

CS409m: Introduction to Cryptography

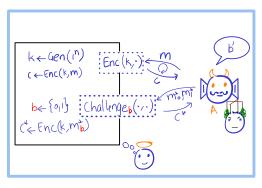
Lecture 09 (03/Sep/25)

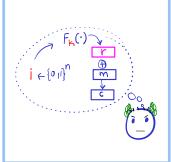
Instructor: Chethan Kamath

Announcements

- Will finish grading Quiz 1 and Lab Exercise 1 this week
- Lab Exercise 2 (graded) will be out today (03/Sep)
 - Deadline to submit flag on CTFd server: 23:59, Sunday (06/Sep)
 - Deadline to submit report on Moodle: 23:59, Tuesday (09/Sep)
- Assignment 3 (ungraded) will be uploaded on Friday (05/Sep)

Recall from Previous Lecture

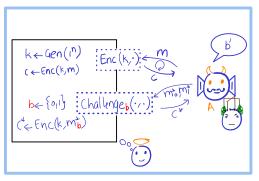

- Task: secure communication of multiple messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

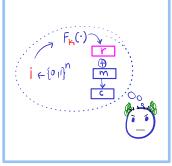

Recall from Previous Lecture

- Task: secure communication of multiple messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

IND-CPA

PRF ⇒ CPA-SKE




Recall from Previous Lecture

- Task: secure communication of multiple messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

IND-CPA

 $PRF \implies CPA-SKE$

Takeaway: IND-CPA-secure SKE *must* have randomised Enc!

Recall from Previous Lecture...

Theorem 3 (Lecture 08)

If F is a PRF, then Construction 1 (Lecture 07/08) is IND-CPA-secure

Proof by reduction.

- \exists distinguisher \square for $F/ \Leftarrow \exists$ CPA adversary \square
- Main ideas:
 - Whenever A makes a query to $Enc(k, \cdot)$ oracle, D queries its own oracle $O: \{0,1\}^n \to \{0,1\}^n$ to generate ciphertext
 - r chosen by D
 - When $O(\cdot) = F_k(\cdot)$ D simulates Π ; when $O(\cdot) = f(\cdot)$, D simulates an information-theoretically secure scheme $\tilde{\Pi}$
 - A's advantage in breaking IND-CPA translated into D's advantage in breaking F

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

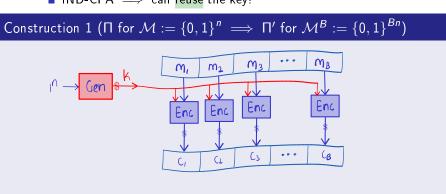
- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

PRP a/k/a Block Cipher

Modes of Operation (NEW)

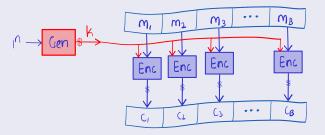
- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

PRP a/k/a Block Cipher



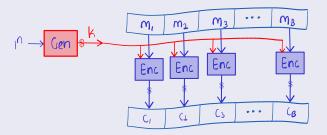
Focus on efficiency: short ciphertexts, frugal use of random coins...

- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA \implies can reuse the key!


- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA ⇒ can reuse the key!

- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA ⇒ can reuse the key!

- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA \implies can reuse the key!


Construction 1 (Π for $\mathcal{M}:=\{0,1\}^n \implies \Pi'$ for $\mathcal{M}^B:=\{0,1\}^{Bn}$)

 $\forall i \in [1, B] : c_i \leftarrow \operatorname{Enc}(k, m_i)$

- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA ⇒ can reuse the key!

Construction 1 (Π for $\mathcal{M}:=\{0,1\}^n \implies \Pi'$ for $\mathcal{M}^B:=\{0,1\}^{Bn}$)

 $\forall i \in [1, B] : c_i \leftarrow \operatorname{Enc}(k, m_i)$

Exercise 1

Show that if Π is IND-CPA-secure then Π' is also IND-CPA-secure.

	Baseline	ECB
Ciphertext	2nB	пВ
#Random coins	nΒ	
Paralellisable?	-	
IND-CPA-secure?		
Assumption on F	PRF	

$$|key| = |Message block| := n mu Message blocks := B$$

	Baseline	ECB				ldeal
Ciphertext	2nB	пB	nB + n	nB + n	nB + n	nB + n
#Random coins	nΒ					n
Paralellisable?	-					$\overline{}$
IND-CPA-secure?	-					
Assumption on ${\it F}$	PRF					PRF

 $|key| = |Message block| := n ext{#Message blocks} := B$

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

Block Cipher a/k/a PRP

Modes of Operation §

Focus on efficiency: short ciphertexts, frugal use of random coins...

Recall Pseudo-Random Function (PRF)

Indistinguishable from random function to PPT distinguishers

Recall Pseudo-Random Function (PRF)

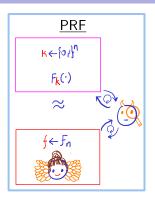
Definition 1 (Lecture 07)

A family of functions $\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D

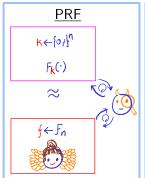
$$\delta(n) := \left| \Pr_{k \leftarrow \{0,1\}^n} \left[\mathsf{D}^{\overline{F}_k(\cdot)}(1^n) = 0 \right] - \Pr_{f \leftarrow \mathcal{F}_n} \left[\mathsf{D}^{\overline{f}(\cdot)}(1^n) = 0 \right] \right|$$

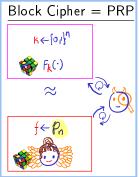
is negligible.

Recall Pseudo-Random Function (PRF)

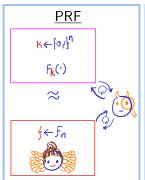

Indistinguishable from random function to PPT distinguishers 🗐

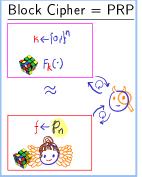
Definition 1 (Lecture 07)

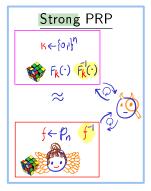

A family of functions $\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D


$$\delta(n) := \left| \Pr_{k \leftarrow \{0,1\}^n} [\Pr_{k \leftarrow \{0,1\}^n} [$$

Block Cipher = Pseudo-Random *Permutation* (PRP)

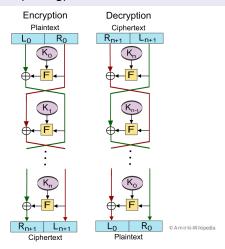

Block Cipher = Pseudo-Random Permutation (PRP)





- PRP: each F_k is a permutation
 - ? How many permutations are there in the PRP family?
- Ind. from random *permutation* from \mathcal{P}_n (set of all perms.)
 - ? How many permutations are there from $\{0,1\}^n \to \{0,1\}^n$?

Block Cipher = Pseudo-Random Permutation (PRP)



- PRP: each F_k is a permutation 🍪
 - ? How many permutations are there in the PRP family?
- Ind. from random *permutation* from \mathcal{P}_n (set of all perms.)
 - ? How many permutations are there from $\{0,1\}^n \to \{0,1\}^n$?
- Strong PRP: indistinguishability holds even given "inverse oracle"

PRF ⇔ PRP

Theorem 1 (Feistel cipher)

If PRFs exist, then so do (strong) PRPs.

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

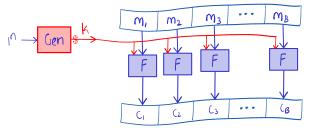
Block Cipher a/k/a PRP

Modes of Operation

Focus on efficiency: short ciphertexts, frugal use of random coins...

Modes of Operation: Motivation

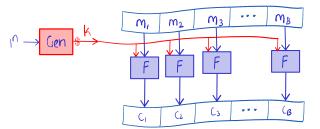
■ Given: ${F_{\mathbf{k}} : \{0,1\}^n \to \{0,1\}^n}_{k \in \{0,1\}^n}$ that is PRF, PRP or SPRP



Modes of Operation: Motivation

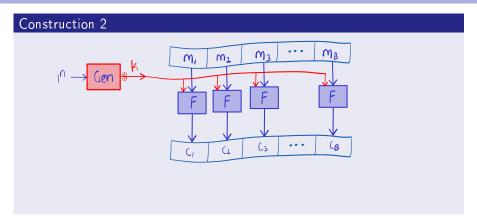
Given: $\{F_{\mathbf{k}}: \{0,1\}^n \to \{0,1\}^n\}_{\mathbf{k} \in \{0,1\}^n}$ that is PRF, PRP or SPRP

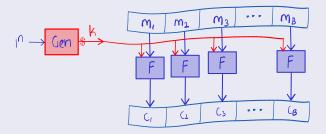
 $\stackrel{\longleftarrow}{ ext{0}}$ Goal: encrypt $m:=m_1\|\cdots\|m_B$, where $m_i\in\{0,1\}^n$



Modes of Operation: Motivation

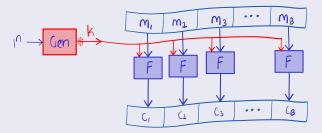
■ Given: $\{F_{\underline{k}}: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ that is PRF, PRP or SPRP


 \odot Goal: encrypt $m:=m_1\|\cdots\|m_B$, where $m_i\in\{0,1\}^n$


Optimise: ciphertext size, number of random coins...

Exercise 2 (Coming up in Lecture 10!)

What could we do if |m| is not a multiple of n?



Construction 2

 $\forall i \in [1, B] : c_i := F(\underline{k}, m_i)$

Construction 2

- $\forall i \in [1, B] : c_i := F(\mathbf{k}, m_i)$
- \blacksquare |Ciphertext|: |c| = |m|
- #Random coins: No randomness!
- Paralellisable? Yes
- IND-CPA-secure? No, not even EAV*-secure!
- Assumption on F: N.A.

© R FL890-W ikipedia

© Larr y Ewing/GIMP-Wikipedia

© R FL890-W ikipedia

© R FL890-W ikipedia

@ github.com/sheroz/m agm a

© Larry Ewing/GIMP-Wikipedia

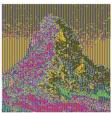
© R FL890-W ikipedia

© github.com/sheroz/m agm a

© blog.thom asdur and.fr

© Larry Ewing/GIMP-Wikipedia

Electronic Codebook (ECB) Mode...


Guess the plaintext!

© R FL890-Wikipedia

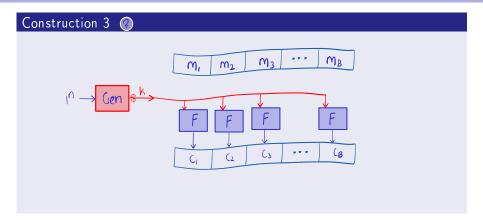
@ github.com/sheroz/m agm a

© blog.thom asdur and.fr

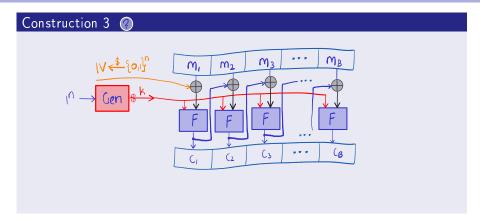
Electronic Codebook (ECB) Mode...

	Baseline	ldeal
Ciphertext	2nB	nB + n
#Random coins	nB	n
Paralellisable?	\checkmark	√
IND-CPA-secure?	√	
Assumption on ${\it F}$	PRF	PRF

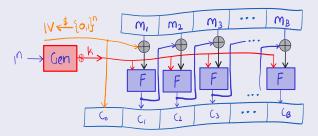
$$|key| = |Message block| := n \#Message blocks := B$$

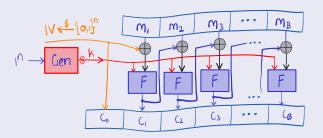

Electronic Codebook (ECB) Mode...

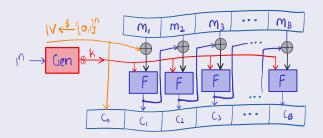

	Baseline	ECB	CBC			ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	пB	0				n
Paralellisable?	\checkmark	\checkmark				$\overline{}$
IND-CPA-secure?	_ <	×				~
Assumption on \emph{F}	PRF	N.A.				PRF


$$|key| = |Message block| := n \# Message blocks := B$$

Exercise 3


Write down pseudocode for ECB mode





Construction 3 🕝

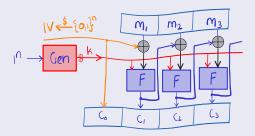
• $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$

Construction 3 ②

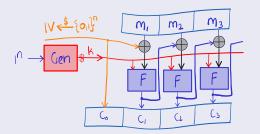
- $c_0 := IV, \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? No, inherently sequential
- IND-CPA-secure? Yes!
- Assumption on F: F must be a PRP (for perfect correctness)

	Baseline	ECB	ldeal
Ciphertext	2nB	nΒ	nB + n
#Random coins	nВ	0	n
Paralellisable?	\checkmark	\checkmark	\checkmark
IND-CPA-secure?	\checkmark	×	√
Assumption on ${\it F}$	PRF	N.A.	PRF

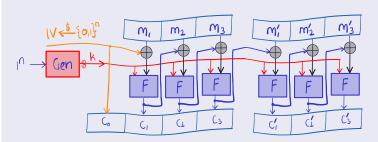
$$|key| = |Message block| := n \#Message blocks := B$$


	Baseline	ECB	CBC	OFB CTR	ldeal
Ciphertext	2nB	nΒ	nB + n	nB+n $nB+n$	nB + n
#Random coins	nΒ	0	n		n
Paralellisable?	\checkmark	\checkmark	×		\checkmark
IND-CPA-secure?		×	✓		~
Assumption on ${\it F}$	PRF	N.A.	PRP		PRF

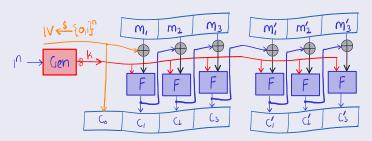
$$|\text{key}| = |\text{Message block}| := n \quad \#\text{Message blocks} := B$$


Exercise 4

- Write down pseudocode for CBC mode
- 2 Prove that if F is a SPRP then CBC mode is CPA secure

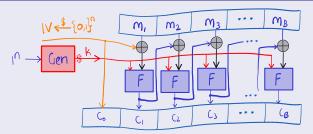

Construction 3

• $c_0 := IV$, $\forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$



- $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- In random IV necessary? Is choosing distinct IVs enough?
- Stateful mode: c_B from previous round used as IV for current round

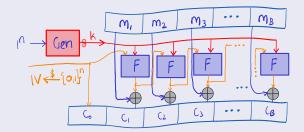
- $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- In random IV necessary? Is choosing distinct IVs enough?
- Stateful mode: c_B from previous round used as IV for current round


Construction 3

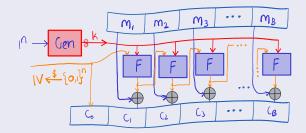
- $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- In random IV necessary? Is choosing distinct IVs enough?
- Stateful mode: c_B from previous round used as IV for current round

Exercise 5 A

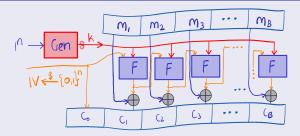
Show that chained CBC mode is *not* IND-CPA secure!



 C°


CI

 C_3

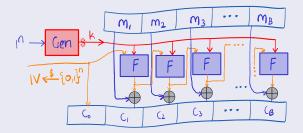

(B

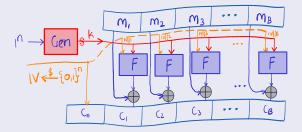
Construction 4

■ $c_0 = y_0 := IV$, $\forall i \in [1, B] : c_i := y_i \oplus m_i$, where $y_i := F(k, y_{i-1})$

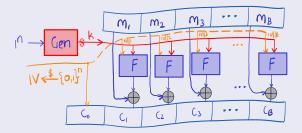
- $c_0 = y_0 := IV$, $\forall i \in [1, B] : c_i := y_i \oplus m_i$, where $y_i := F(k, y_{i-1})$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? No, but precomputable
- IND-CPA-secure? Yes! So is the stateful chained variant
- Assumption on F: PRF

	Baseline	ECB	CBC	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n
#Random coins	nΒ	0	n	n
Paralellisable?	\checkmark	√	×	\checkmark
IND-CPA-secure?	-	×	\checkmark	
Assumption on ${\it F}$	PRF	N.A.	PRP	PRF


$$|key| = |Message block| := n \#Message blocks := B$$


	Baseline	ECB	CBC	OFB	CTR	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	пB	0	n	n		n
Paralellisable?	\checkmark	√	$\overline{}$	×		\checkmark
IND-CPA-secure?	-	×	\checkmark	√		✓
Assumption on ${\it F}$	PRF	N.A.	PRP	PRF		PRF

$$|key| = |Message block| := n \# Message blocks := B$$


Exercise 6

Write down pseudocode for OFB mode

Construction 5

• $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, IV || i) \oplus m_i$

- $c_0 := IV, \ \forall i \in [1, B] : c_i := F(k, IV || i) \oplus m_i$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? Yes, fully!
- IND-CPA-secure? Yes! So is the stateful chained variant
- Assumption on F: PRF

	Baseline	ECB	СВС	OFB	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n
#Random coins	nΒ	0	n	n	n
Paralellisable?	√	-	×	×	
IND-CPA-secure?	_	×			
Assumption on ${\it F}$	PRF	N.A.	SPRP	PRF	PRF

$$|key| = |Message block| := n \# Message blocks := B$$

	Baseline	ECB	СВС	OFB	CTR	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nΒ	0	n	n	n	n
Paralellisable?	-	-	×	×	-	
IND-CPA-secure?		×			-	_
Assumption on ${\it F}$	PRF	N.A.	SPRP	PRF	PRF	PRF

$$|key| = |Message block| := n \# Message blocks := B$$

Exercise 7

Write down pseudocode for CTR mode

Some Practical Considerations

- How many messages can be sent?
 - Recall: |IV| = |Block| = n and $IV \leftarrow \{0,1\}^n$
 - After $\approx 2^{n/2}$ encryptions, IV will repeat with constant probability
 - Breakable if n is too short (e.g., 64)

Some Practical Considerations

- How many messages can be sent?
 - Recall: |IV| = |Block| = n and $IV \leftarrow \{0,1\}^n$
 - After $\approx 2^{n/2}$ encryptions, IV will repeat with constant probability
 - Breakable if n is too short (e.g., 64)
- IV misuse: if IV repeated then
 - In CTR and OFB mode, same pseudorandom mask generated ⇒ security lost
 - CBC mode doesn't seem to be affected. Why?

Recap/Next Lecture

- Block cipher: (strong) pseudo-random permutation
- Modes of operation
 - Discussed: ECB, CBC, OFB and CTR
 - Other modes: Cipher feedback (CFB), XOR-Encrypt-XOR (XEX)...

Recap/Next Lecture

- Block cipher: (strong) pseudo-random permutation
- Modes of operation
 - Discussed: ECB, CBC, OFB and CTR
 - Other modes: Cipher feedback (CFB), XOR-Encrypt-XOR (XEX)...

Size 510 GB (5,10,10,91,55,328 bytes)
Contents LUKS Encryption (version 2) — Unlocked

- IRL:
 - ↑ Chained CBC: SSL 3.0/TLS 1.0
 - Galois/Counter mode (GCM): WPA3 (Wi-Fi protocol)
 - AES-XTS: LUKS disk encryption

Recap/Next Lecture

- Block cipher: (strong) pseudo-random permutation
- Modes of operation
 - Discussed: ECB, CBC, OFB and CTR
 - Other modes: Cipher feedback (CFB), XOR-Encrypt-XOR (XEX)...

```
Size 510 GB (5,10,10,91,55,328 bytes)
Contents LUKS Encryption (version 2) — Unlocked
```


- IRL:
 - ⚠ Chained CBC: SSL 3.0/TLS 1.0
 - Galois/Counter mode (GCM): WPA3 (Wi-Fi protocol)
 - AES-XTS: LUKS disk encryption
- Next lecture
 - Stronger threat model: chosen-ciphertext attack (CCA)
 - If time permits: padding oracle attack
 - Message-authentication codes (MACs)

Further Reading

- More details on modes of operations can be found in [KL14, §3.6.3]
- 2 You can read more about Feistel cipher and Theorem 1 in [KL14, §7.2.2]

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.