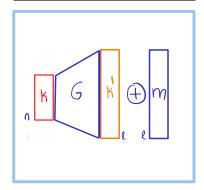


CS409m: Introduction to Cryptography

Lecture 06 (20/Aug/25)

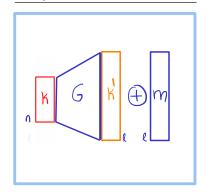
Instructor: Chethan Kamath


- Task: secure communication of *long messages* with shared keys
- Threat model: computational secrecy against eavesdroppers

- Task: secure communication of *long messages* with shared keys
- Threat model: computational secrecy against eavesdroppers

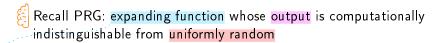
Pseudorandom Generator (PRG)

Computational One-Time Pad



- Task: secure communication of *long messages* with shared keys
- Threat model: computational secrecy against eavesdroppers

Pseudorandom Generator (PRG)


Computational One-Time Pad

Main tool: proof by reduction

Recall PRG: expanding function whose output is computationally indistinguishable from uniformly random

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any $n \in \mathbb{N}$ and input $s \in \{0,1\}^n$, outputs a string of length $\ell(n) > n$. G is PRG if for every PPT distinguisher D

$$\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^n} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$$

is negligible.

🎉 Recall PRG: expanding function whose output is computationally indistinguishable from uniformly random

Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any $n \in \mathbb{N}$ and input $s \in \{0,1\}^n$, outputs a string of length $\ell(n) > n$. G is PRG if for every PPT distinguisher D

$$\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^n} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$$
is negligible.
$$\mathsf{s} \leftarrow \{0,1\}^n \quad \mathsf{rondom} \quad \mathsf{world} \quad \mathsf{rondom} \quad \mathsf{rondom}$$

Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

W Mo/N

SKE World

Distinguisher D Challenger
"Reduction"

Theorem 1

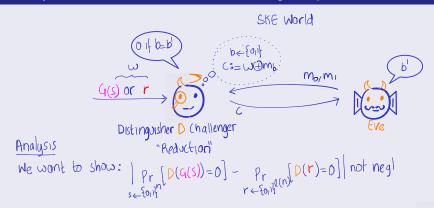
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Theorem 1

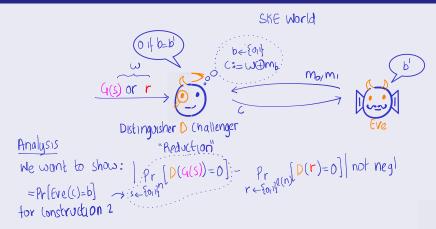
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Theorem 1

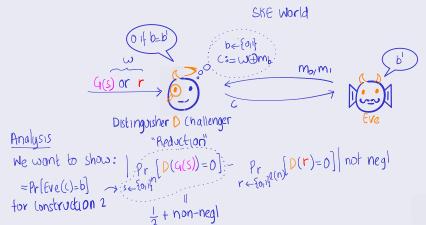
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers


Theorem 1

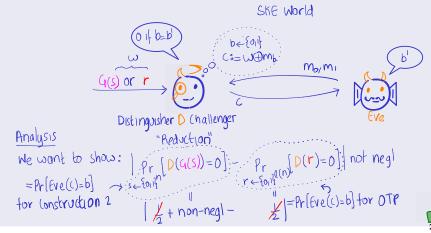
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers


Theorem 1

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers


Theorem 1

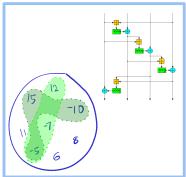
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers


Theorem 1

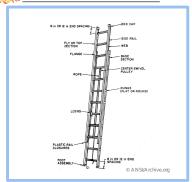
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Theorem 1

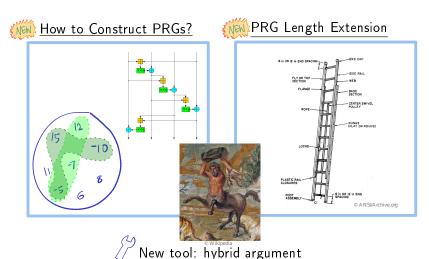
If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers



- Task: secure communication of *long messages* with shared keys
- Threat model: computational secrecy against eavesdroppers


- Task: secure communication of long messages with shared keys
- Threat model: computational secrecy against eavesdroppers

- Task: secure communication of long messages with shared keys
- Threat model: computational secrecy against eavesdroppers



PRG Length Extension

- Task: secure communication of long messages with shared keys
- Threat model: computational secrecy against eavesdroppers

- Why not use Linear Congruential Generator (LCG)?
 - Used to generate randomness for simulating physical systems

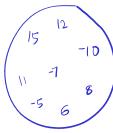
- Why not use Linear Congruential Generator (LCG)?
 - Used to generate randomness for simulating physical systems
 - Defined by recurrence relation $x_{n+1} = ax_n + c \mod m$, with "seed" $x_0 \in [0, m-1]$

- Why not use Linear Congruential Generator (LCG)?
 - Used to generate randomness for simulating physical systems
 - Defined by recurrence relation $x_{n+1} = ax_n + c \mod m$, with "seed" $x_0 \in [0, m-1]$

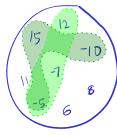
- Why not use Linear Congruential Generator (LCG)?
 - Used to generate randomness for simulating physical systems
 - Defined by recurrence relation $x_{n+1} = ax_n + c \mod m$, with "seed" $x_0 \in [0, m-1]$

- Define PRG as $G_{a,c}(s) := x_1 || x_2 \text{ with } x_0 := s$
 - **?** How do you break $G_{a,c}$?

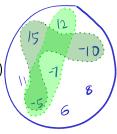
- Why not use Linear Congruential Generator (LCG)?
 - Used to generate randomness for simulating physical systems
 - Defined by recurrence relation $x_{n+1} = ax_n + c \mod m$, with "seed" $x_0 \in [0, m-1]$


- Define PRG as $G_{a,c}(s) := x_1 || x_2 \text{ with } x_0 := s$
 - \bigcirc How do you break $G_{a,c}$?

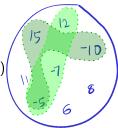
Theoretical constructions


Direct constructions from well-studied hard problems

- Direct constructions from well-studied hard problems
- E.g.: subset-sum problem:
 - Input: prime m and numbers $a_1, \ldots, a_n \in \mathbb{Z}_m$
 - Solution: $I \subseteq [1, n] : \sum_{i \in I} a_i = 0 \mod m$


- Direct constructions from well-studied hard problems
- E.g.: subset-sum problem:
 - lacksquare Input: prime m and numbers $a_1,\ldots,a_n\in\mathbb{Z}_m$
 - Solution: $I \subseteq [1, n] : \sum_{i \in I} a_i = 0 \mod m$

- Direct constructions from well-studied hard problems
- E.g.: subset-sum problem:
 - lacksquare Input: prime m and numbers $a_1,\ldots,a_n\in\mathbb{Z}_m$
 - Solution: $I \subseteq [1, n] : \sum_{i \in I} a_i = 0 \mod m$

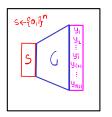


- Direct constructions from well-studied hard problems
- E.g.: subset-sum problem:
 - lacksquare Input: prime m and numbers $a_1,\ldots,a_n\in\mathbb{Z}_m$
 - Solution: $I \subseteq [1, n] : \sum_{i \in I} a_i = 0 \mod m$
- lacksquare Believed to be "hard" (even for $a_1,\ldots,a_n\leftarrow\mathbb{Z}_m$)

Theoretical constructions

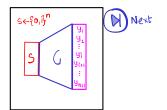
- Direct constructions from well-studied hard problems
- E.g.: subset-sum problem:
 - lacksquare Input: prime m and numbers $a_1,\ldots,a_n\in\mathbb{Z}_m$
 - Solution: $I \subseteq [1, n] : \sum_{i \in I} a_i = 0 \mod m$
- Believed to be "hard" (even for $a_1, \ldots, a_n \leftarrow \mathbb{Z}_m$)

PRG from subset-sum problem:

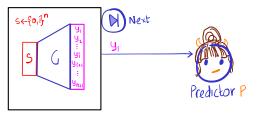

$$G_{a_1,...,a_n}(x_1\|...\|x_n) := \sum_{i \in [1,n]} x_i a_i \mod m$$

- Select $p \approx n^2 \Rightarrow G$ is expanding
- Subset-sum problem hard $\Rightarrow G_{a_1,...,a_n}$ pseudorandom

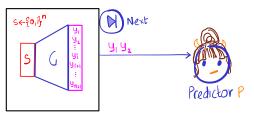
Theoretical constructions

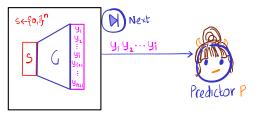

■ Via unpredictable sequences: no PPT predictor, given a prefix of the sequence, can predict its next bit (non-negligibly away from 1/2)

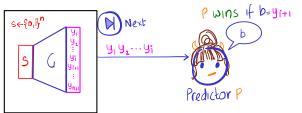
Theoretical constructions

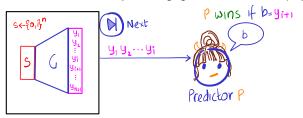


Theoretical constructions

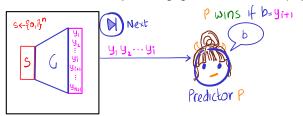



Theoretical constructions


Theoretical constructions


Theoretical constructions

Theoretical constructions


Theoretical constructions

- E.g., Blum-Blum-Shub (BBS) sequence
 - Setting: modulus m = pq for large primes p and q, seed $x \in \mathbb{Z}_m$
 - Sequence (modulo *m*):

$$LSB(x^2) \rightarrow LSB(x^{2^2}) \rightarrow LSB(x^{2^3}) \rightarrow \cdots \rightarrow LSB(x^{2^{\ell}}) \cdots$$

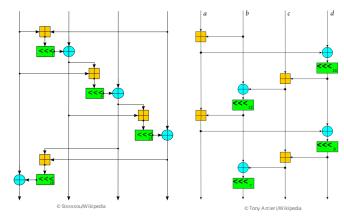
Theoretical constructions

- E.g., Blum-Blum-Shub (BBS) sequence
 - Setting: modulus m = pq for large primes p and q, seed $x \in \mathbb{Z}_m$
 - Sequence (modulo m):

$$LSB(x^2) \rightarrow LSB(x^{2^2}) \rightarrow LSB(x^{2^3}) \rightarrow \cdots \rightarrow LSB(x^{2^{\ell}}) \cdots$$

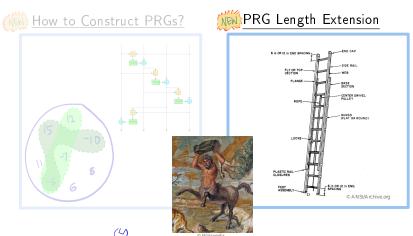
- Factoring m hard \Rightarrow sequence unpredictable
- How to construct PRG from BBS sequence?

Do Cryptographic PRGs Exist?...

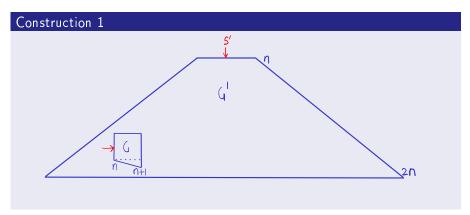

Practical constructions

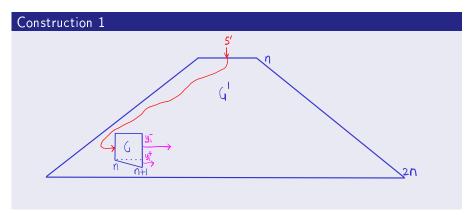
- "Complex" functions, repeated "many times" look random
- Build a candidate construction and do extensive cryptanalysis
- E.g., Stream ciphers like Salsa20 and ChaCha

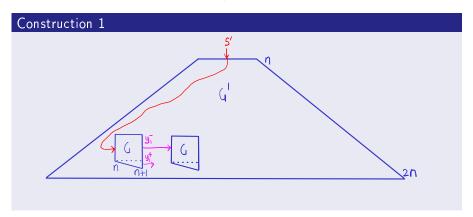
Do Cryptographic PRGs Exist?...

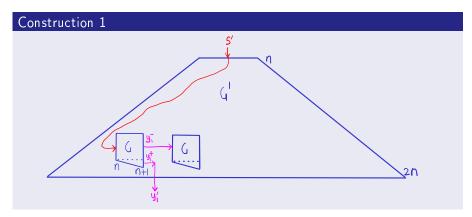

Practical constructions

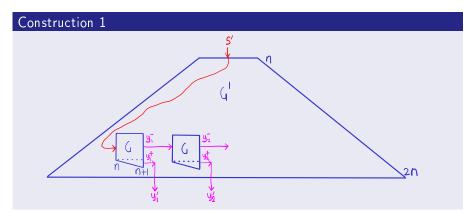
- "Complex" functions, repeated "many times" look random
- Build a candidate construction and do extensive cryptanalysis
- E.g., Stream ciphers like Salsa20 and ChaCha

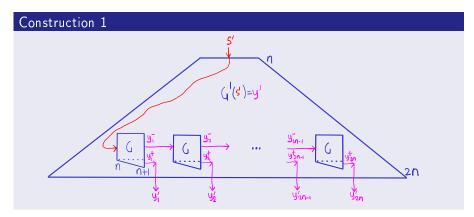


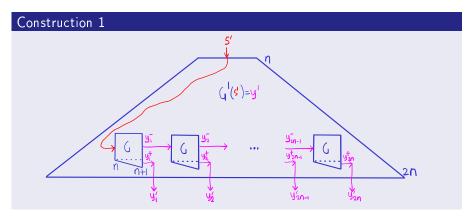

Plan for Today's Lecture


- Task: secure communication of long messages with shared keys
- Threat model: computational secrecy against eavesdroppers




New tool: hybrid argument





■ Goal: PRG G with stretch $n + 1 \rightarrow PRG$ G' with stretch 2n

Exercise 1

Formally write down the construction of G'.

Before the Proof, Recall Definition of PRG Again

Definition 1 (Two-worlds definition)

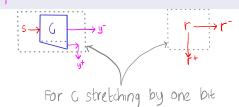
Let G be an efficient deterministic algorithm that for any $n \in \mathbb{N}$ and input $s \in \{0,1\}^n$, outputs a string of length $\ell(n) > n$. Stretch G is PRG if for every PPT distinguisher D examples of examples $\ell(n) > n$.

$$\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^n} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$$
ible.

The pseudorondom world rondom world rondo

is negligible.

Before the Proof, Recall Definition of PRG Again


Definition 1 (Two-worlds definition)

Let G be an efficient deterministic algorithm that for any $n \in \mathbb{N}$ and input $s \in \{0,1\}^n$, outputs a string of length $\ell(n) > n$. Stretch examples for the example of the strength of the example of

$$\delta(n) := \left| \Pr_{s \leftarrow \{0,1\}^n} [\mathsf{D}(G(s)) = 0] - \Pr_{r \leftarrow \{0,1\}^{\ell(n)}} [\mathsf{D}(r) = 0] \right|$$
ible.

responds to model the second of the second content of the se

is negligible.

Theorem 2

Theorem 2

If G is a PRG, then so is G'.

Proof.

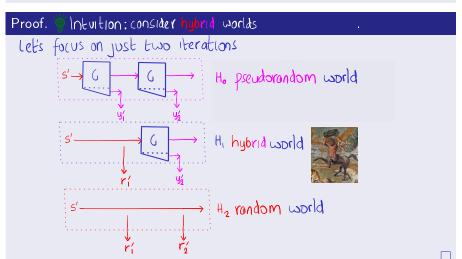
Theorem 2

If G is a PRG, then so is G'.

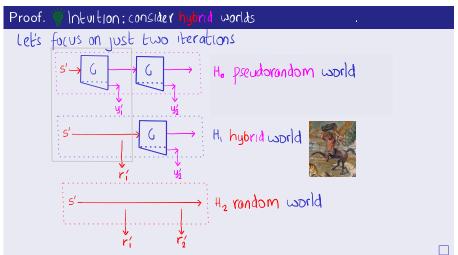
Proof. # Intuition

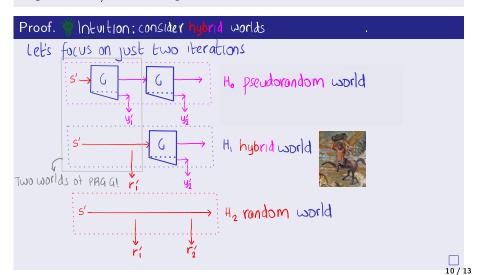


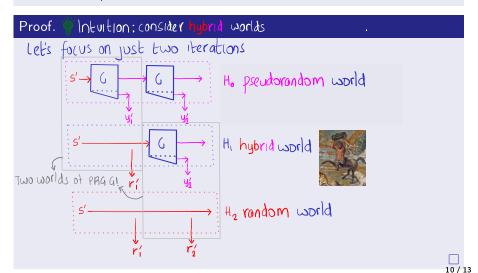
Theorem 2

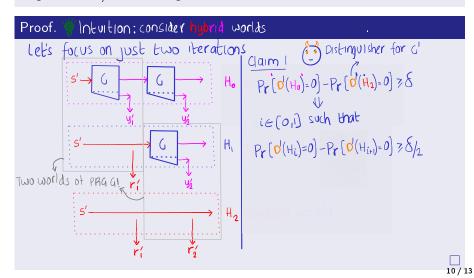

If G is a PRG, then so is G'.

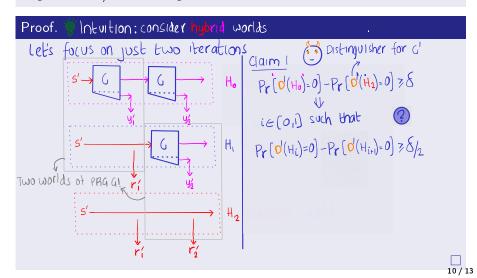
Proof. Intuition Let's focus on just two iterations

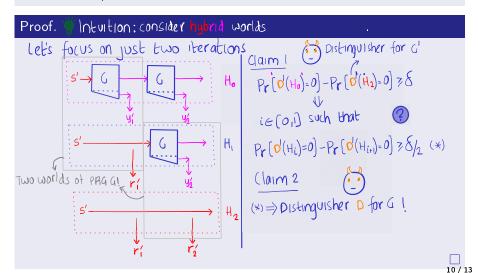

Theorem 2

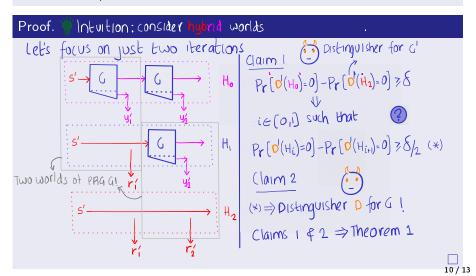

Theorem 2


Theorem 2


Theorem 2

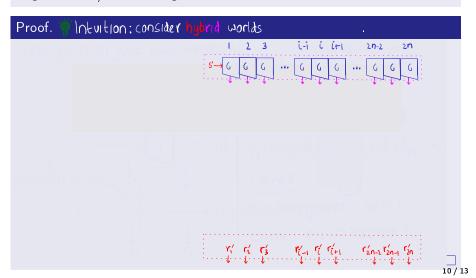

Theorem 2


Theorem 2

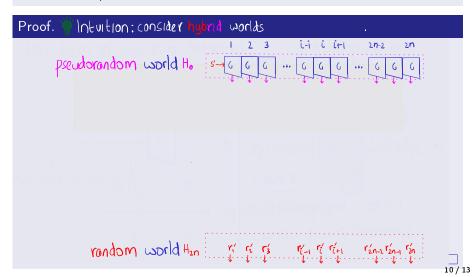

Theorem 2

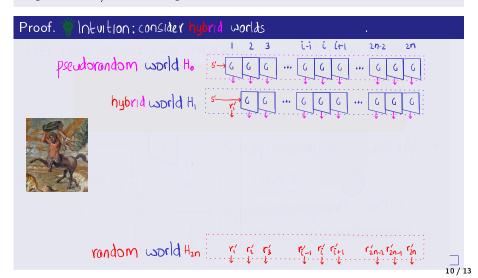
Theorem 2

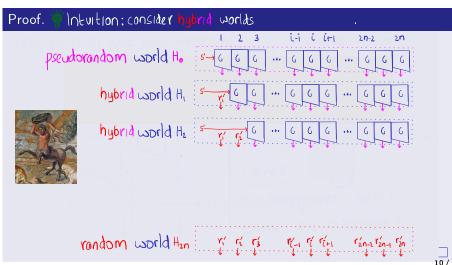
Theorem 2

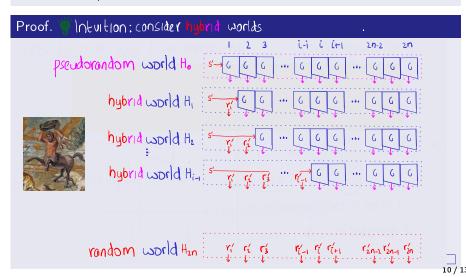

Theorem 2

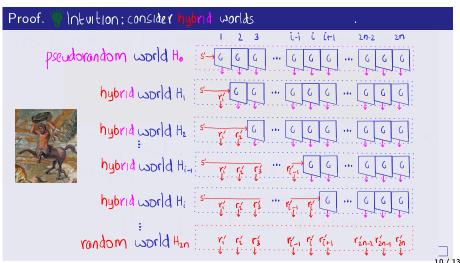
If G is a PRG, then so is G'.

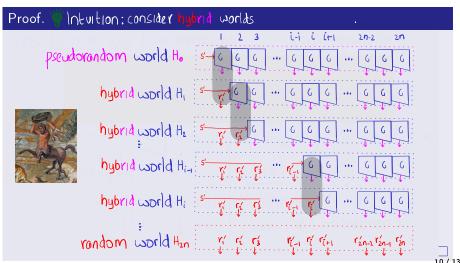

Proof. | Intuition: consider hybrid worlds

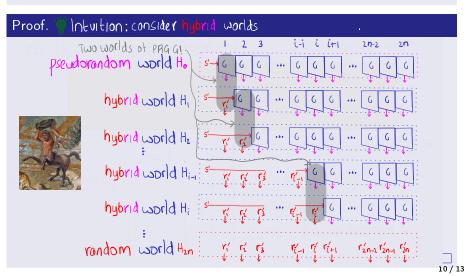

Theorem 2


Theorem 2


Theorem 2


Theorem 2


Theorem 2


Theorem 2

Theorem 2

Theorem 2

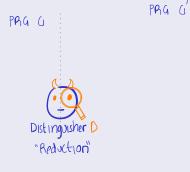
Theorem 2

If G is a PRG, then so is G'.

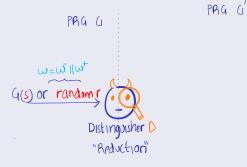
Theorem 2

If G is a PRG, then so is G'.

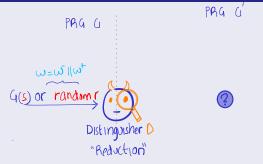
Proof. \exists distinguisher \square for $G \Leftarrow \exists$ distinguisher \square' for G'.


PRG G

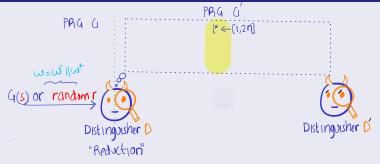
Theorem 2

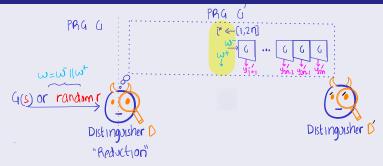

If G is a PRG, then so is G'.

Theorem 2

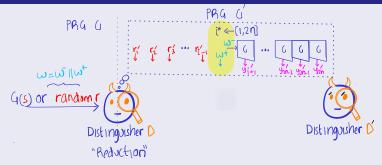

If G is a PRG, then so is G'.

Theorem 2

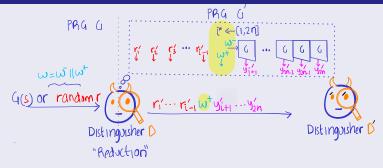

If G is a PRG, then so is G'.


Theorem 2

If G is a PRG, then so is G'.


Theorem 2

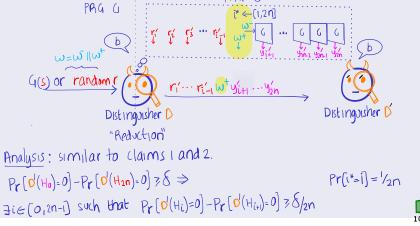
If G is a PRG, then so is G'.


Theorem 2

If G is a PRG, then so is G'.

Theorem 2

If G is a PRG, then so is G'.


Theorem 2

If G is a PRG, then so is G'.

Theorem 2

If G is a PRG, then so is G'.

■ Construction 1 and Theorem 2 work for any polynomial stretch

What happens if we stretch it exponentially?

- Construction 1 and Theorem 2 work for any polynomial stretch
 - What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$

- Construction 1 and Theorem 2 work for any polynomial stretch
 - What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$
 - More the stretch, greater the loss

- Construction 1 and Theorem 2 work for any polynomial stretch
 - What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$
 - More the stretch, greater the loss
- More generally: "loss in security" of a security reduction
 - One way to measure how "wasteful" the reduction is

- Construction 1 and Theorem 2 work for any polynomial stretch
 - What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$
 - More the stretch, greater the loss
- More generally: "loss in security" of a security reduction
 - One way to measure how "wasteful" the reduction is

Exercise 2

Think of a less wasteful reduction strategy for Theorem 2. Do you feel it is possible?

- Construction 1 and Theorem 2 work for any polynomial stretch
 - What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$
 - More the stretch, greater the loss
- More generally: "loss in security" of a security reduction
 - One way to measure how "wasteful" the reduction is

Exercise 2

- Think of a less wasteful reduction strategy for Theorem 2. Do you feel it is possible?
- Maybe need a different construction?

Why Loss in Security Matters?...

Suppose A running in n^3 mins can solve a hard problem with probability $2^{40}/2^n$

Why Loss in Security Matters?...

- Suppose A running in n^3 mins can solve a hard problem with probability $2^{40}/2^n$
- What *n* do you choose while designing your scheme?

No loss in security

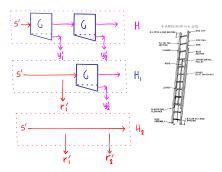
- n = 50?
 - A working for \approx 3 months
 - Breaks with pr. $\approx 1/1000$
 - Acceptable
- n = 100?
 - A working for \approx 2years
 - Breaks with pr. 2^{-60}
 - Safe

Why Loss in Security Matters?...

- Suppose A running in n^3 mins can solve a hard problem with probability $2^{40}/2^n$
- \blacksquare What n do you choose while designing your scheme?

No loss in security

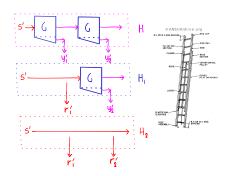
- n = 50?
 - A working for \approx 3 months
 - Breaks with pr. $\approx 1/1000$
 - Acceptable
- n = 100?
 - A working for \approx 2years
 - Breaks with pr. 2^{-60}
 - Safe


n loss in security

- n = 50?
 - A working for \approx 3 months
 - Breaks with pr. $\approx 1/20$
 - Breakable!
- n = 100?
 - \blacksquare A working for \approx 2years
 - Breaks with pr. $\approx 2^{-50}$
 - Safe

Recap/Next Lecture

- To recap:
 - Saw constructions of PRGIncreased the stretch of PRG
 - New tool: hybrid argument


Recap/Next Lecture

■ To recap:

- Saw constructions of PRG
- Increased the stretch of PRG
 - New tool: hybrid argument

- Next lecture: How to encrypt arbitrary-many messages?
 - New primitive: pseudo-random function (PRF)
 - PRG → PRF (Goldreich-Goldwasser-Micali)
 - Stronger attack model: chosen-plaintext attack (CPA)

More Questions?

Further Reading

- 1 §3.3.2 in [Gol01] for more details on length-extension of PRG
- ${\color{red} 2}$ For more details on stream ciphers, refer to $\S 3.6.1$ in [KL14] or $\S 4$ in [BS23]
- 3 To read more about unpredictability vs. pseudorandomness, see §3.3.5 in [Gol01]

A Graduate Course in Applied Cryptography, Version 0.6. 2023.

The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.