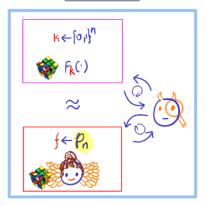


CS409m: Introduction to Cryptography

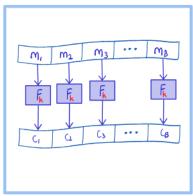
Lecture 10 (10/Sep/25)

Instructor: Chethan Kamath

Announcements



- Quiz 1: submit cribs by end of today (10/Sep, 23:59)
 - Drop by CC305 after lecture to view your answer sheet
- Assignment 3 (ungraded) released on Monday (08/Sep)
- Mid-sem feedback at the end of the lecture


Recall from Previous Lecture

- Task: secure comm. of *multiple long messages* with shared keys
- Threat model: IND-CPA

Block cipher

Modes of Operation

Recall from Previous Lecture...

$$|key|=|Message block|:=n$$
 #Message blocks:= B

	Baseline	ECB	CBC	OFB	CTR	Ideal
Ciphertext	2nB	nΒ	nB + n	nB + n	nB + n	nB + n
#Random coins	nB	0	n	n	n	n
Paralellisable?	✓	√	×	×	-	\checkmark
IND-CPA-secure?		×	√	√	-	\checkmark
Assumption on F	PRF	N.A.	PRP	PRF	PRF	PRF

- Careful with n and IV:
 - After $\approx 2^{n/2}$ encryptions, IV will repeat with constant probability
 - CTR/OFB mode breaks if IV repeated; CBC mode "recovers"

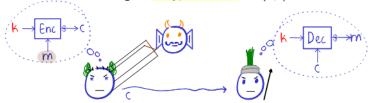
Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

Plan for Today's Lecture

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

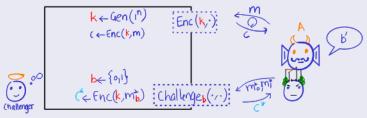
© VAwebteam -W ikipedia


Message Authentication Code

Next Lecture: IND-CPA+MAC ⇒ IND-CCA

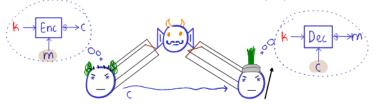
Recall: Chosen-Plaintext Attack (CPA)

- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$



Recall: Chosen-Plaintext Attack (CPA)

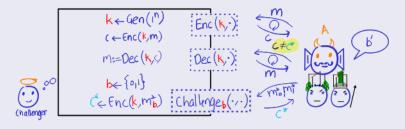
- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$


Definition 1 (IND-CPA, Lecture 08)

An SKE $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ is CPA-secure if for *every* PPT attacker A | Pr[b' = b] - 1/2 | is negligible in following game.

Chosen-Ciphertext Attack (CCA)

- Active attacker:
 - Can influence Caesar's messages
 - Modelled using an encryption oracle $Enc(k, \cdot)$

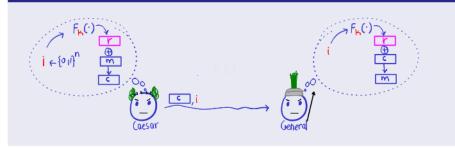


- Can also obtain decryption of ciphertexts of its choice
 - Modelled using a decryption oracle $Dec(k, \cdot)$
- Why is decryption oracle useful to the attacker?
 - E.g., could obtain decryption of tampered/mauled ciphertexts
 - We'll see one example soon: padding-oracle attack ⚠
- Is the decryption oracle justified? Yes:
 - E.g. 1: Server sends error message on receiving invalid ciphertext
 - E.g. 2: Receiver could be infected by computer virus

Chosen-Ciphertext Attack (CCA)...

Definition 2 (IND-CCA)

An SKE $\Pi = (Gen, Enc, Dec)$ is CCA-secure if for *every* PPT attacker A |Pr[b' = b] - 1/2| is negligible in following game.

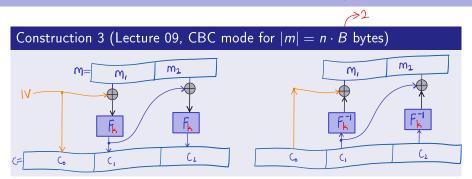


Exercise 1 (IND-CCA⇒IND-CPA)

Show that if Π is IND-CCA secure then it is IND-CPA secure

IND-CPA IND-CCA!

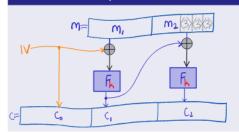
Construction 1 (Lecture 07, PRF \Rightarrow CPA-SKE)



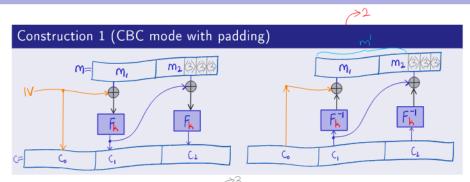
- Objective to break Construction 1 using decryption oracle?
- Hint: can you modify a ciphertext to get another valid ciphertext?

The attack:

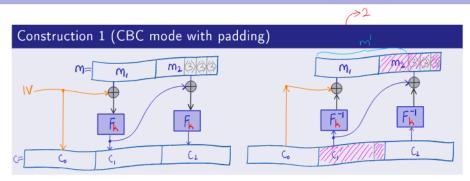
- **1** Challenge on $m_1^* := 0^n$ and $m_2^* := 1^n$ to obtain $c^* := (c_1^*, c_2^*)$
- 2 Query decryption oracle on $(c_1^*, c_2^* \oplus 1 || 0^{n-1})$ to obtain m^*
- **3** Output b' := 0 if $m^* = 1 || 0^{n-1}$, and b' := 1 otherwise


Decryption Oracle IRL: Oracle-Padding Attack

Decryption Oracle IRL: Oracle-Padding Attack


Construction 3 (Lecture 09, CBC mode for $|m| = n \cdot B$ bytes)

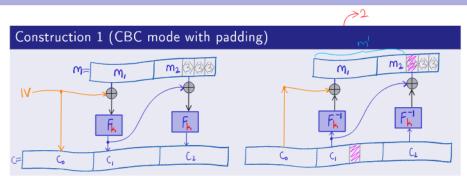
- What if $|m| \neq n \cdot B$ bytes for some B? Say m is s bytes short
- We need to "pad" m with an s byte string. How?
- PKCS#7 std.: If $\langle s \rangle$ is byte representation of s, then padding is


$$\underbrace{\langle s \rangle \| \cdots \| \langle s \rangle}_{s \text{ times}}$$

Decryption Oracle IRL: Oracle-Padding Attack...

- To encrypt m: encrypt $m \| \underbrace{\langle s \rangle \| \cdots \| \langle s \rangle}_{s \text{ times}}$ in CBC mode
- To decrypt c:
 - **1** Decrypt c in CBC mode to obtain message of form $m' ||\langle s' \rangle|| \cdots ||\langle s' \rangle|$
 - 2 If last s' bytes are all $\langle s' \rangle$ then o/p m' Else o/p "bad padding"

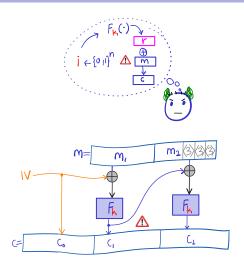
Decryption Oracle IRL: Oracle-Padding Attack...


Of the state of

Note that $m_2 = \mathsf{F}_k^{-1}(c_2) \oplus c_1$

Observation: for any Δ , $c_1' := c_1 \oplus \Delta \implies$ decryption of (c_0, c_1', c_2) yields (m_1', m_2') where $m_2' = m_2 \oplus \Delta$

...


Decryption Oracle IRL: Oracle-Padding Attack...

- ...
- \bigwedge Attack to recover s. For each $i \in [1, n]$:
 - 1 Set $c_1^{(i)}$ as c_1 with *i*-th byte modified (arbitrarily)
 - 2 Query decryption oracle with $(c_0, c_1^{(i)}, c_2)$
 - If oracle returns "bad padding", output n-i and halt
- ② How to recover rest of message? Lab Exercise 2, Problem 4

What Made These Schemes Vulnerable? 🔨

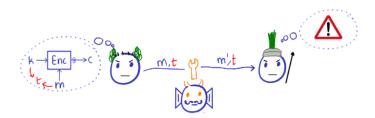
Ciphertext is malleable! Prevent mauling using MAC

Plan for Today's Lecture

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

Message Authentication Code

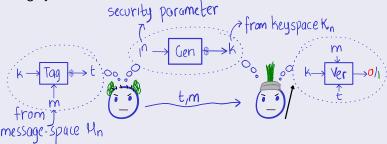
Next Lecture: IND-CPA+MAC ⇒ IND-CCA


What Exactly Is the Security Goal?

■ The setting: Caesar and his general share key $k \in \{0,1\}^n$ and want to secretly communicate in presence of an *active* adversary Tam

- What can Tam do?
 - Modify what Caesar sends to the General (integrity)
 ⚠ All schemes we've seen so far are malleable and allow this!
 - 2 Try to impersonate Caesar by injecting messages (authenticity)
- We cannot prevent this: the hope is to *detect* when it happens

What Exactly Is the Security Goal?...



- How do we ensure integrity and authenticity?
 - Append "additional information" t with the ciphertext
 - Message-authentication code (MAC)
 - Think of it as "cryptographic" version of error detection!
- For now, let's forget about secrecy and focus on detecting tampering
 - Why? Modularity <</p>
 - Lecture 11: MAC + CPA-secure SKE ⇒ CCA-secure SKE

Syntax of Message-Authentication Code (MAC)

Definition 1 (Message-Authentication Code (MAC))

An MAC M is a triple of efficient algorithms (Gen, Tag, Ver) with the following syntax:

■ Correctness of verification: for every $n \in \mathbb{N}$, message $m \in \mathcal{M}_n$,

$$\Pr_{k \leftarrow \mathsf{Gen}(1^n), t \leftarrow \mathsf{Tag}(k, m)}[\mathsf{Ver}(k, t, m) = 1] = 1$$

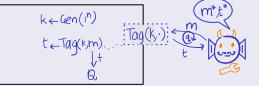
How to Define Security?

Intuitively, what are the security requirements?

- Tam must not be able to forge valid new tag from previously-seen tags...
 - ... on messages of its choice
- The forged new tag can be on any message of Tam's choice
- Existential Unforgeability Under Chosen-Message Attack

Definition 3 (EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ


◆ Tam makes q queries to Tag(k,) oracle

In the end Tam outputs (m*,t*) and breaks if 1) m*&Q 11) Ver(k, t*, m*)=1

How to Define Security?...

Definition 3 (EU-CMA) Typically negligible

A MAC M=(Gen,Tag,Ver) is (ϵ,q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

- ◆ Tam makes q queries to Tag(k,·) or acle
- In the end Tam outpts (m*,t*) and breaks if i) m*&Q ii) Ver(k,t*,m*)=1

- MAC or not?
 - **1** Encrypt to MAC: Given SKE $\Pi = (Gen, Enc, Dec)$, define:
- $\blacksquare \mathsf{Tag}(k,m) := \mathsf{Enc}(k,m)$
- Ver(k, t, m): Compute m' := Dec(k, t) and accept if m = m'
- 2 Append-0 MAC: Given MAC M = (Gen, Tag, Ver), define M' as
- Tag'(k, m) := t || 0, where $t \leftarrow \text{Tag}(k, m)$
- \blacksquare $\operatorname{Ver}'(k, t || b, m) := \operatorname{Ver}(k, t, m)$

How to Construct a MAC?

Use a PRF to generate the tag!

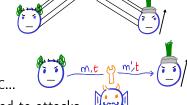
Construction 2 (for
$$\mathcal{M}_n = \{0,1\}^n$$
 using $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Theorem 2

If $\{F_k:\{0,1\}^n o \{0,1\}^n\}_{k\in\{0,1\}^n}$ is a PRF then Construction 2 is EU-CMA-secure against any PPT Tam

Proof by reduction.

On the whiteboard



Recap/Next Lecture

- Saw Chosen-Ciphertext Attack (CCA)
 - Stronger threat model

⚠ CCA IRL: padding oracle attack

■ Affected PKCS#1 v1.5, SSL, IPSEC...

- ★ Takeaway: ciphertext malleability can lead to attacks
- How to prevent/detect mauling? Use message-authentication codes
- Next lecture
 - How to construct a CCA-secure scheme using MAC
 - Domain-extension for MAC

- The definition of CCA security can be found in [KL14, §5.1.2]. The notion was introduced by Naor and Yung [NY89]
- 2 You can read more about oracle-padding attack in [KL14, §5.1.1]. The original attack was due to Bleichenbacher on PKCS#1 v1.5 [Ble98]. Vaudenay came up with the attack on the CBC mode [Vau02].
- 3 The definition of MAC can be found in [KL14, §4.2]

Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1.

In Hugo Krawczyk, editor, *CRYPTO'98*, volume 1462 of *LNCS*, pages 1–12. Springer, Berlin, Heidelberg, August 1998.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.

Moni Naor and Moti Yung.

Universal one-way hash functions and their cryptographic applications.

In 21st ACM STOC, pages 33-43. ACM Press, May 1989.

Serge Vaudenay.

Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS...

In Lars R. Knudsen, editor, *EUROCRYPT 2002*, volume 2332 of *LNCS*, pages 534–546. Springer, Berlin, Heidelberg, April / May 2002.