

CS409m: Introduction to Cryptography

Lecture 10 (10/Sep/25)

Instructor: Chethan Kamath

Announcements



- Quiz 1: submit cribs by end of today (10/Sep, 23:59)
 - Drop by CC305 after lecture to view your answer sheet
- Assignment 3 (ungraded) released on Monday (08/Sep)
- Mid-sem feedback at the end of the lecture

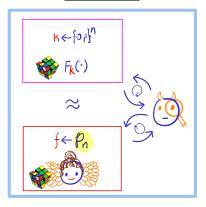
Recall from Previous Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: IND-CPA

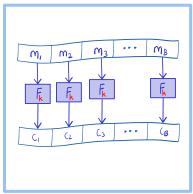
Recall from Previous Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: IND-CPA

Block cipher



Modes of Operation



Recall from Previous Lecture...

 $|\text{key}| = |\text{Message block}| := n \quad \#\text{Message blocks} := B$

	Baseline	ECB	СВС	OFB	CTR	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nВ	0	n	n	n	n
Paralellisable?	\checkmark	√	×	×	-	\checkmark
IND-CPA-secure?	-	×			-	\checkmark
Assumption on \emph{F}	PRF	N.A.	PRP	PRF	PRF	PRF

Recall from Previous Lecture...

$$|key| = |Message block| := n \#Message blocks := B$$

	Baseline	ECB	CBC	OFB	CTR	ldeal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nВ	0	n	n	n	n
Paralellisable?	\checkmark	√	×	×	-	\checkmark
IND-CPA-secure?	-	×	V	√	—	\checkmark
Assumption on ${\it F}$	PRF	N.A.	PRP	PRF	PRF	PRF

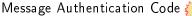
- \blacksquare Careful with n and IV:
 - After $\approx 2^{n/2}$ encryptions, IV will repeat with constant probability
 - CTR/OFB mode breaks if IV repeated; CBC mode "recovers"

Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

Plan for Today's Lecture

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)



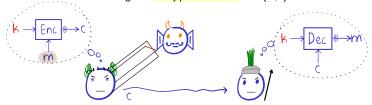
Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

Next Lecture: IND-CPA+MAC ⇒ IND-CCA

Recall: Chosen-Plaintext Attack (CPA)

- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$

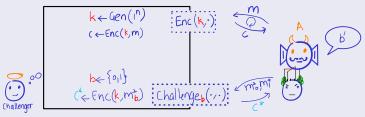


Recall: Chosen-Plaintext Attack (CPA)

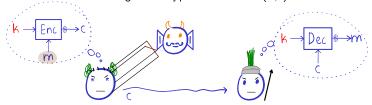
- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$

Definition 1 (IND-CPA, Lecture 08)

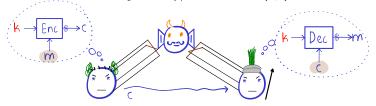
An SKE $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for *every* PPT attacker $A | \Pr[b'=b] - 1/2 |$ is negligible in following game.



- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$

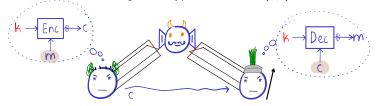


- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$



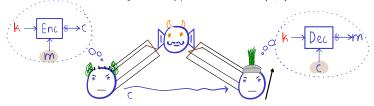
- Can also obtain decryption of ciphertexts of its choice
 - Modelled using a decryption oracle $Dec(k, \cdot)$

- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$



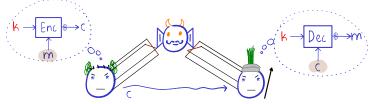
- Can also obtain decryption of ciphertexts of its choice
 - Modelled using a decryption oracle $Dec(k, \cdot)$
- Why is decryption oracle useful to the attacker?

- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$



- Can also obtain decryption of ciphertexts of its choice
 - Modelled using a decryption oracle $Dec(k, \cdot)$
- Why is decryption oracle useful to the attacker?
 - E.g., could obtain decryption of tampered/mauled ciphertexts
 - We'll see one example soon: padding-oracle attack 🔨
- (2) Is the decryption oracle justified?

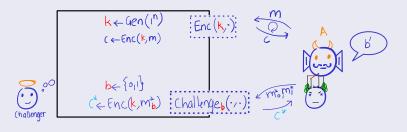
- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$



- Can also obtain decryption of ciphertexts of its choice
 - Modelled using a decryption oracle $Dec(k, \cdot)$
- Why is decryption oracle useful to the attacker?
 - E.g., could obtain decryption of tampered/mauled ciphertexts
 - We'll see one example soon: padding-oracle attack <u>∧</u>
- Is the decryption oracle justified? Yes:
 - E.g. 1: Server sends error message on receiving invalid ciphertext
 - E.g. 2: Receiver could be infected by computer virus

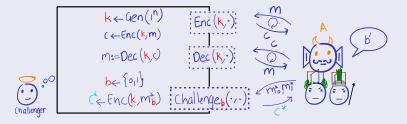
Definition 2 (IND-CCA)

An SKE $\Pi=$ (Gen, Enc, Dec) is CCA-secure if for *every* PPT attacker A |Pr[b'=b]-1/2| is negligible in following game.



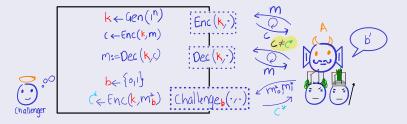
Definition 2 (IND-CCA)

An SKE $\Pi=$ (Gen, Enc, Dec) is CCA-secure if for *every* PPT attacker A |Pr[b'=b]-1/2| is negligible in following game.



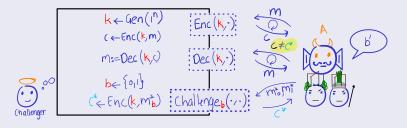
Definition 2 (IND-CCA)

An SKE $\Pi=$ (Gen, Enc, Dec) is CCA-secure if for *every* PPT attacker A |Pr[b'=b]-1/2| is negligible in following game.



Definition 2 (IND-CCA)

An SKE $\Pi = (Gen, Enc, Dec)$ is CCA-secure if for *every* PPT attacker A |Pr[b' = b] - 1/2| is negligible in following game.

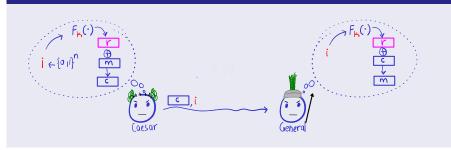


Exercise 1 (IND-CCA⇒IND-CPA)

Show that if Π is IND-CCA secure then it is IND-CPA secure

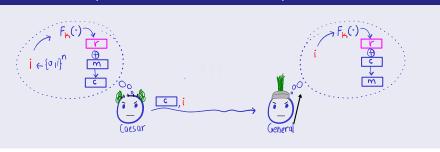
IND-CPA⇒IND-CCA!

Construction 1 (Lecture 07, PRF \Rightarrow CPA-SKE)



IND-CPA IND-CCA!

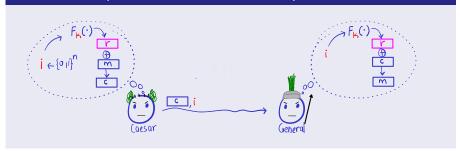
Construction 1 (Lecture 07, PRF \Rightarrow CPA-SKE)



Whow to break Construction 1 using decryption oracle?

IND-CPA⇒IND-CCA!

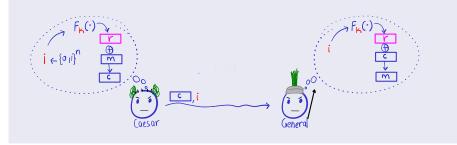
Construction 1 (Lecture 07, PRF \Rightarrow CPA-SKE)



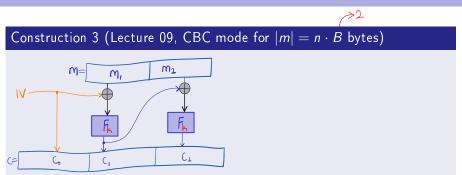
- ? How to break Construction 1 using decryption oracle?
- Hint: can you *modify* a ciphertext to get another valid ciphertext?

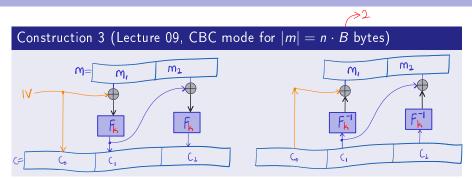
IND-CPA IND-CCA!

Construction 1 (Lecture 07, PRF ⇒ CPA-SKE)

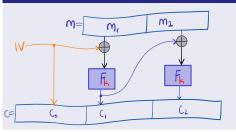


- ? How to break Construction 1 using decryption oracle?
- Hint: can you *modify* a ciphertext to get another valid ciphertext?
- ⚠ The attack:
 - I Challenge on $m_1^*:=0^n$ and $m_2^*:=1^n$ to obtain $c^*:=(c_1^*,c_2^*)$
 - 2 Query decryption oracle on $(c_1^*, c_2^* \oplus 1 || 0^{n-1})$ to obtain m^*
 - **3** Output b' := 0 if $m^* = 1 || 0^{n-1}$, and b' := 1 otherwise



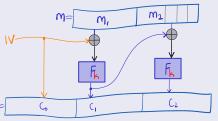


Construction 3 (Lecture 09, CBC mode for $|m| = n \cdot B$ bytes)



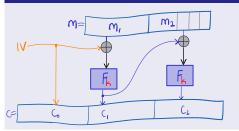
What if $|m| \neq n \cdot B$ bytes for some B? Say m is s bytes short

Construction 3 (Lecture 09, CBC mode for $|m| = n \cdot B$ bytes)



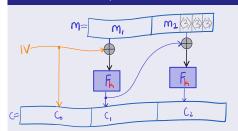
What if $|m| \neq n \cdot B$ bytes for some B? Say m is s bytes short

Construction 3 (Lecture 09, CBC mode for $|m| = n \cdot B$ bytes)



- What if $|m| \neq n \cdot B$ bytes for some B? Say m is s bytes short
- We need to "pad" m with an s byte string. How?

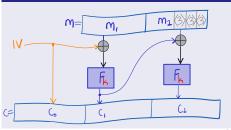
Construction 3 (Lecture 09, CBC mode for $|m| = n \cdot B$ bytes)



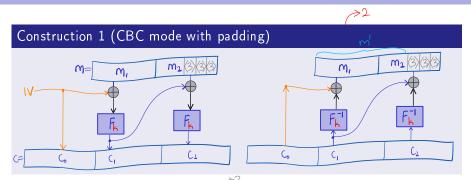
- What if $|m| \neq n \cdot B$ bytes for some B? Say m is s bytes short
- We need to "pad" m with an s byte string. How?
- PKCS#7 std.: If $\langle s \rangle$ is byte representation of s, then padding is

$$\underbrace{\langle s \rangle \| \cdots \| \langle s \rangle}_{s \text{ times}}$$

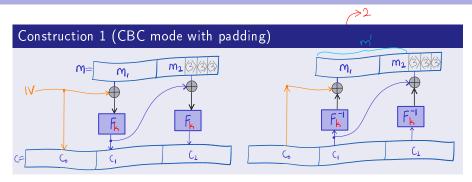
Construction 1 (CBC mode with padding)



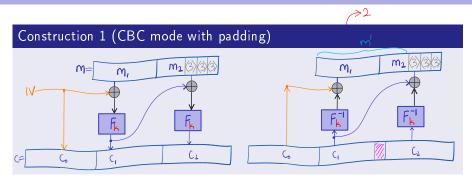
■ To encrypt m: encrypt $m \| \underbrace{\langle s \rangle \| \cdots \| \langle s \rangle}_{s \text{ times}}$ in CBC mode



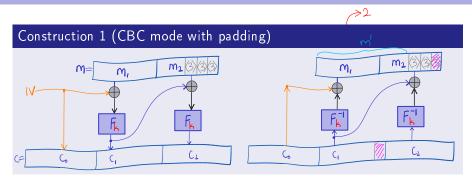
- To encrypt m: encrypt $m \| \underbrace{\langle s \rangle \| \cdots \| \langle s \rangle}_{s \text{ times}}$ in CBC mode
- To decrypt c:
 - **1** Decrypt c in CBC mode to obtain message of form $m' \|\langle s' \rangle\| \cdots \|\langle s' \rangle\|$
 - 2 If last s' bytes are all $\langle s' \rangle$ then o/p m' Else o/p "bad padding"



One of the struction is a struction of the struction of the structure o



? How to break Construction 1 using decryption oracle? $\cVille{\lor}$ Hint: What happens if you modify last byte of c_1 ?



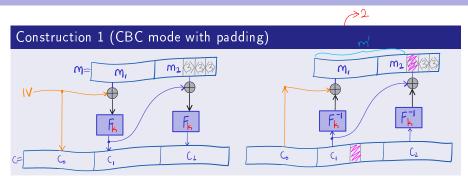
? How to break Construction 1 using decryption oracle? $\cVille{\lor}$ Hint: What happens if you modify last byte of c_1 ?



- How to break Construction 1 using decryption oracle?
- $\$ Hint: What happens if you modify last byte of c_1 ?
 - Note that $m_2 = \mathsf{F}_k^{-1}(c_2) \oplus c_1$
- Observation: for any Δ , $c_1':=c_1\oplus \Delta \implies$ decryption of (c_0,c_1',c_2) yields (m_1',m_2') where $m_2'=m_2\oplus \Delta$

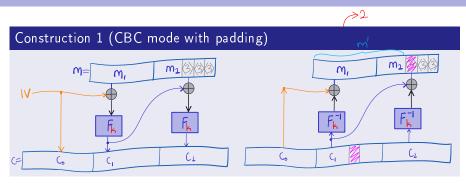
· ...

Decryption Oracle IRL: Oracle-Padding Attack...



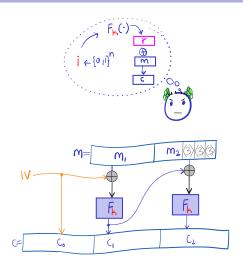
- **...**
- \bigwedge Attack to recover s. For each $i \in [1, n]$:
 - 1 Set $c_1^{(i)}$ as c_1 with *i*-th byte modified (arbitrarily)
 - 2 Query decryption oracle with $(c_0, c_1^{(i)}, c_2)$
 - 3 If oracle returns "bad padding", output n-i and halt

Decryption Oracle IRL: Oracle-Padding Attack...

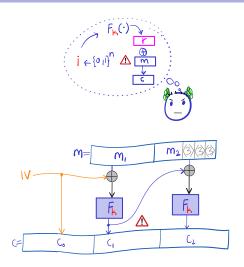


- ...
- \bigwedge Attack to recover s. For each $i \in [1, n]$:
 - I Set $c_1^{(i)}$ as c_1 with *i*-th byte modified (arbitrarily)
 - **2** Query decryption oracle with $(c_0, c_1^{(i)}, c_2)$
 - If oracle returns "bad padding", output n-i and halt
- ② How to recover rest of message? Lab Exercise 2, Problem 4

What Made These Schemes Vulnerable? 🔨



What Made These Schemes Vulnerable? 🗘



■ Ciphertext is malleable! Prevent mauling using MAC

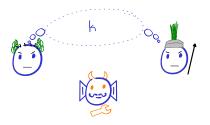
Plan for Today's Lecture

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

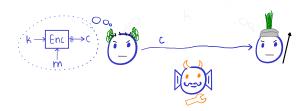
Message Authentication Code

Next Lecture: IND-CPA+MAC ⇒ IND-CCA

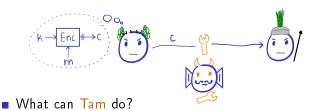
■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an active adversary Tam



■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an *active* adversary Tam



■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an active adversary Tam



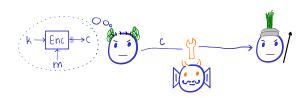
Modify what Caesar sends to the General (integrity)

■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an active adversary Tam

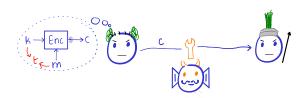
- What can Tam do?
 - Modify what Caesar sends to the General (integrity)
 ⚠ All schemes we've seen so far are malleable and allow this!
 - 2 Try to impersonate Caesar by injecting messages (authenticity)

■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an active adversary Tam

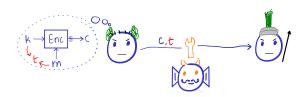
- What can Tam do?
 - Modify what Caesar sends to the General (integrity)
 ⚠ All schemes we've seen so far are malleable and allow this!
 - 2 Try to impersonate Caesar by injecting messages (authenticity)
- We cannot prevent this: the hope is to *detect* when it happens



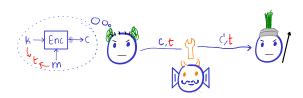
- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext



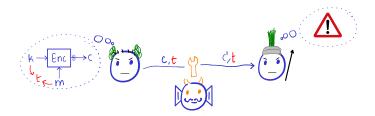
- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext



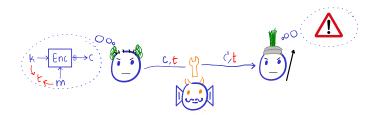
- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext



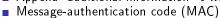
- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext

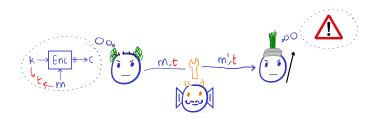


- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext



- How do we ensure integrity and authenticity?
 - \blacksquare Append "additional information" t with the ciphertext





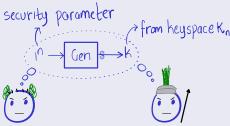
- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext

- Think of it as "cryptographic" version of error detection!
- For now, let's forget about secrecy and focus on detecting tampering
 - Why? Modularity 🖈
 - Lecture 11: MAC + CPA-secure SKE ⇒ CCA-secure SKE

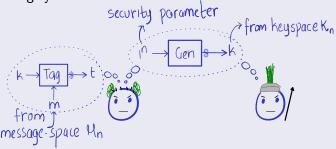
Definition 1 (Message-Authentication Code (MAC))

Definition 1 (Message-Authentication Code (MAC))

Definition 1 (Message-Authentication Code (MAC))



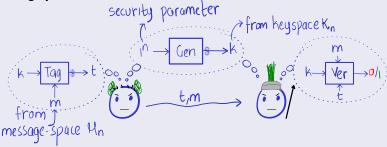
Definition 1 (Message-Authentication Code (MAC))



Definition 1 (Message-Authentication Code (MAC))

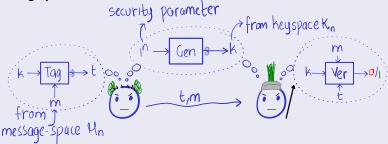


Definition 1 (Message-Authentication Code (MAC))



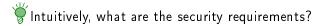
Definition 1 (Message-Authentication Code (MAC))

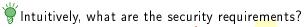
An MAC M is a triple of efficient algorithms (Gen, Tag, Ver) with the following syntax:



■ Correctness of verification: for every $n \in \mathbb{N}$, message $m \in \mathcal{M}_n$,

$$\Pr_{k \leftarrow \mathsf{Gen}(1^n), t \leftarrow \mathsf{Tag}(k, m)}[\mathsf{Ver}(k, t, m) = 1] = 1$$





■ Tam must not be able to forge valid new tag from previously-seen tags...

- Intuitively, what are the security requirements?
 - Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice

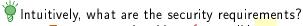
- Intuitively, what are the security requirements?
 - Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice
 - The forged new tag can be on any message of Tam's choice

- Intuitively, what are the security requirements?
 - Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice
 - The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

- Intuitively, what are the security requirements?
 - Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice
 - The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

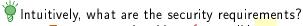
A MAC M= (Gen, Tag, Ver) is (ϵ,q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ



- Tam must not be able to forge valid new tag from previously-seen tags...
 - ... on messages of its choice
- The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M= (Gen, Tag, Ver) is (ϵ,q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ



- Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice
- The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M= (Gen, Tag, Ver) is (ϵ,q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

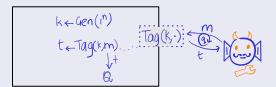
$$k \leftarrow Gen(i^n)$$
 $t \leftarrow Tag(km)$
 $t \leftarrow Tag(km)$
 $t \leftarrow Tag(km)$

Intuitively, what are the security requirements?

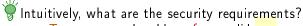
- Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice
- **▽** The forged new tag can be on/<mark>any</mark> message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ ◆ Tam makes q queries



to Tag(k,) oracle



- Tam must not be able to forge valid new tag from previously-seen tags...
 - on messages of its choice

k←Gen(1°)

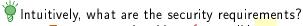
t←Tag(km). Tag(k): @1

- **▽** The forged new tag can be on/any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

- ◆ Tam makes q queries
- to Tag(k,) oracle In the end Tam outputs (m*,t*) and breaks if



- Tam must not be able to forge valid new tag from previously-seen tags...
 - ... on messages of its choice
- The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M= (Gen, Tag, Ver) is (ϵ,q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as

below with probability more than ϵ $k \leftarrow \text{Gen(i^n)}$ $t \leftarrow \text{Tag(k,m)}$ $Tag(k,\cdot)$

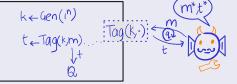
Tam makes q queries
 to Tag(k,:) oracle

In the end Tam outpts (m*t*) and breaks if i) m*#Q ii) Ver(k,t*,m*)=1

Definition 3 (EU-CMA)

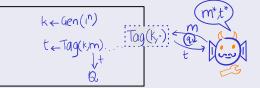
A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as

below with probability more than ϵ



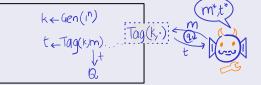
- ◆ Tam makes q queries to Tag(k,) oracle
- In the end Tam outputs (m*,t*) and breaks if 1) m*&Q 11) Ver(k, t*, m*)=1

Definition 3 (EU-CMA) Typically negligible



- Tam makes q queries
 to Tag(k,) oracle
- In the end Tam outpts (m*t*) and breaks if i) m*#Q ii) Ver(k,t*im*)=1

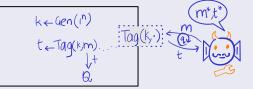
Definition 3 (EU-CMA) Typically negligible



- Tam makes q queries
 to Tag(k,) oracle
- In the end Tam outputs (m*t*) and breaks if i) m*&Q ii) Ver(k, t*, m*)=1

- MAC or not?
 - **1** Encrypt to MAC: Given SKE $\Pi = (Gen, Enc, Dec)$, define:
 - \blacksquare Tag $(k, m) := \operatorname{Enc}(k, m)$
 - Ver(k, t, m): Compute m' := Dec(k, t) and accept if m = m'

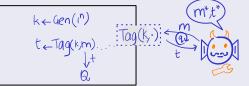
Definition 3 (EU-CMA) Typically negligible



- Tam makes q queries
 to Tag(k,) oracle
- In the end Tam outpts (m*t*) and breaks if i) m*&Q ii) Ver(k, t*, m*)=1

- MAC or not?
 - **1** Encrypt to MAC: Given SKE $\Pi = (Gen, Enc, Dec)$, define:
 - \blacksquare Tag $(k, m) := \operatorname{Enc}(k, m)$
 - Ver(k, t, m): Compute m' := Dec(k, t) and accept if m = m'
 - 2 Append-0 MAC: Given MAC M = (Gen, Tag, Ver), define M' as
 - Tag'(k, m) := t || 0, where $t \leftarrow \text{Tag}(k, m)$
 - Ver'(k,t||b,m) := Ver(k,t,m)

Definition 3 (EU-CMA) Typically negligible



- Tam makes q queries
 to Tag(k,) oracle
- In the end Tam outpts (m*t*) and breaks if i) m*&Q ii) Ver(k,t*,m*)=1

- MAC or not?
 - **1** Encrypt to MAC: Given SKE $\Pi = (Gen, Enc, Dec)$, define:
 - - Ver(k, t, m): Compute m' := Dec(k, t) and accept if m = m'
 - 2 Append-0 MAC: Given MAC M = (Gen, Tag, Ver), define M' as
 - Tag'(k, m) := $t \parallel 0$, where $t \leftarrow \text{Tag}(k, m)$
 - Ver'(k,t||b,m) := Ver(k,t,m)

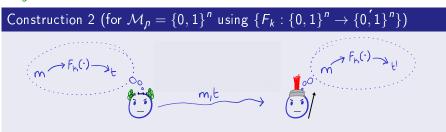
Use a PRF to generate the tag!

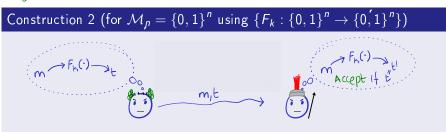
Construction 2 (for $\mathcal{M}_n = \{0,1\}^n$ using $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Construction 2 (for
$$\mathcal{M}_n = \{0,1\}^n$$
 using $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Construction 2 (for
$$\mathcal{M}_p=\{0,1\}^n$$
 using $\{F_k:\{0,1\}^n o \{0,1\}^n\}$)

Construction 2 (for
$$\mathcal{M}_p = \{0,1\}^n$$
 using $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)





Use a PRF to generate the tag!

Construction 2 (for
$$\mathcal{M}_p = \{0,1\}^n$$
 using $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Theorem 2

If $\{F_k:\{0,1\}^n o \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF then Construction 2 is EU-CMA-secure against any PPT Tam

Use a PRF to generate the tag!

Construction 2 (for
$$\mathcal{M}_p = \left\{0,1\right\}^n$$
 using $\left\{F_k: \left\{0,1\right\}^n
ightarrow \left\{0,1\right\}^n
ight\}$)

Theorem 2

If $\{F_k:\{0,1\}^n o \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF then Construction 2 is EU-CMA-secure against any PPT Tam

Proof by reduction.

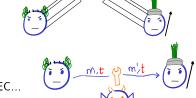
On the whiteboard

Recap/Next Lecture

- Saw Chosen-Ciphertext Attack (CCA)
 - Stronger threat model

⚠ CCA IRL: padding oracle attack

■ Affected PKCS#1 v1.5, SSL, IPSEC...



* Takeaway: ciphertext malleability can lead to attacks

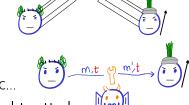
How to prevent/detect mauling? Use message-authentication codes

Recap/Next Lecture

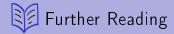
- Saw Chosen-Ciphertext Attack (CCA)
 - Stronger threat model

⚠ CCA ÏRL: padding oracle attack

■ Affected PKCS#1 v1.5, SSL, IPSEC...



- * Takeaway: ciphertext malleability can lead to attacks
- How to prevent/detect mauling? Use message-authentication codes
- Next lecture
 - How to construct a CCA-secure scheme using MAC
 - Domain-extension for MAC



- The definition of CCA security can be found in [KL14, §5.1.2]. The notion was introduced by Naor and Yung [NY89]
- You can read more about oracle-padding attack in [KL14, §5.1.1]. The original attack was due to Bleichenbacher on PKCS#1 v1.5 [Ble98]. Vaudenay came up with the attack on the CBC mode [Vau02].
- 3 The definition of MAC can be found in [KL14, §4.2]

Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1.

In Hugo Krawczyk, editor, *CRYPTO'98*, volume 1462 of *LNCS*, pages 1–12. Springer, Berlin, Heidelberg, August 1998.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.

Moni Naor and Moti Yung.

 $\label{thm:constraints} Universal\ one-way\ hash\ functions\ and\ their\ cryptographic\ applications.$

In 21st ACM STOC, pages 33-43. ACM Press, May 1989.

Serge Vaudenay.

Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS...

In Lars R. Knudsen, editor, *EUROCRYPT 2002*, volume 2332 of *LNCS*, pages 534–546. Springer, Berlin, Heidelberg, April / May 2002.