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CS409m: Introduction to Cryptography

Lecture 12 (24/Sep/25)

Instructor;: Chethan Kamath



m Mid-sem cribs session 12:%0- 455 Ma\d(/«j(wlScP)
m View your answer sheet 14:00-16:00 on Friday (26/Sep) in CC305

m Submit cribs online by Menday—{29/Sep, 23:59)
Hegnesday 01| Ock

m Assignment 4 (ungraded) will be released on Friday (26/Sep)
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m We learnt: secure communication in the shared-key setting CON-SKE

m Primitives encountered: PRG, PRF, MAC (PA‘SKE—‘(
MaC

PRE

rRG

m Computational hardness assumptions: subset-sum problem

Subsek sum
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m We learnt: secure communication in the shared-key setting CCN-SKE

m Primitives encountered: PRG, PRF, MAC (m‘g)ge——(

m Computational hardness assumptions: subset-sum problem MAC
PRF

m Key conceptual takeaways: FRG

m Threat modelling sk
Sec SUM
m Computational security ) A >

m What design choices lead to vulnerability?
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Recall from Last Module

We learnt: secure communication in the shared-key setting
Primitives encountered: PRG, PRF, MAC

Computational hardness assumptions: subset-sum problem

Key conceptual takeaways:

m Threat modelling UA
m Computational security "=

m What design choices lead to vulnerability?

Key tools: security reduction, hybrid argument
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m Minicrypt to Cryptomania
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m Minicrypt to Cryptomania
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m Task: key exchange A :
m Threat model: computational secrecy against eavesdroppers
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Plan for Today's Lecture

m Task: key exchange A :
m Threat model: computational secrecy against eavesdroppers

R

%f\g@ Key Exchange %NE\Q} Basic Group Theory

©Wikipedia
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Task: key exchange !
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W

m The setting: Alice and Bob want to establish a shared key
k €{0,1}"
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- Bob

m The setting: Alice and Bob want to establish a shared key
n - N
k € {0,1}" in presence of an eavesdropper Eve %y
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Bob

m The setting: Alice and Bob want to establish a sared key
k € {0,1}" in presence of an eavesdropper Eve &

m Alice and Bob execute a protocol, at the end of which they will have
established a key
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How To Establish a Shared Key in the First Place?

QO

@’ @/@ P
\é/ :sp

Alice

m The setting: Alice and Bob want to establish a shared key
2\
k € {0,1}" in presence of an eavesdropper Eve

b

m Alice and Bob execute a protocol, at the end of which they will have
established a key

m Key Exchange IRL: HTTPs, TLS, SSH

O 8 == https://en.wikipedia.org/wiki/HTTPS
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Syntax of Key Exchange Protocol

Definition 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol I is a probabilistic protocol
between two parties A and B at the end of which party A locally outputs
ka € {0,1}" and party B locally outputs kg € {0,1}".

e
@ X

Bob
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Syntax of Key Exchange Protocol

Definition 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol I is a probabilistic protocol
between two parties A and B at the end of which party A locally outputs
ka € {0,1}" and party B locally outputs kg € {0,1}".

kranscrgt o

noo

m Correctness of key exchange: for every n € N

ka=kgl=1
(ka,ks,™ )«—ﬂ(l" [ A B]
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m Intuitively, what is the security requirement?
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m Intuitively, what is the security requirement?
m Key k should be “hidden” given only transcript T of the protocol
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How to Define Security?

m Intuitively, what is the security requirement?
m Key k should be “hidden” given only transcript T of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol I is computationally secret against
eavesdroppers if for every PPT eavesdropper Eve the following is

negligible.
o(n) = (, T)<_n(1n [Eve(r.%) =01 = (k, T)<_n(1 )
r<{0,1}"

[Eve(T,®) = 0]'
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m Intuitively, what is the security requirement?
m Key k should be “hidden” given only transcript T of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol I is computationally secret against
eavesdroppers if for every PPT eavesdropper Eve the following is

negligible.
o(n) = (, T)<_n(1n [Eve(r.k) = 0] - (k, T)<_n(1 )
f r<{0,1}"
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How to Define Security?

m Intuitively, what is the security requirement?
m Key k should be “hidden” given only transcript T of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol I is computationally secret against
eavesdroppers if for every PPT eavesdropper Eve the following is
negligible.
@ T)<—n(1" [Eve(r,%k) = 0] — @ T)<—ﬂ(1 )[EVG(T F) = 0]'
r<{0,1}" §
“hoa word” *Rondom word

d(n) =

Exercise 1

How can an unbounded eavesdropper Eve break secrecy?
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Task: key exchange 7

Threat model: against

Key Exchange % Basic Group Theory

©Mike Gonzalez/Wikipedia
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.What are some properties of ({0,1}",®) we have exploited?
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m Closure of @, self-inverse (k @ k = 0"), associativity?
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Basic Group Theory

@ What are some properties of ({0,1}", @) we have exploited?
m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms) ¥g,,9,€4:9,.9,¢ 0

. . . . e )
A group G is a set G with a binary operation - satisfying: 1) closure 2)
associativity, 3) existence of identity and 4) existence of inverse.
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m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms) ¥g,,9,€4:9,.9,¢ 0
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Basic Group Theory

@ What are some properties of ({0,1}", @) we have exploited?
m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms) ¥g,,9,€4:9,.9,¢ 0

A group G is a set G with a binary operation - satisfying: 1) closure 2)j
associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it/additionally satisfies 5) commutativity.

Jeyvaeh: 1194 4-1=9 ) )
t6,0,9;5¢0° (09:)-0,-9,(9295) ¥gdg - 997!

N9, g, €G:4:4,=8,9,
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Basic Group Theory

@ What are some properties of ({0,1}", @) we have exploited?
m Closure of @, self-inverse (k @ k = 0"), associativity?

Definition 3 (Group axioms)

A group G is a set G with a binary operation - satisfying: 1) closure 2)
associativity, 3) existence of identity and 4) existence of inverse.
G Abelian if it additionally satisfies 5) commutativity.

Vi,

%) Abstracts properties of integers Z := ({---,—1,0,1,---},+)
Exercise 2
m Show that Z := ({--- ,—-1,0,1,---},+) is a group

m What is the group corresponding to 2 x 2 x 2 Rubik's cube?
m Describe the set G and the operation -
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Basic Group Theory

Definition 4 (Group terminology)

A Order of the group, |G]|.

m We're interested in groups of finite order
A Can be represented on a digital computer
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Basic Group Theory

Definition 4 (Group terminology)

A Order of the group, |G]|.

m We're interested in groups of finite order
A Can be represented on a digital computer L1 TiMes

A Order of an element g: smallest / € Nsuch that g/ :=g-...- g =1
A Cyclic group: there exists a “generator’ g € G with order ¢ = |G|
m That is {gl =g,8%...,8" gt = 1} =G

! 2
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< S

m “Isomorphism” between (Z¢,+) and G

@ 1s ({0,1}",®) cyclic? What is the maximum order of any element?
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Basic Group Theory...

Exercise 3 (Lagrange’s theorem)

Prove that the order of an element divides order of the (finite) group.

Exercise 4

For a group G of order ¢ with generator g, show using group axioms that
for all a,b € Zy, (g2)? = g% = (g")?

Exercise 5

Prove that a prime-order group is cyclic. Are all cyclic groups of prime
order?
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Addition modulo prime p Multiplication modulo prime p
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Addition modulo prime p
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Let's focus on Zp, = ({0,...,p —1},")

m Modular multiplication g1 - g2 mod p
m Reduces to integer operations. How?
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Let's focus on Zp, = ({0,...,p —1},")

m Modular multiplication g1 - g2 mod p
m Reduces to integer operations. How?
Compute g := g1 - g2 (over Z) using integer multiplication
Reduce g mod p using integer division
@Computable in O(n) time, where n:= ||p||
m Modular exponentiation: g2 mod p
m Reduces to modular multiplication. How?.
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What is Easy to Compute Over Cyclic Groups?

Let's focus on Zp, = ({0,...,p —1},")

m Modular multiplication g1 - g» mod p
m Reduces to integer operations. How?
Compute g := g1 - g2 (over Z) using integer multiplication
Reduce g mod p using integer division
@Computable in O(n) time, where n:= ||p||
m Modular exponentiation: g2 mod p
m Reduces to modular multiplication. How? @
m Square and multiply (and reduce) algorithm
@Computable in O(n?) time
m Modular inverse: g=! mod p

m Claim: reduces to finding a, b € Z such that ag + bp = 1. Why?@
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What is Easy to Compute Over Cyclic Groups?

Let's focus on Zp, = ({0,...,p —1},")

m Modular multiplication g1 - g» mod p
m Reduces to integer operations. How?
Compute g := g1 - g2 (over Z) using integer multiplication
Reduce g mod p using integer division
@Computable in O(n) time, where n:= ||p||
m Modular exponentiation: g2 mod p
m Reduces to modular multiplication. How? @
m Square and multiply (and reduce) algorithm
@Computable in O(n?) time
m Modular inverse: g=! mod p
m Claim: reduces to finding a, b € Z such that ag + bp = 1. Why?@
m Can use Extended Euclidean Algorithm to compute a and b
Computable in O(n?) time

ol

9 In general: group operation, exponentiation and inverse efficient
9/16



Recall the exponentiation map for cyclic group
L
T A N N (e M i i I

tay o f
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What is Hard to Compute Over Cyclic Groups?

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

. _O(dey
® Input: 772 Yenerator
(G, ¢, g) sampled by a group sampler S(1")
h:= g? for a < Z,

m Solution: a
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Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

. _O(dey
m Input: 72 Yenerator
(G, ¢, g) sampled by a group sampler S(1")
h:= g? for a < Z,

m Solution: a

Assumption 1 (DLog assumption in G w.r.to S...)

. holds if solving the DLog problem in G w.r.to S is hard for all PPT
inverters Inv. That is, for all Inv, the following is negligible:

o(n) = . Z7g)25(1" [Inv((G, 4, g),8°) = a]
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What is Hard to Compute Over Cyclic Groups?

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

. _O(dey
m Input: 72 Yenerator
(G, ¢, g) sampled by a group sampler S(1")
h:= g? for a < Z,

m Solution: a

Assumption 1 (DLog assumption in G w.r.to S...)

. holds if solving the DLog problem in G w.r.to S is hard for all PPT
inverters Inv. That is, for all Inv, the following is negligible:

o(n) := [Inv(l@478).87) = 4

(G, Z,g)eS(l"
a(—Zg
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Easy) pivision madolo p
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E.g: (Z;,p &)« S(1")

Sample random prime p such that ||p|| =~ n
Sample random integer p such that ||p|| = n
Test whether p prime using (say) Miller-Rabin text
Randomised test, runs in roughly O(n®) time for negligible error

11/16



Efficient Group Samplers Exist

E.g.: (Z),p,g) < S(1")

Sample random prime p such that ||p|| = n

Sample random integer p such that ||p|| = n

Test whether p prime using (say) Miller-Rabin text

Randomised test, runs in roughly O(n®) time for negligible error

Sample a random generator

Sample a random g € {0,...,p— 1}

Test whether g is a generator

@ Efficient if factorisation of p — 1 known

11/16



Efficient Group Samplers Exist

E.g.: (Z),p,g) < S(1")

Sample random prime p such that ||p|| = n

Sample random integer p such that ||p|| = n

Test whether p prime using (say) Miller-Rabin text

Randomised test, runs in roughly O(n®) time for negligible error

Sample a random generator

Sample a random g € {0,...,p— 1}

Test whether g is a generator

@ Efficient if factorisation of p — 1 known

m Note: sample random generator =—> sample random group
element via “isomorphism”

! 2
O?W@a\ Tq®)=q \}w?%g?gm
- @(“J{) .SH G
(e y e g
| |

e M0

11/16



Task: key exchange (

against

s ML/A

%'NEN} Key Exchange Nl Basic Group Theory
AN, ———————=—

11/16



Diffie-Hellman Key-Exchange Protocol

Alice Bob

Protocol 1

12/16



Diffie-Hellman Key-Exchange Protocol

Alice Bob

Protocol 1

12/16



Diffie-Hellman Key-Exchange Protocol

((\/ P; g)‘(’ gU")
A<JZP,hA':9a

Protocol 1

12/16



Diffie-Hellman Key-Exchange Protocol

(@ p. )5t
a<fzp,hA':9a

oO
f@ ©0.9), 0, Cj
Alice Bob

Protocol 1

12/16



Diffie-Hellman Key-Exchange Protocol

((\/ P; g)‘(’ gU")
A<JZP,hA':9a

OO
Alice Bob
Protocol 1
Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

12/16



Diffie-Hellman Key-Exchange Protocol

((\/ P; g)‘(’ gU")
A<JZP,hA':9a

q%@

Alice Bob

Protocol 1

Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

12/16



Diffie-Hellman Key-Exchange Protocol

((\/ P; g)‘(’ gU")
A<JZP,hA':9a

()

, (@/ P, 9), 0y Y
e, ¢’
< -~

‘@

Alice Bob
Protocol 1
Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

12/16



Diffie-Hellman Key-Exchange Protocol

((\/ P; g)‘(’ gU")
A<JZP,hA':9a
Fp=ng,

o, °

, (@/ P, 9), 0y Y
e, ¢’
< -~

‘@

Alice Bob
Protocol 1
Alice—Bob: Send ((G, ¥4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

Alice<—Bob: Send hg := g for b + 7,

12/16



Diffie-Hellman Key-Exchange Protocol
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Alice Bob
Protocol 1
Alice—Bob: Send ((G, 4, g), ha := g?), where (G, ¢, g) < S(1")
and a < Zy

Alice«Bob: Send hg := g? for b + 7,
Alice outputs ga':= (hg)?; Bob outputstkg = (ha)®

m Correctness of key generation:
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m What does Eve see? The transcript is (ha 1= g2, hg = g?)
.What if DLog problem is easy over G?

AThen Eve can invert hy to get a and compute k = h}

.Is DLog problem being hard sufficient?

/\No, what if Eve can compute g2 given g2 and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem
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When is it Secret Against Eavesdroppers?

Gr.ye s 2 Gry
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8

m What does Eve see? The transcript is (ha := g2, hg :== gb)
@What if DLog problem is easy over G?

AThen Eve can invert hy to get a and compute k = h}
@)s DLog problem being hard sufficient?

/\No, what if Eve can compute g2 given g2 and gb?
m This is the “computational Diffie-Hellman™ (CDH) problem

@)1s CDH problem being hard sufficient?

AWhat if Eve can distinguish g2 from random group elements?
m There exist such groups!
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When is it Secret Against Eavesdroppers?...

Assumption 2 (Decisional DH (DDH) assumption in G w.r.to S-- )

- holds if for all PPT distinguishers D, the following is negligible:
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Secrecy requirement is same as the assumption!
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Theorem 1

Diffie-Hellman key-exchange is computationally secret against
eavesdroppers under the DDH assumption in G w.r.to S.

Proof

Secrecy requirement is same as the assumption!

Exercise 6
But | did slightly cheat! Figure out where.
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m What if Eve is an active adversary?
m Recall that active Eve can intercept/tamper messages
AThere is a person-in-the-middle attack!

m Pretends to be Alice to Bob and Bob to Alice
m Eve sets up two separate key exchanges with Alice and Bob

/\Insecure against active adversary

15/16



m Key exchange against eavesdroppers
m Modelled key exchange setting and security —

16/16



m Key exchange against eavesdroppers
m Modelled key exchange setting and security

m Diffie-Hellman key exchange protocol ., » ‘P =g =gy 9w g
- ﬁh G :

m Based security on the DDH assumption ﬁ‘( @ o
& =0 @n.é q &

Kf\u.év, i

16/16



m Key exchange against eavesdroppers
m Modelled key exchange setting and security

e Ly 2
m Diffie-Hellman key exchange protocol ., = N OB Lzﬂg‘ﬂ 9= EN

m Based security on the DDH assumption f;ﬂ[ @y T T 6
. Con . - )
Q.'.é’ ‘(/ ](wu):;a KQ.'.ég/g >4

y- Takeaway: structure vs hardness

Structure is useful for protocol design and proofs
Also makes it susceptible to algorithms hatder

I«Zg—e(c\n ang
rudvrek

16/16



Recap/Next Lecture

m Key exchange against eavesdroppers

m Modelled key exchange setting and security

m Diffie-Hellman key exchange protocol . 1/7 $,0) =g =gy 9w g

N 7978 K :

m Based security on the DDH assumptlonq @*’ ey g G :

+ T . 9,
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7 Takeaway: structure vs hardness

Structure is useful for protocol design and proofs
Also makes it susceptible to algorithms |, jc4o¢
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m Next lecture: public-key encryption (PKE) f ;
~0OW
fey-exchang

—

m Syntax and security
m Relationship with key-exchange
m Elgamal PKE
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