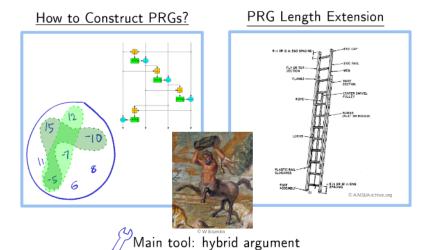


CS409m: Introduction to Cryptography

Lecture 07 (22/Aug/25)

Instructor: Chethan Kamath

- Task: secure communication of long messages with shared keys
- Threat model: computational secrecy against eavesdroppers



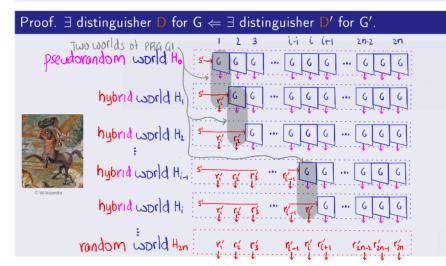
Theorem 1

If G is a PRG, then so is G'.

Proof. \exists distinguisher \square for $G \Leftarrow \exists$ distinguisher \square' for G'.

Theorem 1

If G is a PRG, then so is G'.

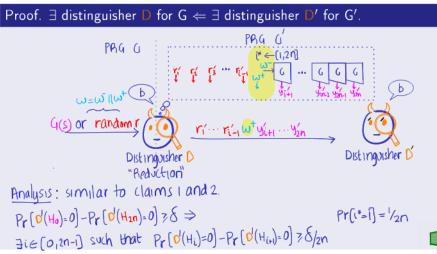


Theorem 1

If G is a PRG, then so is G'.

Theorem 1

If G is a PRG, then so is G'.



=Let's Take Stock of Theorem 1

- Construction and Theorem 1 work for any polynomial stretch
 What happens if we stretch it exponentially?
- There is also a "loss in pseudorandomness"
 - D' distinguishes with some probability $1/p(n) \Rightarrow$ D distinguishes with probability only $\approx \frac{2n}{p(n)}$
 - More the stretch, greater the loss
- More generally: "loss in security" of a security reduction
 - One way to measure how "wasteful" the reduction is

Exercise 1

- Think of a less wasteful reduction strategy for Theorem 1. Do you feel it is possible?
- Maybe need a different construction?

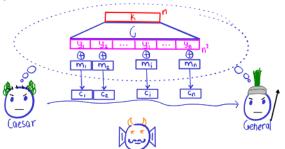
Plan for Today's Lecture

- Task: secure communication of *multiple messages* with shared keys
- Threat model: computational secrecy against eavesdroppers

Pseudo-Random Function (PRF)

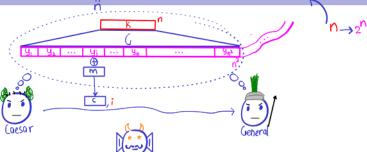
Let's Encrypt Many Messages Using PRG G

■ Setting: Caesar and his general share a key $k \in \{0,1\}^n$ and want to secretly communicate n messages from $\{0,1\}^n$ in presence of eavesdropper Eve*



- SKE construction: use output of G as n pseudorandom OTPs
- Problem: construction stateful; synchrony must be maintained
 - We lose correctness if (e.g.) ciphertexts delivered out of order
 Come up with a scenario that leads to loss of secrecy

Let's Encrypt Many Messages Using PRG G.



- What if the stretch is n^3 ? Use OTP at random index $i \in [1, n^2]$ Problem? Collision
- Underlying problem: only poly. pseudorandom OTPs available
- What if we stretch the PRG exponentially?
 - Not all pseudorandom OTPs are efficiently "accessible"
- Need "PRG" with
 - Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)

Let's Encrypt Many Messages Using an Oracle in the Sky

- Setting:
 - Caesar and his general have shared a key $k \in \{0,1\}^n$
 - Everyone (including Eve*) has access to a random function oracle $R: \{0,1\}^{2n} \to \{0,1\}^n$

? How will you construct a stateless encryption scheme given R? Hint: R helps generate exponentially-many random OTPs

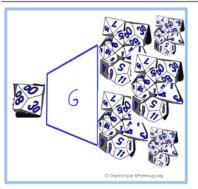
Exercise 2

What if Caesar and his general did not have the shared key k? Can they still do something given the oracle in the sky?

Plan for Today's Lecture

- Task: secure communication of multiple messages with shared keys
- Threat model: computational secrecy against eavesdroppers

Pseudo-Random Function (PRF)



How Exactly to Define Pseudorandomess for Functions?

 A function F that "seems like" random function oracle to PPT distinguishers

How Exactly to Define Pseudorandomess for Functions?...

Definition 1 (Two worlds)

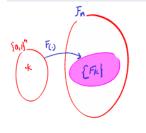
A family of functions $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D

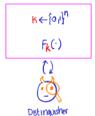
$$\delta(n) := \left| \Pr_{k \leftarrow \{0,1\}^n} [D^{F_k(\cdot)}(1^n) = 0] - \Pr_{f \leftarrow \mathcal{F}_n} [D^{f(\cdot)}(1^n) = 0] \right|$$
gible.

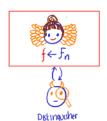
Pseudorandom world

random world

is negligible.







Let's Check if You Understood Definition 1

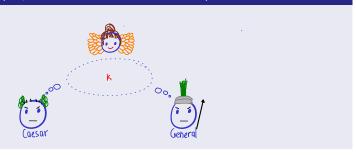
- **PRF** or not? Below $F^{(1)}$ and $F^{(2)}$ are PRFs
 - $F_k(x) := k \oplus x$
 - $F_{k_1||k_2}(x) := F_{k_1}^{(1)}(x) ||F_{k_2}^{(2)}(x)|$
 - $F_k(x_1||x_2) := F_k^{(1)}(x_1)||F_k^{(2)}(x_2)|$
- \bigcirc PRG or not? Below, F is a PRF
 - $G(s) := F_s(1) \|F_s(2)\| \cdots \|F_s(n-1)\| F_s(n)$
 - $G(s) := F_s(2^0) \| F_s(2^1) \cdots \| F_s(2^{n-1}) \| F_s(2^n) \|$
 - $G(s) := F_1(s) \|F_2(s)\| \cdots \|F_{n-1}(s)\|F_n(s)$

Exercise 3

In all the "yes" cases above, formally prove; in all the "no" cases, describe a counter-example.

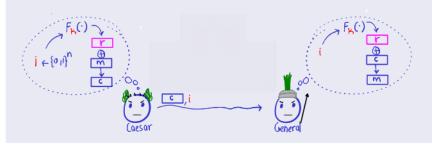
(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)



(Stateless) Symmetric-Key Encryption from PRF

Construction 1 (Replace random oracle with PRF)



Note: encryption is randomised and thus length of ciphertext is longer than plaintext (first such scheme in this course)

Exercise 4 (Hint: reduction similar to computational OTP)

- I Formulate the eavesdropper threat model for multiple encryptions
- Prove that Construction 1 is secure against eavesdroppers

Hint: Reduction Similar to Computational OTP

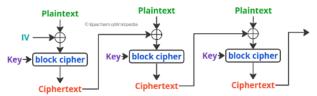
Theorem 2 (Recall, Lecture 05-06)

If G is a PRG, then Comp. OTP is comp. secret against eavesdroppers

Proof by reduction. $\exists D$ for $G \Leftarrow \exists Eve$ breaking Computational OTP.

PRFs IRL

- Coming up: theoretical construction, but inefficient for practice
- Practical PRFs: block ciphers like AES
 - Usually only support certain key-sizes (128, 192, 256)
 - Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)
- For encrypting larger messages (e.g., for disk encryption) "modes of operation" used (Coming up in Lecture 08!)
 - E.g. Cipher block-chaining (CBC) mode

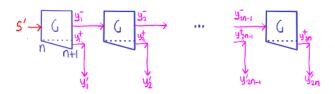


My laptop uses LUKS for disk encryption, which uses AES-XTS

Plan for Today's Lecture

- Task: secure communication of multiple messages with shared keys
- Threat model: computational secrecy against eavesdroppers

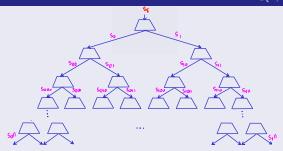
Let's Try to Construct a PRF



- Recall construction of length-extending PRG from last lecture
- Recall the problem with expanding exponentially:
- Takes exponential time to access most pseudorandom OTPs Need "PRG" with
 - 1 Exponential stretch
 - Output bits "efficiently" accessible (also called locality)
- ? How to reconcile the two requirements?
 - Hint: Use length-doubling PRG Use binary tree instead of chain!

Tree-Based Construction from Length-Doubling PRG G

Construction 2 (GGM PRF $\{F_k: \{0,1\}^n \rightarrow \{0,1\}^n\}_{k \in \{0,1\}^n}$)



■ Define $F_k(x) = s_x$ with $s_\varepsilon := k$

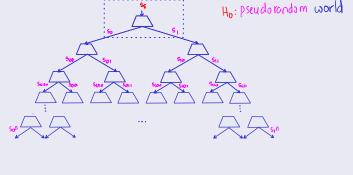
Exercise 5

- 1 Write down the construction formally.
- \square What if we use d-ary tree instead of binary tree?

Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

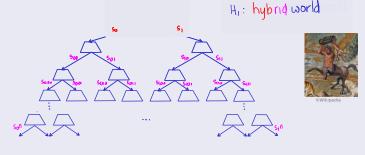
Proof. First attempt: off-the-shelf hybrid argument.



Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

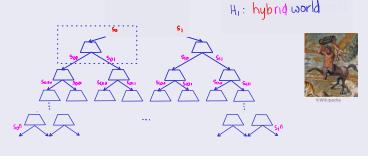
Proof. First attempt: off-the-shelf hybrid argument.



Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.



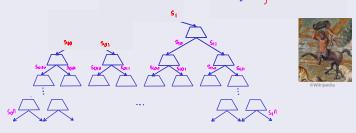
Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H2: hybrid world



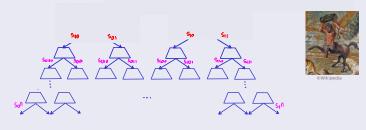
Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H3: hybrid world



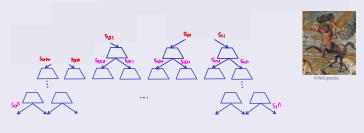
Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

H3: hybrid world



Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Soft

Strategy: replace, breadth-first, pseudorandom by random

Honn: random world

Theorem 3

If G is a length-doubling PRG, then Construction 2 is a PRF.

Proof. First attempt: off-the-shelf hybrid argument.

Strategy: replace, breadth-first, pseudorandom by random

Hybrid organient: If 0 can distinguish H₀ from
$$H_{2n+1}$$
 ω / pr. δ

Jie[0, z^{n+1} -1) such that D distinguishes H_{c} from H_{l+1}
 ω / pr. δ / $_{2n+1}$

Problem: exponential number of hybrids

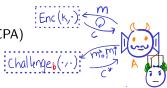
Solution: hybrid argument with on-the-fly/lazy sampling!

Recap/Next Lecture

Defined and constructed PRFs

©Wikipedia

- GGM tree-based construction from length-doubling PRGs
- Another application of hybrid argument
- Constructed a stateless SKE from PRF
 - Next lecture: chosen-plaintext attack (CPA)



- Other applications of PRFs
 - Authentication (coming up: Lecture 09)
 - Natural proofs: barrier to resolving the $P \stackrel{?}{=} NP$ question

Further Reading

- PRFs were introduced in [GGM84], where the namesake construction from PRGs was also presented.
- [Gol01, §3.6] for a formal proof of Theorem 3
- [KL14, §3.5] for a formal description of Construction 1.
- 4 To read more about natural proofs, and the role of PRFs there [Aar03, §4] or [Cho11] are good sources.

Is P versus NP formally independent? *Bull. EATCS*. 81:109–136, 2003.

What is... a natural proof?

Notices of the AMS, 58(11):1586-1587, 2011.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended abstract).

In 25th FOCS, pages 464-479. IEEE Computer Society Press, October 1984.

Oded Goldreich.

The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.