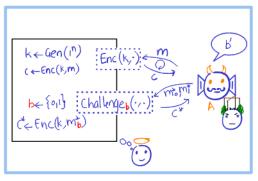


CS409m: Introduction to Cryptography

Lecture 09 (03/Sep/25)

Instructor: Chethan Kamath

Announcements


- Will finish grading Quiz 1 and Lab Exercise 1 this week
- Lab Exercise 2 (graded) will be out today (03/Sep)
 - Deadline to submit flag on CTFd server: 23:59, Sunday (06/Sep)
 - Deadline to submit report on Moodle: 23:59, Tuesday (09/Sep)
- Assignment 3 (ungraded) will be uploaded on Friday (05/Sep)


Recall from Previous Lecture

- Task: secure communication of multiple messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

IND-CPA

 $PRF \implies CPA-SKE$

Takeaway: IND-CPA-secure SKE must have randomised Enc!

Recall from Previous Lecture...

Theorem 3 (Lecture 08)

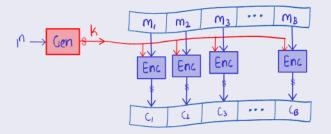
If F is a PRF, then Construction 1 (Lecture 07/08) is IND-CPA-secure

Proof by reduction.

- \exists distinguisher \square for $F/\Leftarrow \exists$ CPA adversary \triangle
- Main ideas:
 - Whenever A makes a query to $Enc(k, \cdot)$ oracle, D queries its own oracle $O: \{0,1\}^n \to \{0,1\}^n$ to generate ciphertext
 - r chosen by D
 - When $O(\cdot) = F_k(\cdot)$ D simulates Π ; when $O(\cdot) = f(\cdot)$, D simulates an information-theoretically secure scheme $\tilde{\Pi}$
 - A's advantage in breaking IND-CPA translated into D's advantage in breaking F

Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)



Focus on efficiency: short ciphertexts, frugal use of random coins...

Baseline Scheme for Long Messages

- IND-CPA for fixed-length ⇒ IND-CPA for arbitrary length
 - IND-CPA ⇒ can reuse the key!

Construction 1 (Π for $\mathcal{M}:=\{0,1\}^n \implies \Pi'$ for $\mathcal{M}^B:=\{0,1\}^{Bn}$)

 $\forall i \in [1, B] : c_i \leftarrow \operatorname{Enc}(k, m_i)$

Exercise 1

Show that if Π is IND-CPA-secure then Π' is also IND-CPA-secure.

Baseline Scheme for Long Messages...

	Baseline	ECB CBC OFB CTR	Ideal
Ciphertext	2nB	nB = nB + n = nB + n = nB + n	nB + n
#Random coins	пB		n
Paralellisable?	~		√
IND-CPA-secure?	√		_
Assumption on F	PRF		PRF

$$|key| = |Message block| := n \#Message blocks := B$$

Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

Block Cipher a/k/a PRP

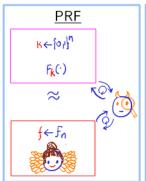
Modes of Operation §

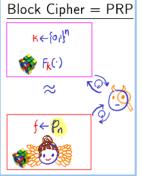
Focus on efficiency: short ciphertexts, frugal use of random coins...

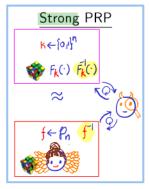
Recall Pseudo-Random Function (PRF)

Indistinguishable from random function to PPT distinguishers

Definition 1 (Lecture 07)

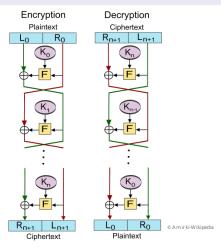

A family of functions $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF if for every PPT oracle distinguisher D


$$\delta(n) := \left| \Pr_{k \leftarrow \{0,1\}^n} [\mathsf{D}^{F_k(\cdot)}(1^n) = 0] - \Pr_{f \leftarrow \mathcal{F}_n} [\mathsf{D}^{f(\cdot)}_f(1^n) = 0] \right|$$
is negligible.


$$\mathsf{K} \leftarrow \{0,1\}^n \\ \mathsf{F}_k(\cdot) \right| \approx \mathsf{F}_k(\cdot)$$

$$\mathsf{F}_k(\cdot)$$

Block Cipher = Pseudo-Random Permutation (PRP)



- PRP: each F_k is a permutation 😵
 - ? How many permutations are there in the PRP family?
- Ind. from random *permutation* from \mathcal{P}_n (set of all perms.)
 - \bigcirc How many permutations are there from $\{0,1\}^n \to \{0,1\}^n$?
- Strong PRP: indistinguishability holds even given "inverse oracle"

PRF ⇔ PRP

Theorem 1 (Feistel cipher)

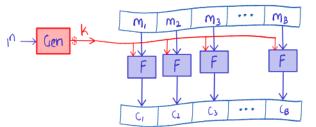
If PRFs exist, then so do (strong) PRPs.

Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-plaintext attack (IND-CPA)

Block Cipher a/k/a PRP

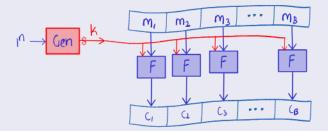
Modes of Operation (NEW)


Focus on efficiency: short ciphertexts, frugal use of random coins...

Modes of Operation: Motivation

■ Given: $\{F_{\underline{k}}: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ that is PRF, PRP or SPRP

 \odot Goal: encrypt $m:=m_1\|\cdots\|m_B$, where $m_i\in\{0,1\}^n$


Optimise: ciphertext size, number of random coins...

Exercise 2 (Coming up in Lecture 10!)

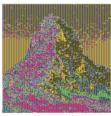
What could we do if |m| is not a multiple of n?

Electronic Codebook (ECB) Mode

Construction 2

- $\forall i \in [1, B] : c_i := F(k, m_i)$
- \blacksquare |Ciphertext|: |c| = |m|
- #Random coins: No randomness!
- Paralellisable? Yes
- IND-CPA-secure? No, not even EAV*-secure!
- Assumption on F: N.A.

Electronic Codebook (ECB) Mode...


Guess the plaintext!

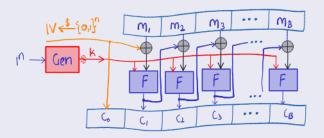
© R FL890-Wikipedia

© github.com/sheroz/m agm a

© blog.thom asdur and.fr

Electronic Codebook (ECB) Mode...

	Baseline	ECB	CBC		CTR	Ideal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nB	0				n
Paralellisable?	\checkmark	~				\checkmark
IND-CPA-secure?	√	×				~
Assumption on F	PRF	N.A.				PRF


$$|key| = |Message block| := n \#Message blocks := B$$

Exercise 3

Write down pseudocode for ECB mode

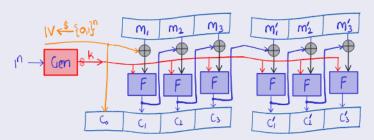
Cipher-Block Chaining (CBC) Mode

Construction 3 @

- $c_0 := IV$, $\forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? No, inherently sequential
- IND-CPA-secure? Yes!
- Assumption on F: F must be a PRP (for perfect correctness)

Cipher-Block Chaining (CBC) Mode...

	Baseline	ECB	СВС	OFB CTR	Ideal
Ciphertext	2nB	nΒ	nB + n	nB+n-nB+n	nB + n
#Random coins	nB	0	n		n
Paralellisable?	✓	~	×		\checkmark
IND-CPA-secure?	√	×	~		$\overline{}$
Assumption on F	PRF	N.A.	PRP		PRF

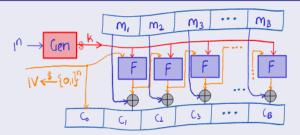

$$|\text{key}| = |\text{Message block}| := n \# \text{Message blocks} := B$$

Exercise 4

- 1 Write down pseudocode for CBC mode
- 2 Prove that if F is a SPRP then CBC mode is CPA secure

Chained CBC Mode: IV Misuse

Construction 3


- $c_0 := IV, \forall i \in [1, B] : c_i := F(k, c_{i-1} \oplus m_i)$
- In random IV necessary? Is choosing distinct IVs enough?
- Stateful mode: c_B from previous round used as IV for current round

Exercise 5 A

Show that chained CBC mode is *not* IND-CPA secure!

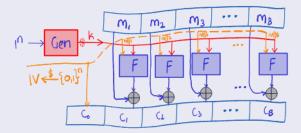
Output Feedback (OFB) Mode

Construction 4

- $c_0 = y_0 := IV$, $\forall i \in [1, B] : c_i := y_i \oplus m_i$, where $y_i := F(k, y_{i-1})$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? No, but precomputable
- IND-CPA-secure? Yes! So is the stateful chained variant
- Assumption on F: PRF

Output Feedback (OFB) Mode...

	Baseline	ECB	CBC	OFB	CTR	Ideal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nB	0	n	n		n
Paralellisable?	✓	√	×	×		\checkmark
IND-CPA-secure?	~	×	V	✓		V
Assumption on F	PRF	N.A.	PRP	PRF		PRF


$$|key| = |Message block| := n \#Message blocks := B$$

Exercise 6

Write down pseudocode for OFB mode

Counter (CTR) Mode

Construction 5

- $c_0 := IV$, $\forall i \in [1, B] : c_i := F(k, IV || i) \oplus m_i$
- |Ciphertext|: |m| + n = nB + n
- #Random coins: n
- Paralellisable? Yes, fully!
- IND-CPA-secure? Yes! So is the stateful chained variant
- Assumption on F: PRF

Counter (CTR) Mode...

	Baseline	ECB	CBC	OFB	CTR	Ideal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	пB	0	n	n	n	n
Paralellisable?	√	~	×	×	-	-
IND-CPA-secure?	-	×	-	~	_	-
Assumption on F	PRF	N.A.	SPRP	PRF	PRF	PRF

$$|key| = |Message block| := n \#Message blocks := B$$

Exercise 7

Write down pseudocode for CTR mode

Some Practical Considerations

- How many messages can be sent?
 - Recall: |IV| = |Block| = n and $IV \leftarrow \{0, 1\}^n$
 - After $\approx 2^{n/2}$ encryptions, IV will repeat with constant probability
 - Breakable if *n* is too short (e.g., 64)
- IV misuse: if IV repeated then
 - In CTR and OFB mode, same pseudorandom mask generated ⇒ security lost
 - CBC mode doesn't seem to be affected. Why?

Recap/Next Lecture

- Block cipher: (strong) pseudo-random permutation
- Modes of operation
 - Discussed: ECB, CBC, OFB and CTR
 - Other modes: Cipher feedback (CFB), XOR-Encrypt-XOR (XEX)...

Size 510 GB (5.10,10,91,55,328 bytes)
Contents LUKS Encryption (version 2) — Unlocked

- IRL:
 - ⚠ Chained CBC: SSL 3.0/TLS 1.0
 - Galois/Counter mode (GCM): WPA3 (Wi-Fi protocol)
 - AES-XTS: LUKS disk encryption
- Next lecture
 - Stronger threat model: chosen-ciphertext attack (CCA)
 - If time permits: padding oracle attack
 - Message-authentication codes (MACs)

Further Reading

- More details on modes of operations can be found in [KL14, §3.6.3]
- 2 You can read more about Feistel cipher and Theorem 1 in [KL14, §7.2.2]

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.