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CS409m: Introduction to Cryptography

Lecture 07 (22/Aug/25)

Instructor: Chethan Kamath



m Task: secure communication of long messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m Task: secure communication of lcég messages with shared keys
m Threat model: computational secrecy against eavesdroppers

How to Construct PRGs? PRG Length Extension
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Recall from Previous Lecture...

IfG is a PRG, then so is G’.

Proof. 3 distinguisher D for G < 3 distinguisher D’ for G'.
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Recall from Previous Lecture...

IfG is a PRG, then so is G’.
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Recall from Previous Lecture...
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Recall from Previous Lecture...

IfG is a PRG, then so is G’.

Proof. 3 distinguisher D for G < 3 distinguisher D’ for G'.
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m Construction and Theorem 1 work for any polynomial stretch
.What happens if we stretch it exponentially?
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ﬁLet's Take Stock of Theorem 1

m Construction and Theorem 1 work for any polynomial stretch
@What happens if we stretch it exponentially?

m There is also a “loss in pseudorandomness”
m D’ distinguishes with some probability 1/p(n) =
D distinguishes with probability only ~ 2n/p(n
m More the stretch, greater the loss

m More generally: “loss in security” of a security reduction
m One way to measure how “wasteful” the reduction is
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i‘ﬂj%Let's Take Stock of Theorem 1

m Construction and Theorem 1 work for any polynomial stretch
@What happens if we stretch it exponentially?

m There is also a “loss in pseudorandomness”
m D’ distinguishes with some probability 1/p(n) =
D distinguishes with probability only ~ 2n/p(n
m More the stretch, greater the loss

m More generally: “loss in security” of a security reduction
m One way to measure how “wasteful” the reduction is

Exercise 1

m Think of a less wasteful reduction strategy for Theorem 1. Do you feel it
is possible?
m Maybe need a different construction?

3/16



m Task: secure communication of multiple messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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Plan for Today's Lecture

m Task: secure communication of multiple messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m Setting: Caesar and his general share a key k € {0,1}" and want to
secretly communicate n messages from {0,1}" in presence of
eavesdropper Eve”
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Let's Encrypt Ma‘rgy Messages Using PRG G\
n
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m Setting: Caesar and his general share a key k € {0,1}" and want to
secretly communicate n messages from {0,1}" in presence of
eavesdropper Eve”
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m SKE construction: use output of G as n pseudorandom OTPs

%

m Problem: construction stateful, synchrony must be maintained

m We lose correctness if (e.g.) ciphertexts delivered out of order
@Come up with a scenario that leads to loss of secrecy
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@ What if the stretch is n*? Use OTP at random index i € [1, n°]
AProblem? Collision
m Underlying problem: only poly. pseudorandom OTPs available

@ What if we stretch the PRG exponentially?
ANot all pseudorandom OTPs are efficiently “accessible”
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Let's Encrypt Many Messages Using PRG G
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@ What if the stretch is n*? Use OTP at random index i € [1, n?]
AProblem'? Collision
m Underlying problem: only poly. pseudorandom OTPs available
@ What if we stretch the PRG exponentially?
ANot all pseudorandom OTPs are efficiently “accessible”
9 Need “PRG" with

H Exponential stretch
Output bits “efficiently” accessible (also called locality)
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m Setting:
m Caesar and his general have shared a key k € {0,1}"
m Everyone (including Eve™) has access to a random function oracle
R:{0,1}*" — {0,1}"
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m Setting:
m Caesar and his general have shared a key k € {0,1}"
m Everyone (including Eve™) has access to a random function oracle
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.How will you construct a stateless encryption scheme given R?
é Hint: R helps generate exponentially-many random OTPs
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Let's Encrypt Many Messages Using an Oracle in the Sky

m Setting:
m Caesar and his general have shared a key k € {0,1}"
m Everyone (including Eve™) has access to a random function oracle

R:{0,1}*" - {0,1}") .

ol Bt

(aesar =y

@How will you construct a stateless encryption scheme given R?
Q Hint: R helps generate exponentially-many random OTPs

Exercise 2

What if Caesar and his general did not have the shared key k7 Can they
still do something given the oracle in the sky?
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Plan for Today's Lecture

m Task: secure communication of multiple messages with shared keys
m Threat model: computational secrecy against eavesdroppers
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m More formally:
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= {Fic:{0,1}" 5 {0,1}"}, g4y
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PRF: Computational Analogue of Oracle in the Sky

m A function F that “seems like" a random function oracle to PPT
distinguishers
m More formally:
m F; sampled at random from a (smallish) family of functions
U {Fc:{0,1}" — {0,1}" }ke{m}n

m A random funct|on sampled from the set of all functions }',”»\

@ Number of functions in {Fi} vs. number of functions F,?
m Why is it still useful?
Helps generate exponentially-many pseudorandom OTPs
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m A function F that “seems like” random function oracle to PPT
distinguishers
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How Exactly to Define Pseudorandomess for Functions?

m A function F that “seems like” random function oracle to PPT
distinguishers
Recall how we defined pseudorandomness for PRG (Lecture 05)

G is PRG if for every PPT distinguisher D
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m How? (Recall: run-time measured w.r.to size of input)
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How Exactly to Define Pseudorandomess for Functions?

m A function F that “seems like” random function oracle to PPT
distinguishers

Recall how we defined pseudorandomness for PRG (Lecture 05)

G is PRG if for every PPT distinguisher D

o(n):=| Pr [D(G(s)) = 0]— D(r)=0
(n) se{o,u"[ (@( ) = 0] "y l}é'n)[ ( ]
& e peudorondom world Yondom Laorld

@) Can we give the distinguisher full description of the function (e.g.,
as a table)?
m No, then it becomes easy to distinguish
L, = How? (Recall: run-time measured w.r.to size of input)
gWay around:
m Distinguisher given oracle access to the functions
m One query=one unit of running time — efficient PPT distinguisher
can only make polynomially-many queries
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How Exactly to Define Pseudorandomess for Functions?...

Definition 1 (Two worlds)
A family of functions {Fy : {0,1}" — {0,1}"}, (o 1y~ is @ PRF if for
every PPT oracle distinguisher D

o(n):=| Pr [DFk(')(ln):O]—ﬂE; [Df<-)(1"):01’

k<+{0,1}"

is negligible.
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How Exactly to Define Pseudorandomess for Functions?...

Definition 1 (Two worlds)

A family of functions {Fy : {0,1}" — {0,1}"}, (o 1y~ is @ PRF if for
every PPT oracle distinguisher D
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@ PRF or not? Below F(1) and F(?) are PRFs
Fi(x) =k ® x
Fraliia () == FP () F2 (x)
Fe(xalx) = FY () [F (x)
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@ PRF or not? Below F(1) and F(?) are PRFs
l;)lﬂ Fi(x) =k ® x
W7 B Fiyjie(x) = FO (0 F2 (%)
BN B Fe(xlx) = FP ) FP (x)

‘PRG or not? Below, F is a PRF

G(S) = Fs(1)||Fs(2)|| T ”Fs(" - 1)||Fs(")
G(s) = Fs(2°)[|Fs(2') - [ Fs(2" ) I Fs(2")
G(s) = Fu(s)lIF2(s)I - - | Fa—1(s)[| Fa(s)
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Let's Check if You Understood Definition 1

@) PRF or not? Below F(!) and F( are PRFs
Igl A Fi(x)=kox
w7 B Fig i (x) = FO(x)[IF2 (x)
DB F(xlx) = FO0a)FP (x)

@PRG or not7 Below, F is a PRF

v B G(s =F( )IIFs(2)[] - - [|Fs(n = 1)|[Fs(n)
w7 B G(s) = F(2°)[|Fs(2') - [|[Fs(27 1) I Fs(27)
0 H G(S = F1(s)l[F2(s)]l - - - [[Fn-1(5) | Fa(s)

Exercise 3

In all the “yes” cases above, formally prove; in all the “no” cases, describe
a counter-example.
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(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)
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(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)
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(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)
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(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)

N AORNES RE O RV
s ﬁ s
Ciefor : L
h _ ‘_/000 ﬂ\ooﬂ\
R Y
¢ 0 —_l —
(Caesor Genera

203 Note: encryption is randomised and thus length of ciphertext is
longer than plaintext (first such scheme in this course)

Exercise 4 ( Hint: reduction similar to computational OTP)

Formulate the eavesdropper threat model for multiple encryptions

Prove that Construction 1 is secure against eavesdroppers
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é Hint: Reduction Similar to Computational OTP

Theorem 2 (Recall, Lecture 05-06)

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. 30 for G < 3 breaking Computational OTP.
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m Coming up: theoretical construction, but inefficient for practice
m Practical PRFs: block ciphers like AES

m Usually only support certain key-sizes (128, 192, 256)
m Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)
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PRFs IRL

m Coming up: theoretical construction, but inefficient for practice
m Practical PRFs: block ciphers like AES

m Usually only support certain key-sizes (128, 192, 256)
m Supported by most libraries (e.g., OpenSSL, NaCl) and even
implemented on modern processors (AES-NI)
m For encrypting larger messages (e.g., for disk encryption) “modes of
operation” used (Coming up in Lecture 08!)
m E.g: Cipher block-chaining (CBC) mode

Plaintext Plaintext Plaintext

vl — D &

y
key-»(block cipher Key»(block cipher] | Key»(block cipher]

Ciphertext Ciphertext

Ciphertext

m My laptop uses LUKS for disk encryption, which uses AES-XTS

ze 510 GB (5.10,10,91,55,328 bytes)

LUKS Encryption {version 2) — Unlocked
e —
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m Task: secure communication of multiple messages with shared keys
m Threat model: computational secrecy against eavesdroppers

Pseudo-Random Function (PRF)

oz | Bl
©0ded Goldreich
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m Recall construction of length-extending PRG from last lecture
m Recall the problem with expanding exponentially:
m Takes exponential time to access most pseudorandom OTPs
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Let's Try to Construct a PRF

. gy Y% Y1
s ¢ B G B —f—j G \+
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n
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m Recall construction of length-extending PRG from last lecture

m Recall the problem with expanding exponentially:
m Takes exponential time to access most pseudorandom OTPs

N

'S Need “PRG” with

Exponential stretch
Output bits “efficiently” accessible (also called locality)

@ How to reconcile the two requirements?

g Hint: Use length-doubling PRG
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m Recall construction of length-extending PRG from last lecture

m Recall the problem with expanding exponentially:
m Takes exponential time to access most pseudorandom OTPs

N

'S Need “PRG” with

Exponential stretch
Output bits “efficiently” accessible (also called locality)

@ How to reconcile the two requirements?
é Hint: Use length-doubling PRG
& Use binary tree instead of chain!
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Tree-Based Construction from Length-Doubling PRG G\

2
n—n

Construction 2 (GGM PRF {F : {0,1}" — {0, 1}"};(6{0,1}")
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Tree-Based Construction from Length-Doubling PRG G\

2
n—n

Construction 2 (GGM PRF {F : {0,1}" — {0, 1}"};(6{0,1}")

LR AR,

m Define Fi(x) =
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Tree-Based Construction from Length-Doubling PRG G\

2
n—n

Construction 2 (GGM PRF {F : {0,1}" — {0, 1}"};(6{0,1}"

m Define Fy(x) = sx with s. ;== k

Exercise 5

Write down the construction formally.

What if we use d-ary tree instead of binary tree?

14/16



How do We Prove that Construction 2 is a PRF?

Theorem 3
If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random
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How do We Prove that Construction 2 is a PRF?

Theorem 3
If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

ment - (L 0 wn ddangohn Hy from Hyntt o/ e, §
Hyord 61 F 9 b [

e (o, 1) such bt D Asanguhes th from Ky,
[JJ/ pr- 5/2ﬁ+1

Problem: exponential number of hybrids
Solution: hybrid argument with on-the-fly/lazy sampling! X
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m Defined and constructed PRFs

m GGM tree-based construction from .Iength—doubling PRGs §
m Another application of hybrid argument
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m GGM tree-based construction from .Iength—doubling PRGs {7
m Another application of hybrid argument

m Constructed a stateless SKE from PRF
m Next lecture: chosen-plaintext attack (CPA)
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m Defined and constructed PRFs

m GGM tree-based construction from length-doubling PRGs {}
m Another application of hybrid argument

©Wikipedia

m Constructed a stateless SKE from PRF ‘Enc (K/-)gé%
m Next lecture: chosen-plaintext attack (CPA) =

el

m Other applications of PRFs
m Authentication (coming up: Lecture 09)

. . ? .
m Natural proofs: barrier to resolving the P = NP question
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Further Reading

PRFs were introduced in [GGM84], where the namesake
construction from PRGs was also presented.

[Gol01, §3.6] for a formal proof of Theorem 3
[KL14, §3.5] for a formal description of Construction 1.

B To read more about natural proofs, and the role of PRFs there
[Aar03, §4] or [Choll] are good sources.
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