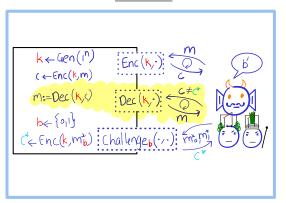


CS409m: Introduction to Cryptography

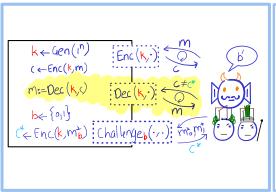

Lecture 11 (12/Sep/25)

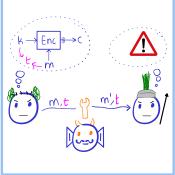
Instructor: Chethan Kamath

Recall from Previous Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

IND-CCA

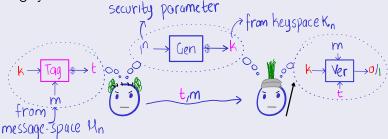

Takeaway: ciphertext malleability can lead to vulnerability to CCA


Recall from Previous Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

IND-CCA

MAC

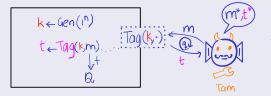


Takeaway: ciphertext malleability can lead to vulnerability to CCA

Recall Message-Authentication Code (MAC)

Definition 1 (Lecture 10, Syntax of MAC)

A MAC M is a triple of efficient algorithms (Gen, Tag, Ver) with the following syntax:

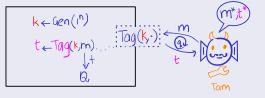

■ Correctness of verification: for every $n \in \mathbb{N}$, message $m \in \mathcal{M}_n$,

$$\Pr_{\substack{\pmb{k} \leftarrow \mathsf{Gen}(1^n), t \leftarrow \mathsf{Tag}(k,m)}}[\mathsf{Ver}(\stackrel{\pmb{k}}{k},t,m)=1]=1$$

Recall Message-Authentication Code (MAC)...

Definition 2 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

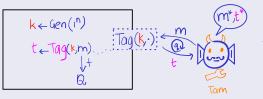


- ◆ Tam makes q queries bogta (k,·) oracle
- In the end Tam outpts (m*t*) and breaks if i) m*&Q ii) Ver(k, t*, m*)=1

Recall Message-Authentication Code (MAC)...

Definition 2 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

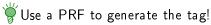

* tam makes a queries togta (k,.) oracle

- In the end Tam outpts (m*t*) and breaks if i) m*&Q ii) Ver(k,t*,m*)=1
- (3) If (Gen, Tag, Ver) is EU-CMA, is (Gen, Tag', Ver') also EU-CMA?
 1 Leaky MAC:
 - \blacksquare Tag'(k, m) := Tag(k, m) $\parallel m$
 - $\operatorname{Ver}'(k,t\|m',m)$, where $m' \in \mathcal{M}_n$: accept if $\operatorname{Ver}(k,t,m)=1$

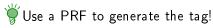
Recall Message-Authentication Code (MAC)...

Definition 2 (Lecture 10, EU-CMA)

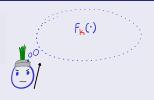
A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

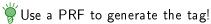

* tam makes a queries togta (k,.) oracle

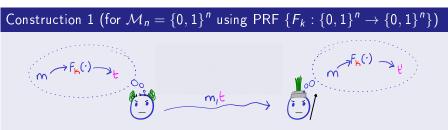
- In the end Tarn outputs (m*t*) and breaks if i) m*&Q ii) Ver(k, t*, m*)=1
- (g) If (Gen, Tag, Ver) is EU-CMA, is (Gen, Tag', Ver') also EU-CMA?
 - Leaky MAC:
 - \blacksquare Tag' $(k, m) := Tag(k, m) \parallel m$
 - $\operatorname{Ver}'(k,t||m',m)$, where $m' \in \mathcal{M}_n$: accept if $\operatorname{Ver}(k,t,m)=1$
 - 2 Append-0 MAC
 - \blacksquare Tag'(k, m) := Tag(k, m) $\parallel 0$
 - Ver'(k, t||b, m), where $b \in \{0, 1\}$: accept if Ver(k, t, m) = 1


Use a PRF to generate the tag!

Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k: \{0,1\}^n o \{0,1\}^n\}$)




Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)



Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k: \{0,1\}^n o \{0,1\}^n\}$)

Use a PRF to generate the tag!

Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Theorem 3

If $\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF then Construction 1 is EU-CMA-secure

Use a PRF to generate the tag!

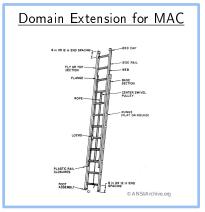
Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Theorem 3

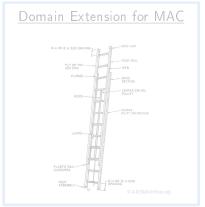
If $\{F_k: \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF then Construction 1 is EU-CMA-secure

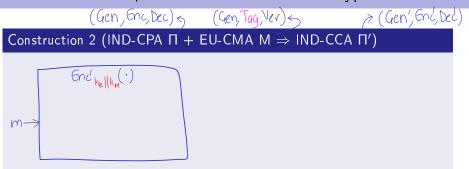
Proof by reduction.

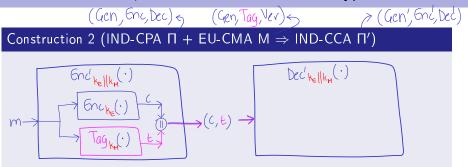
On the whiteboard

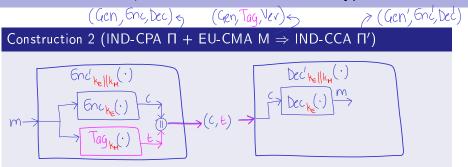

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

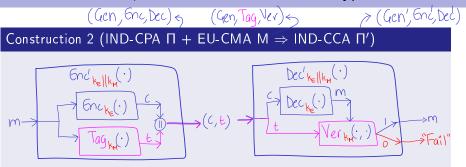
- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

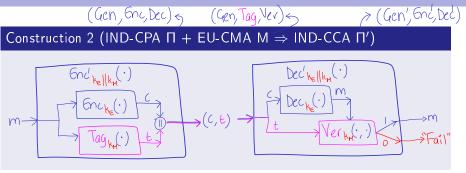

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

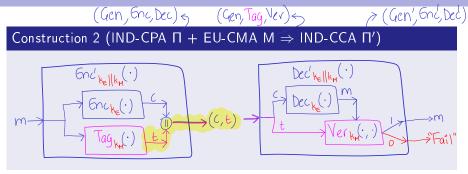

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

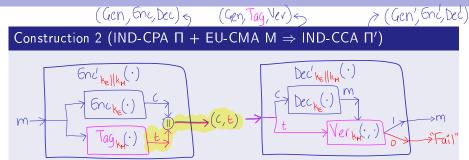


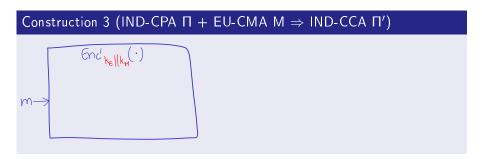



(Gen, Gnc, Dec) > (Gen, Tag, Nev) > > (Gen', Gnc, Dec)

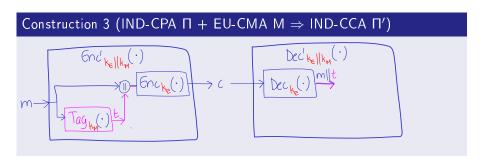

Construction 2 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π')

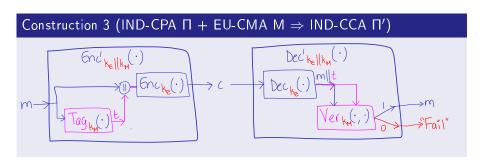


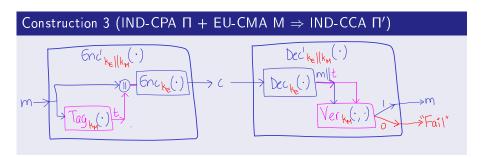


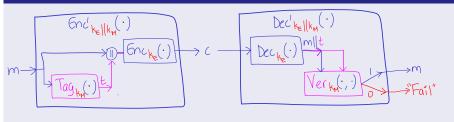

(2) Is Construction 2 IND-CCA-secure?

- (2) Is Construction 2 IND-CCA-secure?
- ⚠ No, totally insecure if M's tag leaks information about message!
- E.g., consider M = Leaky MAC




- (2) Is Construction 2 IND-CCA-secure?
- ⚠ No, totally insecure if M's tag leaks information about message!
 - \blacksquare E.g., consider M = Leaky MAC
 - ⚠ Attack:
 - 1 Challenge on (arbitrary) m_0^*, m_1^* to obtain (c^*, t^*)
 - 2 Output 0 if t^* contains m_0^* ; otherwise output 1



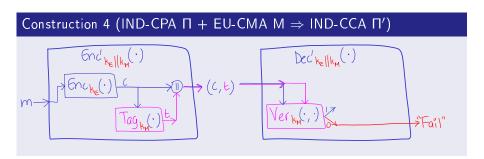


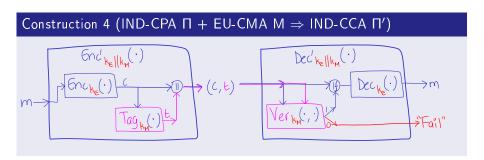
②Is Construction 3 IND-CCA-secure?

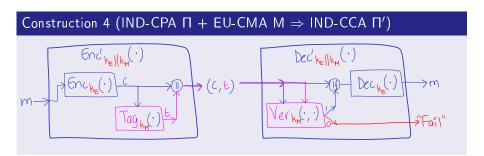
Construction 3 (IND-CPA Π + EU-CMA M ⇒ IND-CCA Π') Construction 3 (IND-CPA Π + EU-CMA M ⇒ IND-CCA Π') Construction 3 (IND-CPA Π + EU-CMA M ⇒ IND-CCA Π') Construction 3 (IND-CPA Π + EU-CMA M ⇒ IND-CCA Π') Construction 3 (IND-CPA Π + EU-CMA M ⇒ IND-CCA Π')

- (2) Is Construction 3 IND-CCA-secure?
- E.g., consider $\Pi = \frac{\mathsf{CBC} \ \mathsf{mode}}{\mathsf{CBC}}$ (Lecture 09)

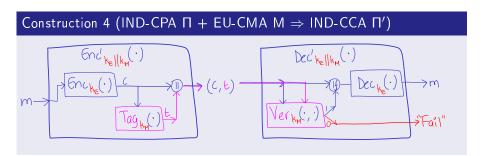
Construction 3 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π')

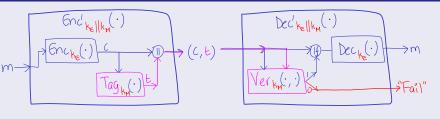

- ② Is Construction 3 IND-CCA-secure?
- E.g., consider $\Pi = \frac{\mathsf{CBC} \ \mathsf{mode}}{\mathsf{CBC}}$ (Lecture 09)


Exercise 1 Λ


Extend the padding oracle attack to Construction 3. (Hint: assume different error messages for decryption failure and tag verification failure)

Attempt III: Encrypt-then-Authenticate


Construction 4 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π') $\begin{array}{c} \text{Enc}_{\mathbf{k}_{\mathbf{k}}}(\cdot) \\ \text{Tag}_{\mathbf{k}_{\mathbf{k}}}(\cdot) \\ \end{array}$

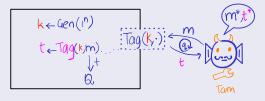


(2) Is Construction 4 IND-CCA-secure?

- (2) Is Construction 4 IND-CCA-secure?
- ⚠ No, M might be "malleable"
- E.g., consider M = Append-0 MAC

Construction 4 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π')

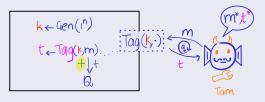
- ② Is Construction 4 IND-CCA-secure?
- ⚠ No, M might be "malleable"
- \blacksquare E.g., consider M = Append-0 MAC
 - - 1 Challenge on (arbitrary) m_0^*, m_1^* to obtain $(c^*, t^*||0)$
 - 2 Query decryption oracle on $(c^*, t^*||1)$ to obtain m^*
 - 3 Output 0 if $m^* = m_0^*$; otherwise output 1


Solution: use MAC that is non-malleable = strongly unforgeable

Solution: use MAC that is non-malleable = strongly unforgeable

Definition 4 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

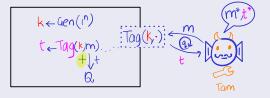


- ◆ Tam makes q queries togta (k,·) oracle In the end Tam outsts (m*,t*) and breaks if
 - nm* \$Q 11) Ver(k, t*, m*)=1

 \bigcirc Solution: use MAC that is non-malleable = strongly unforgeable

Definition 4 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ ◆ Tam makes q queries

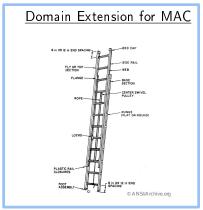

- togta (k,) oracle In the end Tam outsts (m*,t*) and breaks if
 - n(m*,t*)&Q 11) Ver(k, t*, m*)=1

Solution: use MAC that is non-malleable = strongly unforgeable

Definition 4 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ

- ◆ Tam makes q queries togta (k,) oracle
- In the end Tam outsts (m*,t*) and breaks if n(m*t*) & Q
 - 11) Ver(k, t*, m*)=1

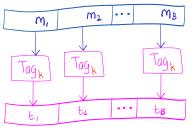

Exercise 2

Show that if Π is IND-CPA secure and M is sEU-CMA secure, then Construction 4 is IND-CCA secure

Plan for Today's Lecture

- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

Domain Extension: Goal

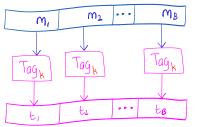

■ Given: MAC M = (Gen, Tag, Ver) for $\mathcal{M}_n := \{0,1\}^n$ $\bowtie \{0,1\}^n \longrightarrow \mathsf{Tag}_k \longrightarrow \mathsf{E}$

Domain Extension: Goal

lacksquare Given: MAC M = (Gen, Tag, Ver) for $\mathcal{M}_{\it n}:=\{0,1\}^{\it n}$

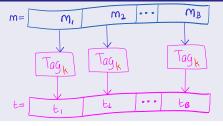
$$m \in \{0,1\}^n \longrightarrow Tag_k \longrightarrow t$$

Goal: design MAC M' for $m:=m_1\|\cdots\|m_B$, where $m_i\in\{0,1\}^n$

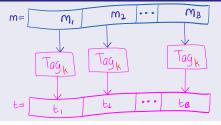


Domain Extension: Goal

■ Given: MAC M = (Gen, Tag, Ver) for $\mathcal{M}_n := \{0,1\}^n$

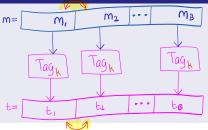

$$m \in \{0,1\}^n \longrightarrow Tag_k \longrightarrow t$$

Goal: design MAC M' for $m := m_1 \| \cdots \| m_B$, where $m_i \in \{0,1\}^n$

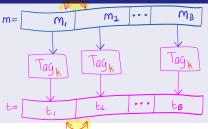


Analogous to modes of operation for block ciphers (Lecture 08)

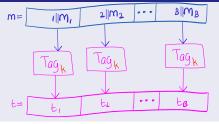
Construction 5 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)



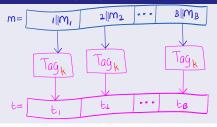
Construction 5 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)


(2) Is Construction 5 EU-CMA-secure?

Construction 5 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)

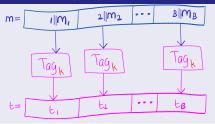

- (2) Is Construction 5 EU-CMA-secure?
- ⚠ No, can *reorder* tag/message blocks!
- ⚠ Attack:
 - 1 Query tag oracle on (m_1, m_2) to obtain (t_1, t_2)
 - 2 Output (t_2, t_1) as tag on (m_2, m_1)

Construction 5 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)

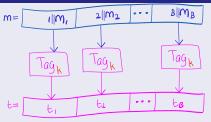


- (2) Is Construction 5 EU-CMA-secure?
- ⚠ No, can reorder tag/message blocks!
- ⚠ Attack:
 - 1 Query tag oracle on (m_1, m_2) to obtain (t_1, t_2)
 - Output (t_2, t_1) as tag on (m_2, m_1)
 - 🏅 Fix: prepend <mark>block number</mark>

Construction 6 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)



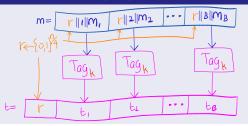
Construction 6 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)


② Is Construction 6 EU-CMA-secure?

Construction 6 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)

- (2) Is Construction 6 EU-CMA-secure?
- ⚠ No, can *mix and match* blocks!
- ⚠ Attack:
 - I For $m_1 \neq m_2 \in \{0,1\}^n$, query tag oracle on (m_1, m_2) to get (t_1, t_2)
 - 2 Query tag oracle on (m_2, m_1) to obtain (t'_1, t'_2)
 - 3 Output (t_1, t_2') as tag on (m_1, m_1)

Construction 6 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)


- (2) Is Construction 6 EU-CMA-secure?
- ⚠ No, can *mix and match* blocks!
- \Lambda Attack:
 - I For $m_1 \neq m_2 \in \{0,1\}^n$, query tag oracle on (m_1, m_2) to get (t_1, t_2)
 - Query tag oracle on (m_2, m_1) to obtain (t'_1, t'_2)
 - 3 Output (t_1, t_2') as tag on (m_1, m_1)
- 🏅 Fix: also prepend a random <mark>"nonce" 💲 💲</mark>

Domain Extension for MAC

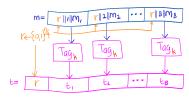
Domain Extension for MAC

Construction 7 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)

Theorem 5

If M is EU-CMA-secure MAC for $\{0,1\}^n$ then Construction 7 is EU-CMA-secure MAC for $\{0,1\}^{nB}$

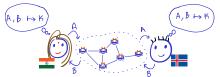
Recap/Next Lecture

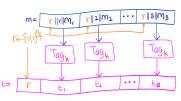

■ Learnt how to construct CCA-secure SKE

- Encrypt-then-Authenticate

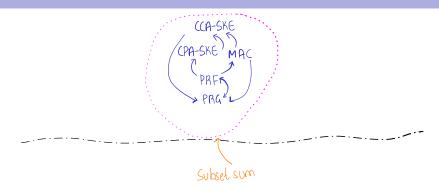
⚠ Latter used in some configurations of TLS!

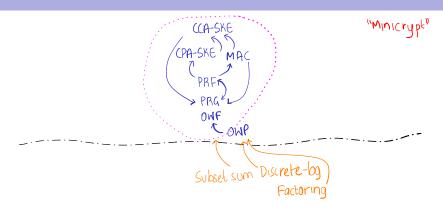
- Stronger notion than CCA: Authenticated encryption
- Domain extension for MAC

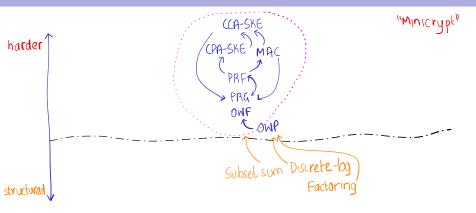

Recap/Next Lecture

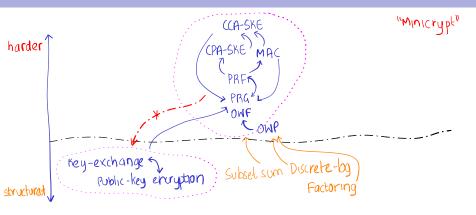

- Learnt how to construct CCA-secure SKE
 - Encrypt-then-Authenticate

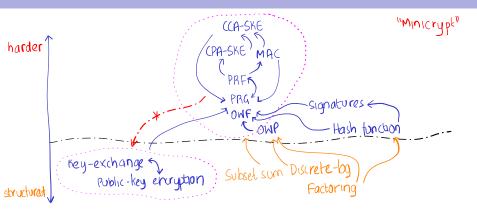
⚠ Encrypt-and-Authenticate and Authenticate-then-Encrypt insecure!

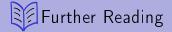

⚠ Latter used in some configurations of TLS!


- Stronger notion than CCA: Authenticated encryption
- Domain extension for MAC
- Next lecture
 - We start public-key encryption module!
 - Basic group theory and number theory








"Cryptomania"

"cryptomonia"

"Cryptomania"

- You can find details of proof of Construction 1 in Theorem 4.6 in [KL14, §4.3.1].
- [KL14, §5.3.1] contains discussion on our three attempts at construct CCA-secure PKE. You can also read more about authenticated encryption in [KL14, §5.2 and §5.3].
- [KL14, §4.3.2] contains details on domain extension for MACs. In particular, proof Theorem 5 here corresponds to Theorem 4.8 in [KL14]

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.