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CS409m: Introduction to Cryptography

Lecture 06 (20/Aug/25)

Instructor: Chethan Kamath



m Task: secure communication of long messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m Task: secure communication of long messages with shared keys
m Threat model: computational secrecy against eavesdroppers

Pseudorandom Generator (PRG) ~ Computational One-Time Pad

é@Main tool: proof by reduction
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Recall PRG: expanding function whose output is computationally
indistinguishable from uniformly random
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Recall from Previous Lecture...

Recall PRG: expanding function whose output is computationally
indistinguishable from uniformly random

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.
G is PRG if for every PPT distinguisher D

o(n) = [B(G(s)) =0] = Pr [D(r) =0]

r
s<{0,1}" r<{0,1}("

is negligible.

2/13



Recall from Previous Lecture...

Recall PRG: expanding function whose output is computationally
indistinguishable from uniformly random

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.
G is PRG if for every PPT distinguisher D

0 | By U=,
is negligible. ‘PSCUAOYM&OM Laorld M

sei 0:'}

[ b
i
O (_) 2/13

Q



Recall from Previous Lecture...

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. 3D for G < 3 breaking Computational OTP.

EKE World

¢ 0
— (VLY

(hak\mgzr

2/13



Recall from Previous Lecture...

Theorem 1
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m Threat model: computational secrecy against eavesdroppers
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m Task: secure communication ofAlo g messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m Task: secure communication ofA/o g messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m Why not use Linear Congruential Generator (LCG)?
m Used to generate randomness for simulating physical systems
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m Why not use Linear Congruential Generator (LCG)?

m Used to generate randomness for simulating physical systems
m Defined by recurrence relation x,,1 = ax, + ¢ mod m, with “seed”
Xo € [0, m — 1]
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m Why not use Linear Congruential Generator (LCG)?

m Used to generate randomness for simulating physical systems
m Defined by recurrence relation x,,1 = ax, + ¢ mod m, with “seed”

Xo € [O,m - 1]
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m Define PRG as G, c(s) := x1||x2 with xg :=s
@ How do you break G, .?
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How to Construct PRGs?

m Why not use Linear Congruential Generator (LCG)?

m Used to generate randomness for simulating physical systems
m Defined by recurrence relation x,,1 = ax, + ¢ mod m, with “seed”
X0 € [07 m— 1]
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m Define PRG as G, ¢(s) := x1||x2 with xg :==s
@ How do you break G, .?

/\ Insecure for cryptographic purposes: “non-cryptographic” PRG!
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m Input: prime m and numbers ay,...,a, € Z,,
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m Believed to be “hard” (even for a1,...,a, < Zp)
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How to Construct Cryptographic PRGs?

Theoretical constructions

m Direct constructions from well-studied hard problems
m E.g.: subset-sum problem:

m Input: prime m and numbers ay,...,a, € Z,,
m Solution: / C[1,n]: > ;.,ai =0mod m

m Believed to be “hard” (even for a1,...,a, < Zp)

m PRG from subset-sum problem:

Gay,an (x| - Ixn) = Z xjaj mod m
i€[1,n]

m Select p ~ n®> = G is expanding
m Subset-sum problem hard = G,, .. 5, pseudorandom
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Theoretical constructions
m Via unpredictable sequences: no PPT predictor, given a prefix of the
sequence, can predict its next bit (non-negligibly away from 1/2)
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Theoretical constructions
m Via unpredictable sequences: no PPT predictor, given a prefix of the
sequence, can predict its next bit (non-negligibly away from 1/2)
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How to Construct Cryptographic PRGs?

Theoretical constructions
m Via unpredictable sequences: no PPT predictor, given a prefix of the
sequence, can predict its next bit (non-negligibly away from 1/2)

wins ¥ b=Yin
O Co

Y9,

cefof”

Predickor

m E.g., Blum-Blum-Shub (BBS) sequence
m Setting: modulus m = pq for large primes p and q, seed x € Z,
m Sequence (modulo m):

LSB(x2) — LSB(x¥) — LSB(x¥) = -+ — LSB(x2) - --
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How to Construct Cryptographic PRGs?

Theoretical constructions

m Via unpredictable sequences: no PPT predictor, given a prefix of the
sequence, can predict its next bit (non-negligibly away from 1/2)

wins ik b=Yir
(M) e Co

Y9,

cefof”

Predickor

m E.g., Blum-Blum-Shub (BBS) sequence

m Setting: modulus m = pq for large primes p and q, seed x € Z,
m Sequence (modulo m):

LSB(x2) — LSB(x¥) — LSB(x¥) = -+ — LSB(x2) - --
m Factoring m hard = sequence unpredictable

m How to construct PRG from BBS sequence?
5/13



Practical constructions

m “Complex” functions, repeated “many times” look random
m Build a candidate construction and do extensive cryptanalysis
m E.g., Stream ciphers like Salsa20 and ChaCha
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m E.g., Stream ciphers like Salsa20 and ChaCha

LI
we g
.

© Sissssou/W ikipedia ©Tony Arcieri/Wikipedia

6/13



v
m Task: secure communication ofA/o g messages with shared keys
m Threat model: computational secrecy against eavesdroppers

A

How to Construct PRGs? NEN%PRG Length Extension
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m Goal: PRG G with stretch n +1 — PRG G’ with stretch 2n
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Construction 1
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Let's Stretch!

m Goal: PRG G with stretch n +1 — PRG G’ with stretch 2n
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Let's Stretch!

m Goal: PRG G with stretch n +1 — PRG G’ with stretch 2n

Construction 1

B‘Zn»x G | Lfm
20
Yana Yan

Exercise 1

Formally write down the construction of G'.
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Before the Proof, Recall Definition of PRG Again

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.~"sr¢rch/

0
G is PRG if for every PPT distinguisher D econsIon X
1) — P D(G =0| — P D(r)=0
(n) s&{ofl}n[ (G(s)) = 0] r<—{0,I}e(")[ (r)=0]

is negligible. qxcuo\omndom Lorld ( tendom waorld
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Before the Proof, Recall Definition of PRG Again

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any n € N and
input s € {0,1}", outputs a string of length £(n) > n.~"sr¢rch/

Vi
G is PRG if for every PPT distinguisher D econsIon X
1) — P D(G =0|— P D(r)=0
(n) s&{ofl}n[ (G(s)) = 0] r<—{0,I}e(")[ (r)=0]

QDscuo\omndom Laorld ( endom world

is negligible.

Por G smk&mj by one bk

9/13



Proving Pseudorandomness: a Hybrid (Security) Argument

IfG is a PRG, then so is G’.
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Proving Pseudorandomness: a Hybrid (Security) Argument

IfG is a PRG, then so is G’.

Proof.3 distinguisher D for G < 3 distinguisher D’ for G'.
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Let's Take Stock of Theorem 2

m Construction 1 and Theorem 2 work for any polynomial stretch
@What happens if we stretch it exponentially?

m There is also a “loss in pseudorandomness”
m D’ distinguishes with some probability 1/p(n) =
D distinguishes with probability only ~ 2n/p(n
m More the stretch, greater the loss

m More generally: “loss in security” of a security reduction
m One way to measure how “wasteful” the reduction is

Exercise 2

m Think of a less wasteful reduction strategy for Theorem 2. Do you feel it
is possible?
m Maybe need a different construction?
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@l Suppose A running in n®mins can solve a hard problem with""
probability 240 /27

m What n do you choose while designing your scheme?

No loss in security

n =507
m A working for ~ 3 months
m Breaks with pr. ~ 1/1000
m Acceptable

n = 1007
m A working for = 2years

m Breaks with pr. 2760
m Safe
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Why Loss in Security Matters?... @

100
200 150

@l Suppose A running in n®mins can solve a hard problem with""
probability 240 /27

m What n do you choose while designing your scheme?

No loss in security n loss in security
n =507 n =507
m A working for ~ 3 months m A working for = 3 months
m Breaks with pr. =~ 1/1000 m Breaks with pr. =~ 1/20
m Acceptable m Breakable!
n = 1007 n = 1007
m A working for = 2years m A working for ~ 2years
m Breaks with pr. 2760 m Breaks with pr. ~ 2750
m Safe m Safe
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m To recap:

. ® Saw constructions of PRG
_\\® Increased the stretch of PRG

® New tool: hybrid argument

m Next lecture: How to encrypt arbitrary-many messages?

m New primitive: pseudo-random function (PRF)
m PRG — PRF (Goldreich-Goldwasser-Micali)
m Stronger attack model: chosen-plaintext attack (CPA)

More Questions?
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§3.3.2 in [Gol01] for more details on length-extension of PRG

For more details on stream ciphers, refer to §3.6.1 in [KL14] or §4 in
[BS23]

To read more about unpredictability vs. pseudorandomness, see
§3.3.5 in [Gol01]
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