‘

Definition 1 (Shared /Symmetric-Key Encryption (SKE))

An SKE I is a triple of efficient algorithms (Gen, Enc, Dec) with the
following syntax: SCCUY‘I’c‘j ?Qrom(kr

[ o from \ﬁajquc'e Ko

S0 s Sk

kﬂ_’CO% ooo TPeocaac OO
- e )
from meSSGg(-SFaLQ Un Coeear e

from - 5poce o

mo e ) ———

m Correctness of decryption: for every n € N, message m € M,

)[Dec(k, c)=m]=1

r
k<Gen(1"),c<—Enc(k,m
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Recall: Computational Secrecy

Definition 2 (Two-Worlds Definition)
An SKE IN = (Gen, Enc, Dec) is computationally-secret against
eavesdroppers if for every (stateful) PPT Eve

(n) (mo,m1)<—rEve(l")[ VE(C) ] (mo, m1)<—Eve(1 )[ ve(c) ]
k<—Gen(1") k<Gen(1")
c+Enc(k,mp) c«Enc(k,my)
o C
is negligible. 0 world 1 world
My—| Enc m H#

Mo, o,
r . '

Gl
Q
@
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Alternatively: Adversarial Indistinguishability

Definition 3 (Adversarial Indistinguishability)

An SKE I = (Gen, Enc, Dec) is computationally-secret against
eavesdropper if for every (stateful) PPT Eve

§(n) := E =bl-3
(n) (mo,m1)<—E"e 1 )[ Ve(C) ]
k+Gen(1")
b<+{0,1}
c<Enc(k,mp)
is negligible.
Gen 1N ”:ii'_-:‘ WIS &@ d-b N
VA
lj b 50,1 oo Mo, M,
<My, S <7
\ EnL C Al "’.4 - \) —

(hal&mgzr c
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The Two Definitions are Equivalent!

Claim 1 (Other direction exercise!)

Definition 3 implies Definition 2.

Proof (using basic probability from Lecture 02).
Definkion % wophes for exery PPT Cre g folluyng 1 neghole
pr (6e@=0p-0) + Py Ewel=vb-} -

o0, &Eve (") Mo &Evelr”)
k <eeac ), bedorh k <cen(), bty
CEn(n,my) CBnc (i my)
4
plee@o) - pr(Ee@-o) s negl.

m:J/m\(" Un) mt)/m\é‘ L(ﬂ)

k <Gen (i) k<cen(l"

C <N (i, mp) Cetni(ls)my)

@ wWhere dd ) theat



More Generally: Computational Indistinguishability

m Ciphertext distributions — any two distributions




More Generally: Computational Indistinguishability

m Ciphertext distributions — any two distributions

Definition 4 (computational indistinguishability)

Two distributions Xo := (Xo,n) ey and X1 1= (X1,n) ey are
computationally indistinguishable if for every PPT distinguisher D, Q

d(n) == P\g’ [D(x) = 0] — P\(r [D(x) = 0]‘
is negligible.

m Computational secrecy against eavesdroppers: the ciphertext
distribution of mg and mjare computationally indistinguishable

Exercise 1

Formally write down the two distributions
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Goal: construct SKE

{i#: Pseudorandom Generator (PRG)

against eavesdropper:

Computational One-Time Pad

6

© Openciipar YFreesvg.on

New tool: proof by reduction
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Recall One-Time Pad (Vernam'’s Cipher)

Construction 1 (Message space {0 1} )

K<—TD "I o m:-k@c ;

Byl

Pseudocode 1 (Message space {0,1}")

+ {0, 1}1}“‘2

m Key generation Gen(1¢): output

Pequirements
6 ey Pan()s kﬁ—s\%’ SU(,\/\ U(\QJ('.
K “seems vandor’ 4 ()
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Pseudo-Random Generator (PRG) S”ﬂq
L

\‘ll’ .. . .. . . . - -
@ Intuitive definition: expanding function whose output (on uniformly
random input) “seems random” to PPT distinguishers.

Definition 5 (Two worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.
’G is PRG if for every PPT distinguisher D

0(n) = | R [D(G(s)) =0] = H_{Elf}“n)[r)(f) = 0]
et C{)seuo\orondom woild  Crondom wsorld
ée—{o,'}h
/—J‘—\G re {o“}l(n)
o 1

¥, A
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Pseudo-Random Generator (PRG) H@
L

@ Intuitive definition: expanding function whose output (on uniformly
random input) “seems random” to PPT distinguishers.

Definition 5 (Two worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.
G is PRG if for every PPT distinguisher D

()= P [O(6E) =0~ Pr [D()=0]

is negligible.

Exercise 2

Write up “adversarial indistinguishability” definition of PRG

Show that the two definitions are equivalent
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Pseudo-Random Generator...

Definition 5 (Two worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length ¢(n) > n.
G is PRG if for every PPT distinguisher D

d(n):=1| Pr [D(G =0- P D(r)=0
()= _Pr, (6N =0~ _Pr D) =0)
is negligible.
@ Let's check your understanding of Definition 5 io,}}a(h)

m How can an unbounded distinguisher break PRG?
m Is G a PRG or not? Below G; and G, are PRGs
ESE G(s) := Gu(9)]0
L 2 G(s) =s|s1®... D sn
G(s1lls2) := Ga(s1)[|G2(s2)
G(s) := Gi(s)l|Ga(s)
6(5) = Ga(s) & Ga(s) e



"Goal: construct SKE computationally-secret against eavesdroppers

Peendorandom Cenerator (PRG) (i@ Computational One-Time Pad

52

\
!@ 6 K G H@m

;oNew tool: proof by reduction
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“Computational” One-Time Pad from PRG G

Construction 2 (Message space {0, 1}((" )

Ké‘fo \‘I 01 o mosc(w@c
B ||

Pseudocode 2 (Message space {0, 1}5("))

m Key generation Gen(1"): output k < {0,1}"
m Encryption Enc(k, m): output c := G(k) ® m
m Decryption Dec(k, ¢): output m:= G(k) @ ¢

f(n

m Correctness of decryption: for every n € N and m € {0, 1}

%)@ (%@m)—m} = Pr M:m},l

k<ol
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Proof of Computational Secrecy

Theorem 1

If G is a PRG, then Construction 2 is comp. secret against eavesdroppers

Proof by reduction. 31 for G <= 3Fve breaking Construction 2.

World 0 el World | :

; o [Ee(6W)@m)=0) :

s\’if\o,\“[gve(()u@%) 0] 5(_(\0“1{1{ | ] :
""""""""""""""""""""""""""" Aot T



Proof of Computational Secrecy

Theorem 1

If G is a PRG, then Construction 2 is comp. secret against eavesdroppers

Proof by reduction. 31 for G <= 3t ve breaking Construction 2

PAG World SKE World
D) et
/""w‘“ P 5 C=Ln VALY
2D i
G or r (_) ot w
C Y

DISUW sher D -Challenger
Rnalyss deoc’clon _______ =
e wont o Shows: \P & ) Ol ; (r)= OH ok e

“Pr E\‘Q(L b‘k > ?e—iol{k ] " E -V. ?if?l,‘k.,r-\-“ * Te

*0\’ (.DV\S\/.(\J(hon 1 . {*, non_neg /é\ Pr E\IQ(( b—} ov ()
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Proof of Computational Secrecy...

Exercise 3 (Formalise proof of Theorem 1)

Write down the proof formally:
Analyse why the reduction works

In the analysis, explicitly write down expression for “not negligible”
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" Goal: construct SKE computationally-secret against eavesdroppers

{4l Pseudorandom Generator (PRG) ¢ifé Computational One-Time Pad

Bl G

© Operciipar tFreesvg o

fNew tool: proof by reduction
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Do PRGs Exist?
m What about Linear Congruential Generator (LCG)?
m Useful for physics simulation

m Defined by following recurrence relation, with “seed” xo € [0, m — 1]:

Xp+1 = aXp + ¢ mod m

: g 0 8 %1 8 01
12 7@% . %‘2
6 3 6 3 s@é) 3 63~ 6 V23
5 4 5 4 4 5 4 5
seed=0 outputl output5 output3 output4d

output8 output6 output7 output2 outputO

m But insecure for cryptographic purposes: “non-cryptographic” PRG
Exercise 4

1) Think of why is LCG insecure 2) Look up LFSR

17/19



Theoretical constructions
m Rely on well-studied hard problems
m Subset-sum problem:

m Input: prime p, ay,...,a, € Zp
m Solution: / € [1,n]: 3", a =0mod p

m Believed to be “hard” (even for ay,...,a, « Zp)

m E.g., PRG from subset-sum problem:

G(xall--|Ixa) == Y xiaj mod p
i€[1,n]

m On selecting p ~ n?, G is expanding
m Pseudorandomness based on hardness of subset-sum problem
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Practical constructions

m “Complex” functions, repeated “many times” look random
m Build a candidate construction and do extensive cryptanalysis
m E.g., Stream ciphers like Salsa20 and ChaCha

EmE=EE!
=

© Sissssou/Wikipedia ©Tony Arcier i/W ikipedia
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m To recap: .
m Defined PRG K @m
m Constructed computational OTP from PRG
m New tool: proof by reduction [}

m Constructions of PRG

sefor}

[\ b
|

3 7
m Next lecture:

m Encrypting longer messages!

m Extending the length of a PRG
m New tool: hybrid argument
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©xkcd.com

More Questions?
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§3.2 and §3.3 in [KL14] for more details on computational secrecy
and computational OTP

To read more about stream ciphers, refer to §4 in [BS23]
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