

CS409m: Introduction to Cryptography

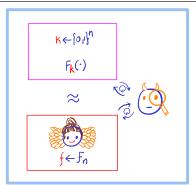
Lecture 08 (29/Aug/25)

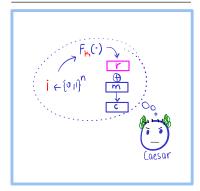
Instructor: Chethan Kamath

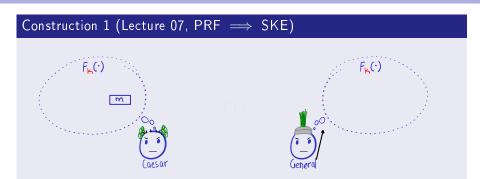
- Task: secure communication of multiple messages with shared keys
- Threat model: computational secrecy against eavesdroppers (EAV*)

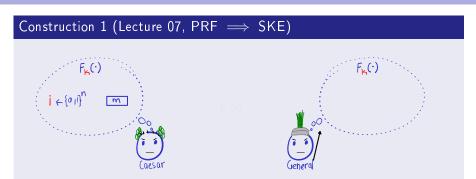
- Task: secure communication of multiple messages with shared keys
- Threat model: computational secrecy against eavesdroppers (EAV*)

Pseudo-Random Function (PRF) PRF ⇒ EAV*-secure SKE

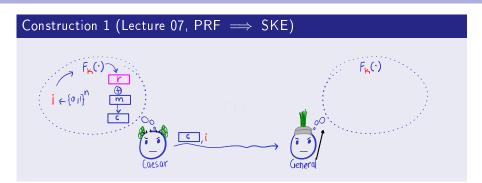






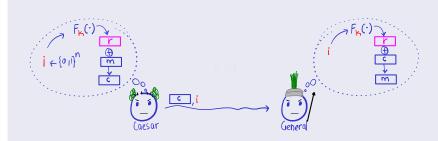


Construction 1 (Lecture 07, PRF \implies SKE) $\begin{array}{c} F_{\mathbf{k}}(\cdot) \\ \vdots \\ F_{\mathbf{k}}(\cdot) \end{array}$



Construction 1 (Lecture 07, PRF \Longrightarrow SKE) $i \in \{0,1\}^n \quad \bigoplus_{i \in \{0,1\}^n} C_{i} \quad \bigoplus_{i \in \{0,1\}^n} C_{i}$

Construction 1 (Lecture 07, PRF ⇒ SKE)



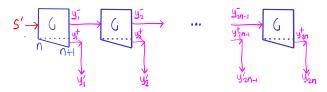
Theorem 1

If F is a PRF, then Construction 1 (Lecture 07) is EAV*-secure

Proof.

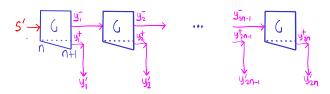
Similar to proof of PRG \implies EAV-SKE

But How to Construct a PRF?



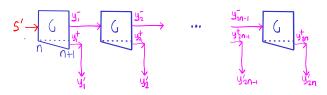
- Recall construction of length-extending PRG from Lecture 06-07
- Recall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs

But How to Construct a PRF?



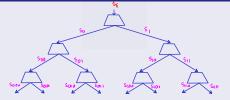
- Recall construction of length-extending PRG from Lecture 06-07
- Recall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs
- Need "PRG" with
 - Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)
- ? How to reconcile the two requirements?
 - Hint: Use length-doubling PRG

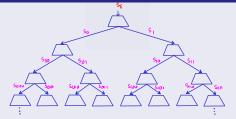
But How to Construct a PRF?

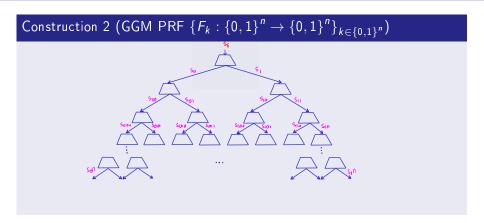


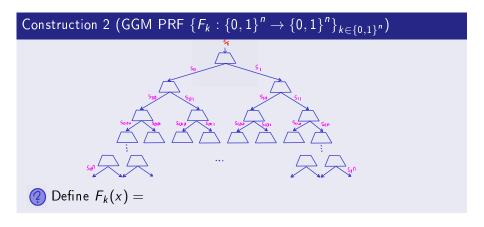
- Recall construction of length-extending PRG from Lecture 06-07
- Recall the problem with expanding exponentially:
 - Takes exponential time to access most pseudorandom OTPs
- Need "PRG" with
 - 1 Exponential stretch
 - 2 Output bits "efficiently" accessible (also called locality)
- How to reconcile the two requirements?
 - Hint: Use <mark>length-doubling</mark> PRG Use binary tree instead of chain!

Construction 2 (GGM PRF $\{F_k: \{0,1\}^n \rightarrow \{0,1\}^n\}_{k \in \{0,1\}^n}$)



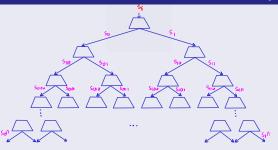






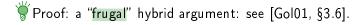
Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \rightarrow \{0,1\}^n\}_{k \in \{0,1\}^n}$)

Construction 2 (GGM PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$)



Theorem 2

If G is a length-doubling PRG, then Construction 2 is a PRF.

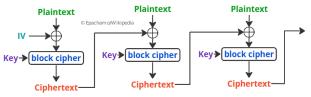


PRFs IRL

- Practical PRFs: block ciphers like AES
 - Usually only support certain key-sizes (128, 192, 256)
 - + Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)

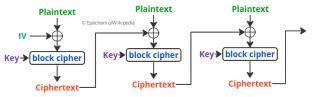
PRFs IRL

- Practical PRFs: block ciphers like AES
 - Usually only support certain key-sizes (128, 192, 256)
 - + Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)
- Coming up in Lecture 09: for encrypting long messages (e.g., for disk encryption) "modes of operation" used
 - E.g: Cipher block-chaining (CBC) mode



PRFs IRL

- Practical PRFs: block ciphers like AES
 - Usually only support certain key-sizes (128, 192, 256)
 - + Supported by most libraries (e.g., OpenSSL, NaCl) and even implemented on modern processors (AES-NI)
- Coming up in Lecture 09: for encrypting long messages (e.g., for disk encryption) "modes of operation" used
 - E.g. Cipher block-chaining (CBC) mode



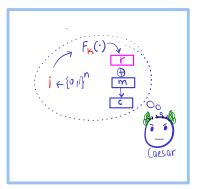
My laptop uses LUKS for disk encryption, which uses AES-XTS

Plan for Today's Lecture

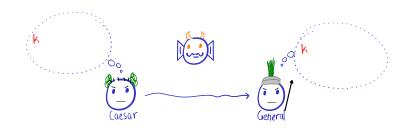
- Task: secure comm. of multiple messages with shared keys
- Threat model: comp. secrecy against chosen-plaintext attack (CPA)

Plan for Today's Lecture

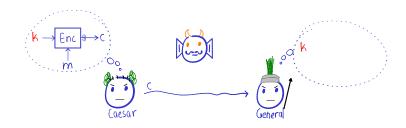
- Task: secure comm. of multiple messages with shared keys
- Threat model: comp. secrecy against chosen-plaintext attack (CPA)



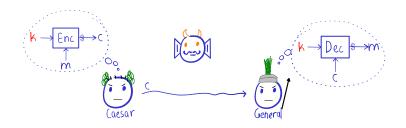
■ Recall computational secrecy against eavesdroppers (EAV/EAV*)



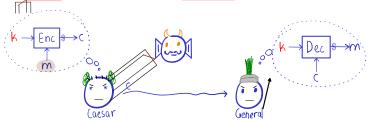
■ Recall computational secrecy against eavesdroppers (EAV/EAV*)



■ Recall computational secrecy against eavesdroppers (EAV/EAV*)



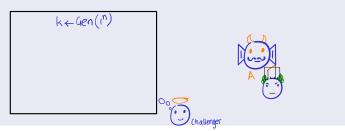
- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

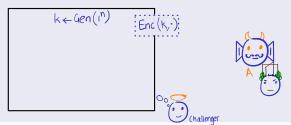
An SKE $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for *every* PPT attacker $A | \Pr[b'=b] - 1/2 |$ is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

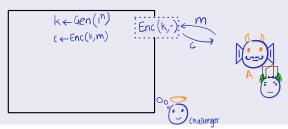
An SKE $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for *every* PPT attacker $A | \Pr[b'=b] - 1/2 |$ is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

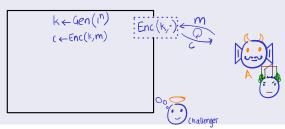
An SKE $\Pi =$ (Gen, Enc, Dec) is CPA-secure if for every PPT attacker A = |Pr[b' = b] - 1/2| is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

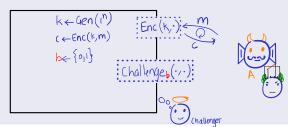
An SKE $\Pi =$ (Gen, Enc, Dec) is CPA-secure if for every PPT attacker A = |Pr[b' = b] - 1/2| is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

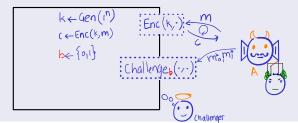
An SKE $\Pi =$ (Gen, Enc, Dec) is CPA-secure if for every PPT attacker A = |Pr[b' = b] - 1/2| is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

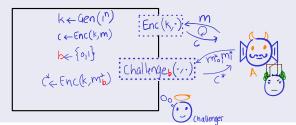
An SKE $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for *every* PPT attacker $A | \Pr[b'=b] - 1/2 |$ is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

An SKE $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for *every* PPT attacker $A | \Pr[b'=b] - 1/2 |$ is negligible in following game.



- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

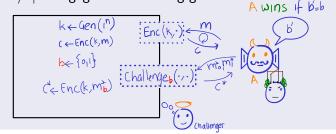
Definition 1 (Indistinguishability against CPA)

An SKE $\Pi = (Gen, Enc, Dec)$ is CPA-secure if for every PPT attacker A |Pr[b' = b] - 1/2| is negligible in following game.

- Recall computational secrecy against eavesdroppers (EAV/EAV*)
- CPA: active adversary who can influence Caesar's messages

Definition 1 (Indistinguishability against CPA)

An SKE $\Pi = (Gen, Enc, Dec)$ is CPA-secure if for every PPT attacker A |Pr[b' = b] - 1/2| is negligible in following game.



Exercise 1

Prove that if an SKE Π is CPA-secure then it is EAV-secure.

Chosen-Plaintext Attack IRL

"[...] during World War II, British placed mines at certain locations, knowing that the Germans—when finding those mines—would encrypt the locations and send them back to headquarters." [KL14]

Chosen-Plaintext Attack IRL

"[...] during World War II, British placed mines at certain locations, knowing that the Germans—when finding those mines—would encrypt the locations and send them back to headquarters." [KL14]

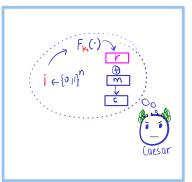
© Steve Banas/cod.pressbooks.pub

 Computer viruses might not have access to secret key, but can still send encrypted messages

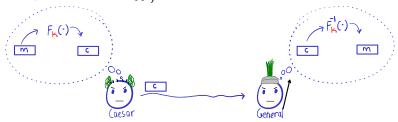
Plan for Today's Lecture

- Task: secure comm. of *multiple messages* with shared keys
- Threat model: comp. secrecy against chosen-plaintext attack (CPA)

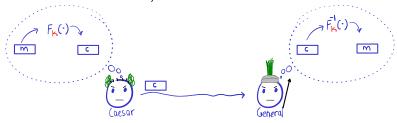
Chosen-Plaintext Attack (CPA)



- Attempt 1: consider the PRF-based scheme $Enc(k, m) := F_k(m)$
 - Assume $\forall k \in \{0,1\}^n$, $F_k : \{0,1\}^n \to \{0,1\}^n$ is a *permutation* (more on this in Lecture 09!)

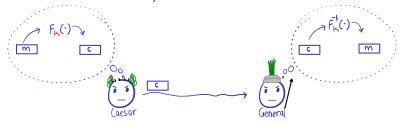


- Attempt 1: consider the PRF-based scheme $Enc(k, m) := F_k(m)$
 - Assume $\forall k \in \{0,1\}^n$, $F_k : \{0,1\}^n \to \{0,1\}^n$ is a *permutation* (more on this in Lecture 09!)



Oo you think it is CPA-secure?

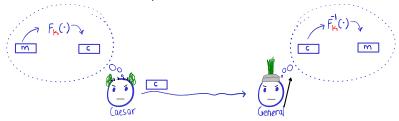
- Attempt 1: consider the PRF-based scheme $Enc(k, m) := F_k(m)$
 - Assume $\forall k \in \{0,1\}^n$, $F_k : \{0,1\}^n \to \{0,1\}^n$ is a *permutation* (more on this in Lecture 09!)



Oo you think it is CPA-secure? No! How to attack? E.g.:

- 1 Query encryption oracle on $0^n \in \{0,1\}^n$ to obtain c
- 2 Challenge on $(0^n, 1^n)$ to obtain c^*
- 3 Output b' = 0 if $c = c^*$

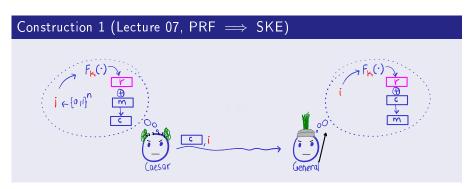
- Attempt 1: consider the PRF-based scheme $Enc(k, m) := F_k(m)$
 - Assume $\forall k \in \{0,1\}^n$, $F_k : \{0,1\}^n \to \{0,1\}^n$ is a permutation (more on this in Lecture 09!)



Oo you think it is CPA-secure? No! How to attack? E.g.:

- 1 Query encryption oracle on $0^n \in \{0,1\}^n$ to obtain c
- 2 Challenge on $(0^n, 1^n)$ to obtain c^*
- 3 Output b' = 0 if $c = c^*$
- ★ Takeaway: CPA-secure SKE cannot have deterministic Enc!

What About PRF-based SKE from Lecture 07?



Is Enc deterministic?

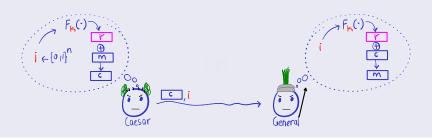
What About PRF-based SKE from Lecture 07?

Construction 1 (Lecture 07, PRF \Longrightarrow SKE) $\begin{array}{c} F_{\mathbf{k}}(\cdot) \\ F_{\mathbf{k}}(\cdot) \end{array}$ $\begin{array}{c} F_{\mathbf{k}}(\cdot) \\ F_{\mathbf{k}}(\cdot) \end{array}$ $\begin{array}{c} F_{\mathbf{k}}(\cdot) \end{array}$

- 🧖 Is Enc deterministic? No, so the trivial attack won't work
- ② Do you think it is CPA-secure?

What About PRF-based SKE from Lecture 07?

Construction 1 (Lecture 07, PRF ⇒ SKE)



- 🕜 Is Enc deterministic? No, so the trivial attack won't work
- Oo you think it is CPA-secure?

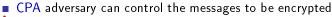
Theorem 3

If F is a PRF, then Construction 1 (Lecture 07) is CPA-secure.

Proof on whiteboard

Recap/Next Lecture

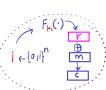
■ Defined an "active" threat model: CPA



 \triangle Enc deterministic \Longrightarrow CPA-insecure!

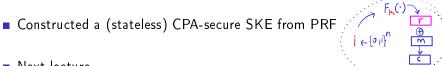
Recap/Next Lecture

- Defined an "active" threat model: CPA
 - CPA adversary can control the messages to be encrypted



Recap/Next Lecture

- Defined an "active" threat model: CPA
 - CPA adversary can control the messages to be encrypted



- Next lecture
 - Block cipher a/k/a pseudo-random permutation (PRP)
 - Modes of operation for efficiently encrypting long messages



- [Gol01, §3.6] for a formal proof of Theorem 2
- 2 You can find a formal treatment of PRF-based SKE in [KL14, §3.5.2] in particular, Theorem 1 is Theorem 3.29 there, and a formal proof follows.

The Foundations of Cryptography - Volume 1: Basic Techniques. Cambridge University Press, 2001.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.