

CS409m: Introduction to Cryptography

Lecture 11 (12/Sep/25)

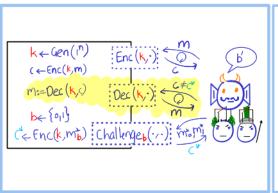
Instructor: Chethan Kamath

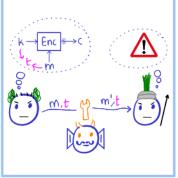
Recall from Previous Lecture

- Task: secure comm. of *multiple long messages* with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)

IND-CCA

MAC 🔊



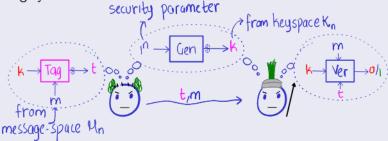


Takeaway: ciphertext malleability can lead to vulnerability to CCA

Recall Message-Authentication Code (MAC)

Definition 1 (Lecture 10, Syntax of MAC)

A MAC M is a triple of efficient algorithms (Gen, Tag, Ver) with the following syntax:



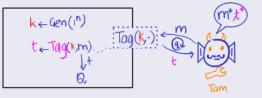
■ Correctness of verification: for every $n \in \mathbb{N}$, message $m \in \mathcal{M}_n$,

$$\Pr_{\substack{\boldsymbol{k} \leftarrow \mathsf{Gen}(1^n), t \leftarrow \mathsf{Tag}(k,m)}}[\mathsf{Ver}(\underline{k},t,m)=1]=1$$

Recall Message-Authentication Code (MAC)...

Definition 2 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ



Tam makes q queries
togta (k;) oracle

- In the end Tarn outputs (m*t*) and breaks if i) m*&Q ii) Ver(k,t*,m*)=1
- (g) If (Gen, Tag, Ver) is EU-CMA, is (Gen, Tag', Ver') also EU-CMA?
 - Leaky MAC:
 - $\blacksquare \operatorname{Tag}'(k,m) := \operatorname{Tag}(k,m) \| m$
 - Ver'(k, t||m', m), where $m' \in \mathcal{M}_n$: accept if Ver(k, t, m) = 1
 - 2 Append-0 MAC
 - $Tag'(k,m) := Tag(k,m) \| 0$
 - Ver'(k, t || b, m), where $b \in \{0, 1\}$: accept if Ver(k, t, m) = 1

How to Construct a MAC?

Use a PRF to generate the tag!

Construction 1 (for $\mathcal{M}_n = \{0,1\}^n$ using PRF $\{F_k : \{0,1\}^n \to \{0,1\}^n\}$)

Theorem 3

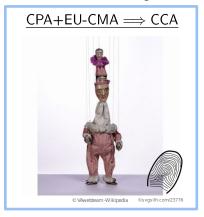
If $\{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^n}$ is a PRF then Construction 1 is EU-CMA-secure

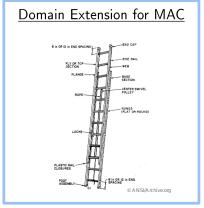
Proof by reduction.

On the whiteboard

Plan for Today's Lecture

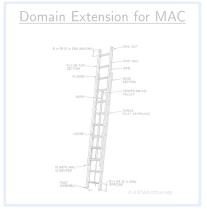
- Task: secure comm. of *multiple long* messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)



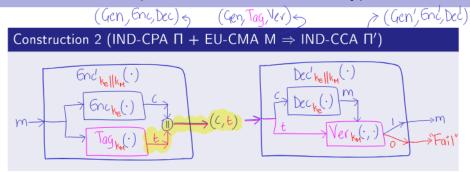


Plan for Today's Lecture

- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)



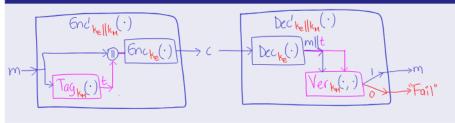
Attempt I: Authenticate-and-Encrypt



- (2) Is Construction 2 IND-CCA-secure?
- ⚠ No, totally insecure if M's tag leaks information about message!
 - E.g., consider M = Leaky MAC
 - ⚠ Attack:
 - 1 Challenge on (arbitrary) m_0^*, m_1^* to obtain (c^*, t^*)
 - 2 Output 0 if t^* contains m_0^* ; otherwise output 1

Attempt II: Authenticate-then-Encrypt

Construction 3 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π')



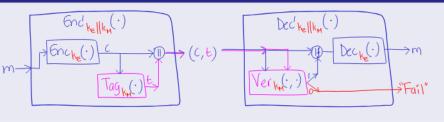
- ②Is Construction 3 IND-CCA-secure?
- Λ No, Π and thus Π' might be malleable!
- E.g., consider $\Pi = \frac{\mathsf{CBC} \ \mathsf{mode}}{\mathsf{CBC}}$ (Lecture 09)

Exercise 1 \Lambda

Extend the padding oracle attack to Construction 3. (Hint: assume different error messages for decryption failure and tag verification failure)

Attempt III: Encrypt-then-Authenticate

Construction 4 (IND-CPA Π + EU-CMA $M \Rightarrow$ IND-CCA Π')



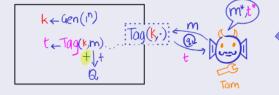
- ②Is Construction 4 IND-CCA-secure?
- ⚠No, M might be "malleable"
- E.g., consider M = Append-0 MAC
 - Attack:
 - 1 Challenge on (arbitrary) m_0^*, m_1^* to obtain $(c^*, t^*||0)$
 - 2 Query decryption oracle on $(c^*, t^*||1)$ to obtain m^*
 - 3 Output 0 if $m^* = m_0^*$; otherwise output 1

Encrypt-then-Authenticate with Strong MAC

Solution: use MAC that is non-malleable = strongly unforgeable

Definition 4 (Lecture 10, EU-CMA)

A MAC M = (Gen, Tag, Ver) is (ϵ, q) -EU-CMA secure if no PPT tampering adversary Tam that makes at most q queries can break M as below with probability more than ϵ



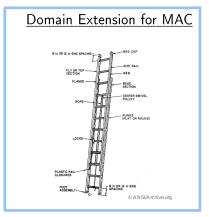
- ◆ Tam makes q queries togta (k,) oracle
- . In the end Tam outputs (m*,t*) and breaks if n(m*t*)\$Q
 - 11) Ver(k, t*, m*)=1

Exercise 2

Show that if Π is IND-CPA secure and M is sEU-CMA secure, then Construction 4 is IND-CCA secure

Plan for Today's Lecture

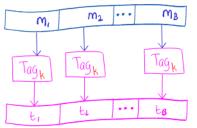
- Task: secure comm. of multiple long messages with shared keys
- Threat model: ind. against chosen-ciphertext attack (IND-CCA)



Domain Extension: Goal

■ Given: MAC M = (Gen, Tag, Ver) for $\mathcal{M}_n := \{0,1\}^n$

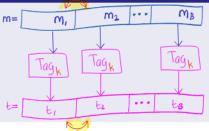
 \bigcirc Goal: design MAC M' for $m:=m_1\|\cdots\|m_B$, where $m_i\in\{0,1\}^n$



Analogous to modes of operation for block ciphers (Lecture 08)

Attempt I: MAC Block-wise

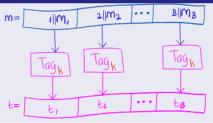
Construction 5 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)



- (2) Is Construction 5 EU-CMA-secure?
- ⚠ No, can reorder tag/message blocks!
- ⚠ Attack:
 - 1 Query tag oracle on (m_1, m_2) to obtain (t_1, t_2)
 - Output (t_2, t_1) as tag on (m_2, m_1)
- 🏅 Fix: prepend <mark>block numbe</mark>r

Attempt II: MAC Block-wise, with Block No.

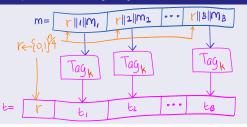
Construction 6 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)



- ②Is Construction 6 EU-CMA-secure?
- ⚠ No, can *mix and match* blocks!
- ⚠ Attack:
 - I For $m_1 \neq m_2 \in \{0,1\}^n$, query tag oracle on (m_1, m_2) to get (t_1, t_2)
 - 2 Query tag oracle on (m_2, m_1) to obtain (t'_1, t'_2)
 - 3 Output (t_1, t_2') as tag on (m_1, m_1)
- 🏅 Fix: also prepend a random <mark>"nonce" 💲 💲</mark>

Domain Extension for MAC

Construction 7 (MAC M for $\{0,1\}^n \implies MAC M'$ for $\{0,1\}^{nB}$)



Theorem 5

If M is EU-CMA-secure MAC for $\{0,1\}^n$ then Construction 7 is EU-CMA-secure MAC for $\{0,1\}^{nB}$

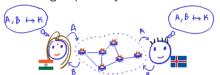
Recap/Next Lecture

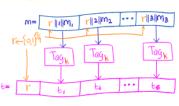
- Learnt how to construct CCA-secure SKE
 - Encrypt-then-Authenticate

▲ Encrypt-and-Authenticate and Authenticate-then-Encrypt insecure!

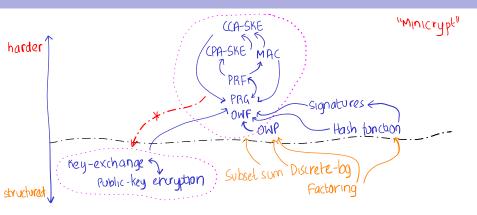
⚠ Latter used in some configurations of TLS!

- Stronger notion than CCA: Authenticated encryption
- Domain extension for MAC
- Next lecture
 - We start public-key encryption module!
 - Basic group theory and number theory





Next Module



"cryptomania"

Good Luck for Mid-Sem!

- You can find details of proof of Construction 1 in Theorem 4.6 in [KL14, §4.3.1].
- [KL14, §5.3.1] contains discussion on our three attempts at construct CCA-secure PKE. You can also read more about authenticated encryption in [KL14, §5.2 and §5.3].
- [KL14, §4.3.2] contains details on domain extension for MACs. In particular, proof Theorem 5 here corresponds to Theorem 4.8 in [KL14]

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (3rd ed.). Chapman and Hall/CRC, 2014.