

CS409m: Introduction to Cryptography

Lecture 12 (24/Sep/25)

Instructor: Chethan Kamath

Announcements

- Mid-sem cribs session
- 12:30-14:30 Monday (19/Sep)
- View your answer sheet 14:00-16:00 on Friday (26/Sep) in CC305
- Submit cribs online by Monday (29/Sep., 23:59)

Assignment 4 (ungraded) will be released on Friday (26/Sep)

Recall from Last Module

- We learnt: secure communication in the shared-key setting
- Primitives encountered: PRG, PRF, MAC
- Computational hardness assumptions: subset-sum problem

CPA-SKE MAC
PRED
PRG
Subset sum

CCA-SKE

Recall from Last Module

- We learnt: secure communication in the shared-key setting
- Primitives encountered: PRG, PRF, MAC
- Computational hardness assumptions: subset-sum problem
- Key conceptual takeaways:
 - Threat modelling
 - Computational security

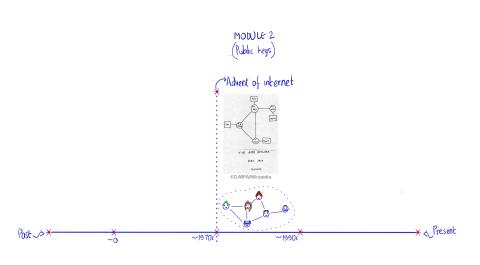
 - What design choices lead to vulnerability?

CCA-SKE

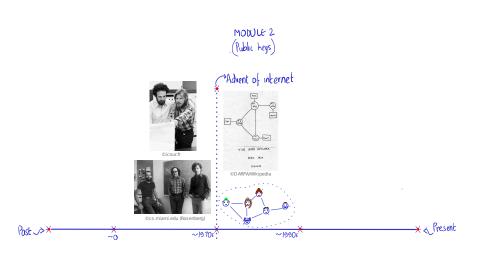
Recall from Last Module

- We learnt: secure communication in the shared-key setting
- Primitives encountered: PRG, PRF, MAC
- Computational hardness assumptions: subset-sum problem
- Key conceptual takeaways:
 - Threat modelling
 - Computational security
 - What design choices lead to vulnerability?
- What design choices lead to vullerability
- Key tools: security reduction, hybrid argument

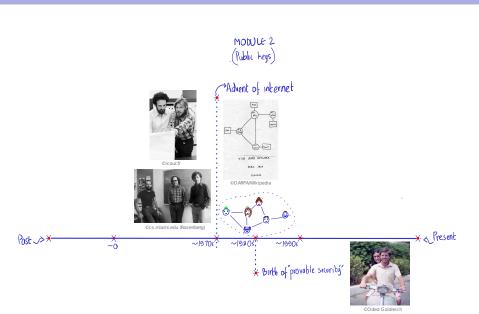
This Module



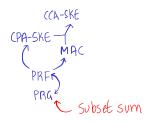
This Module



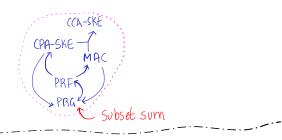
This Module



■ Minicrypt to Cryptomania

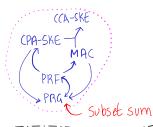


■ Minicrypt to Cryptomania

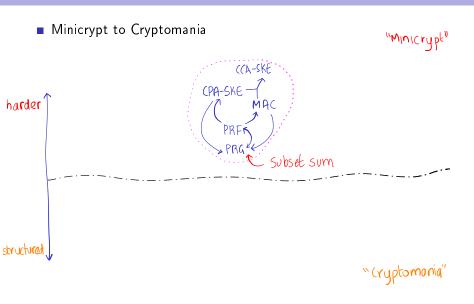


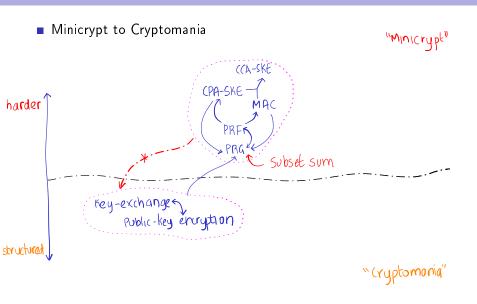
■ Minicrypt to Cryptomania

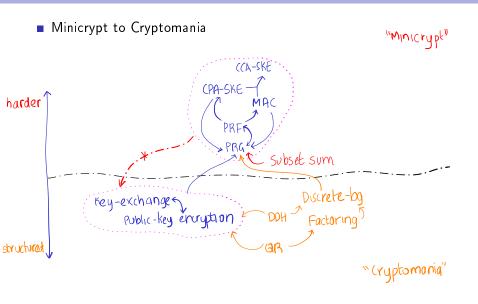
"MINICRYPE"

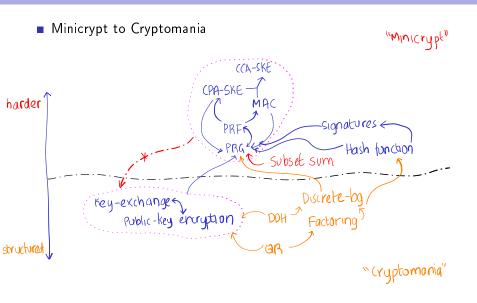


"Cryptomania"









Minicrypt to Cryptomania "MINICRYPE" CCA-SKE harder 1 Subset sum key-exchange← Public-key encryption

Today: how does one establish a shared key in the first place?

structured

Plan for Today's Lecture

■ Task: key exchange

■ Threat model: computational secrecy against eavesdroppers

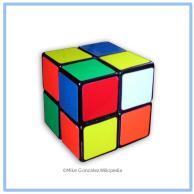
Plan for Today's Lecture

■ Task: key exchange

■ Threat model: computational secrecy against eavesdroppers

Key Exchange

Basic Group Theory



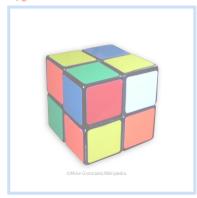
Plan for Today's Lecture

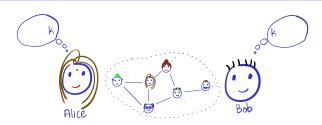
■ Task: key exchange

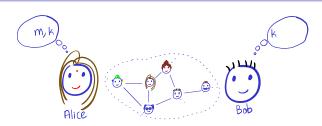
■ Threat model: computational secrecy against eavesdroppers

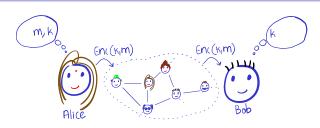
key Exchange

Basic Group Theory

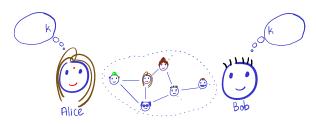




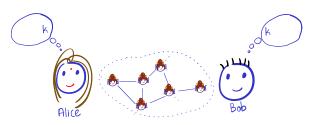




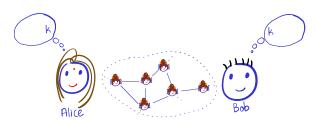




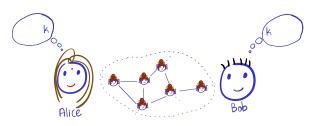
■ The setting: Alice and Bob want to establish a shared key $k \in \{0,1\}^n$



■ The setting: Alice and Bob want to establish a shared key $k \in \{0,1\}^n$ in presence of an eavesdropper Eve



- The setting: Alice and Bob want to establish a shared key $k \in \{0,1\}^n$ in presence of an eavesdropper Eve
- Alice and Bob execute a protocol, at the end of which they will have established a key

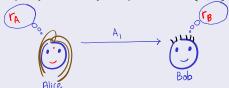


- The setting: Alice and Bob want to establish a shared key $k \in \{0,1\}^n$ in presence of an eavesdropper Eve
- Alice and Bob execute a protocol, at the end of which they will have established a key
- Key Exchange IRL: HTTPs, TLS, SSH

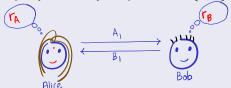
Definition 1 (Key Exchange Protocol)

Definition 1 (Key Exchange Protocol)

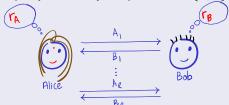
Definition 1 (Key Exchange Protocol)



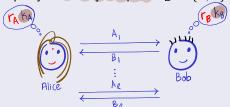
Definition 1 (Key Exchange Protocol)



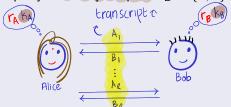
Definition 1 (Key Exchange Protocol)



Definition 1 (Key Exchange Protocol)

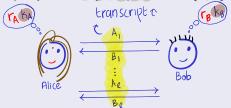


Definition 1 (Key Exchange Protocol)



Definition 1 (Key Exchange Protocol)

A (two-party) key-exchange protocol Π is a probabilistic protocol between two parties A and B at the end of which party A locally outputs $k_A \in \{0,1\}^n$ and party B locally outputs $k_B \in \{0,1\}^n$.

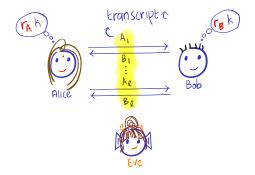


Correctness of key exchange: for every $n \in \mathbb{N}$

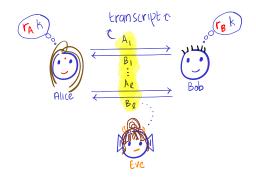
$$\Pr_{(k_A,k_B,\tau)\leftarrow\Pi(1^n)}[k_A=k_B]=1$$

How to Define Security?

■ Intuitively, what is the security requirement?



- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol



- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol Π is computationally secret against eavesdroppers if for every PPT eavesdropper Eve the following is negligible.

$$\delta(n) := \left| \Pr_{\substack{(k, \underline{\tau}) \leftarrow \Pi(1^n) \\ r \leftarrow \{0, 1\}^n}} [\mathsf{Eve}(\tau, \underline{k}) = 0] - \Pr_{\substack{(k, \underline{\tau}) \leftarrow \Pi(1^n) \\ r \leftarrow \{0, 1\}^n}} [\mathsf{Eve}(\underline{\tau}, \underline{r}) = 0] \right|$$

- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol Π is computationally secret against eavesdroppers if for every PPT eavesdropper Eve the following is negligible.

$$\delta(n) := \left| \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{``Real work''}}} [\mathsf{Eve}(\tau, k) = 0] - \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{``Real work''}}} [\mathsf{Eve}(\tau, r) = 0] \right|$$

- Intuitively, what is the security requirement?
 - Key k should be "hidden" given only transcript τ of the protocol

Definition 2 (Secrecy Against Eavesdroppers)

A key-exchange protocol Π is computationally secret against eavesdroppers if for every PPT eavesdropper Eve the following is negligible.

$$\delta(n) := \left| \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{\downarrow k, τ} \leftarrow \Pi(1^n)$}} \left[\text{Eve}(\tau, k) = 0 \right] - \Pr_{\substack{(k, \tau) \leftarrow \Pi(1^n) \\ \text{$r \leftarrow \{0,1\}^n$}}} \left[\text{Eve}(\tau, k) = 0 \right] \right|$$

$$\text{``Rankom work''}$$

Exercise 1

How can an unbounded eavesdropper Eve break secrecy?

Plan for Today's Lecture

■ Task: key exchange

■ Threat model: computational secrecy against eavesdroppers

Key Exchange

Basic Group Theory

? What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?

- **?** What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

- What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

49,,9269:9,.9269

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

- What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

$$\forall g_1, g_2, g_3 \in G : (g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$$

- \bigcirc What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group $\mathbb G$ is a set $\mathcal G$ with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

- **?** What are some properties of $(\{0,1\}^n, \oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group $\mathbb G$ is a set $\mathcal G$ with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

- **?** What are some properties of $(\{0,1\}^n, \oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group $\mathbb G$ is a set $\mathcal G$ with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

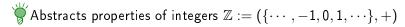
 \mathbb{G} Abelian if it/additionally satisfies 5) commutativity.

- **?** What are some properties of $(\{0,1\}^n,\oplus)$ we have exploited?
 - Closure of \oplus , self-inverse $(k \oplus k = 0^n)$, associativity?

Definition 3 (Group axioms)

A group \mathbb{G} is a set \mathcal{G} with a binary operation \cdot satisfying: 1) closure 2) associativity, 3) existence of identity and 4) existence of inverse.

G Abelian if it additionally satisfies 5) commutativity.



Exercise 2

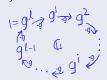
- Show that $\mathbb{Z} := (\{\cdots, -1, 0, 1, \cdots\}, +)$ is a group
- What is the group corresponding to $2 \times 2 \times 2$ Rubik's cube?
 - lacksquare Describe the set ${\mathcal G}$ and the operation \cdot

- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - ★ Can be represented on a digital computer

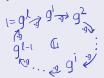
- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - ★ Can be represented on a digital computer
- Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$

- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - ★ Can be represented on a digital computer
- riangle Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$
- lacktriangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - lacksquare That is $\left\{g^1=g,g^2,\ldots,g^{\ell-1},g^\ell=1
 ight\}=\mathcal{G}$

- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - * Can be represented on a digital computer
- Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$
- \triangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - That is $\{g^1 = g, g^2, \dots, g^{\ell-1}, g^{\ell} = 1\} = \mathcal{G}$



- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - Can be represented on a digital computer
- Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$
- \triangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - That is $\{g^1 = g, g^2, \dots, g^{\ell-1}, g^{\ell} = 1\} = \mathcal{G}$



- "Isomorphism" between $(\mathbb{Z}_{\ell},+)$ and \mathbb{G}
- (?) Is $(\{0,1\}^n,\oplus)$ cyclic? What is the maximum order of any element?

- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - Can be represented on a digital computer
- Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$
- \triangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - That is $\{g^1 = g, g^2, \dots, g^{\ell-1}, g^{\ell} = 1\} = \mathcal{G}$

- "Isomorphism" between $(\mathbb{Z}_{\ell},+)$ and \mathbb{G}
- (?) Is $(\{0,1\}^n,\oplus)$ cyclic? What is the maximum order of any element?

- \triangle Order of the group, $|\mathcal{G}|$.
 - We're interested in groups of *finite* order
 - Can be represented on a digital computer
- Order of an element g: smallest $\ell \in \mathbb{N}$ such that $g^\ell := g \cdot \ldots \cdot g = 1$
- \triangle Cyclic group: there exists a "generator" $g \in \mathcal{G}$ with order $\ell = |\mathcal{G}|$
 - That is $\{g^1 = g, g^2, \dots, g^{\ell-1}, g^{\ell} = 1\} = \mathcal{G}$

$$0 = k + \frac{1}{1 + 1} + \frac{1}{2} + \frac{$$

- "Isomorphism" between $(\mathbb{Z}_{\ell},+)$ and \mathbb{G}
- (?) Is $(\{0,1\}^n,\oplus)$ cyclic? What is the maximum order of any element?

Exercise 3 (Lagrange's theorem)

Prove that the order of an element divides order of the (finite) group.

Exercise 4

For a group $\mathbb G$ of order ℓ with generator g, show using group axioms that for all $a,b\in\mathbb Z_\ell$, $(g^a)^b=g^{ab}=(g^b)^a$

Exercise 5

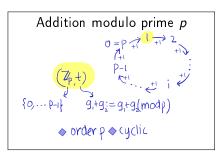
Prove that a prime-order group is cyclic. Are all cyclic groups of prime order?

Addition modulo prime p

$$\{0, \dots P-1\}$$
 $g_i+g_i=g_i+g_i \pmod{p}$

Addition modulo prime p

$$\{0, \dots P-1\}$$
 $g_1+g_2=g_1+g_2 \pmod{p}$
 \Rightarrow order $p \Rightarrow \text{cyclic}$



Addition modulo prime
$$p$$

$$0 = P \xrightarrow{f} P \xrightarrow{$$

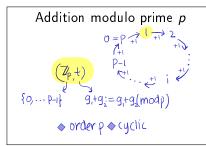
Multiplication modulo prime p

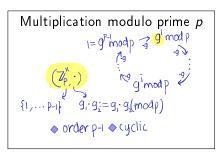
$$\{1, \dots P-1\}$$
 $g_i \cdot g_i = g_i \cdot g_i \pmod{p}$

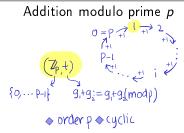
Addition modulo prime p $0 = P \xrightarrow{f_1} P_{+1} \xrightarrow{f_2} P_{-1}$ $\{0, \dots P_1\} \qquad g_1 + g_2 = g_1 + g_2 \pmod{p}$ $\bullet \text{ order } p \bullet \text{ cyclic}$

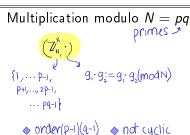
Multiplication modulo prime p

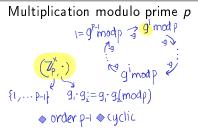
$$\{1, \dots P-1\}$$
 $g_i \cdot g_i = g_i \cdot g_i \mod p$
 $\Rightarrow \text{ order } p-1 \Rightarrow \text{ cyclic}$

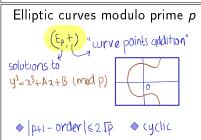












Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How? ?

Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How? ?
 - lacksquare Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - \bigcirc Computable in $\~O(n)$ time, where $n:=\|p\|$

Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

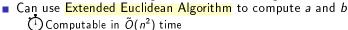
- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How? <a>(?)
 - lacksquare Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - Computable in $\tilde{O}(n)$ time, where $n:=\|p\|$
- Modular exponentiation: $g^a \mod p$
 - Reduces to modular multiplication. How?

Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How?
 - lacksquare Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - Computable in $\tilde{O}(n)$ time, where $n:=\|p\|$
- Modular exponentiation: $g^a \mod p$
 - Reduces to modular multiplication. How?
 - Square and multiply (and reduce) algorithm
 - Computable in $\tilde{O}(n^2)$ time
- Modular inverse: $g^{-1} \mod p$
 - Claim: reduces to finding $a, b \in \mathbb{Z}$ such that ag + bp = 1. Why? 🕙

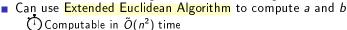
Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How? ?
 - lacktriangledown Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - Computable in $\tilde{O}(n)$ time, where $n:=\|p\|$
- Modular exponentiation: $g^a \mod p$
 - Reduces to modular multiplication. How?
 - Square and multiply (and reduce) algorithm
 - Computable in $\tilde{O}(n^2)$ time
- Modular inverse: $g^{-1} \mod p$
 - Claim: reduces to finding $a, b \in \mathbb{Z}$ such that ag + bp = 1. Why? **?**



Let's focus on
$$\mathbb{Z}_p^* = (\{0,\ldots,p-1\},\cdot)$$

- Modular multiplication $g_1 \cdot g_2 \mod p$
 - Reduces to integer operations. How? ?
 - lacksquare Compute $g:=g_1\cdot g_2$ (over $\mathbb Z$) using integer multiplication
 - 2 Reduce g mod p using integer division
 - $ilde{\mathbb{O}}$ Computable in $ilde{O}(n)$ time, where $n:=\|p\|$
- Modular exponentiation: $g^a \mod p$
 - Reduces to modular multiplication. How?
 - Square and multiply (and reduce) algorithm
 - \tilde{O} Computable in $\tilde{O}(n^2)$ time
- Modular inverse: $g^{-1} \mod p$
 - Claim: reduces to finding $a, b \in \mathbb{Z}$ such that ag + bp = 1. Why? **?**



In general: group operation, exponentiation and inverse efficient

Recall the exponentiation map for cyclic group

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in \mathbb{G} w.r.to S)

- Input: generator1 (G, ℓ , g) sampled by a group sampler S(1")

 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_\ell$
- Solution: a

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

- Input: \nearrow generator

 1 (G, ℓ , g) sampled by a group sampler $S(1^n)$ 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_{\ell}$
- Solution: a

Assumption 1 (DLog assumption in G w.r.to S...)

... holds if solving the DLog problem in \mathbb{G} w.r.to S is hard for all PPT inverters Inv. That is, for all Inv, the following is negligible:

$$\delta(n) := \Pr_{\substack{(\mathbb{G}, \ell, g) \leftarrow \mathsf{S}(1^n) \\ \mathsf{a} \leftarrow \mathbb{Z}_{\ell}}} [\mathsf{Inv}((\mathbb{G}, \ell, g), g^\mathsf{a}) = \mathsf{a}]$$

Recall the exponentiation map for cyclic group

Definition 5 (Discrete logarithm (DLog) problem in G w.r.to S)

- Input: \nearrow generator

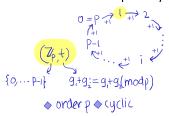
 1 (G, ℓ , g) sampled by a group sampler $S(1^n)$ 2 $h := g^a$ for $a \leftarrow \mathbb{Z}_{\ell}$
- Solution: a

Assumption 1 (DLog assumption in G w.r.to S...)

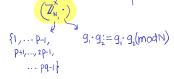
... holds if solving the DLog problem in \mathbb{G} w.r.to S is hard for all PPT inverters Inv. That is, for all Inv, the following is negligible:

$$\delta(n) := \Pr_{\substack{(\mathbb{G},\ell,g) \leftarrow \mathsf{S}(1^n) \\ a \leftarrow \mathbb{Z}_{\ell}}} [\mathsf{Inv}((\mathcal{C}_{\mathscr{A}}),g^a) = a]$$

Addition modulo prime p

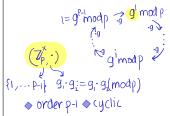


Multiplication modulo N = pq

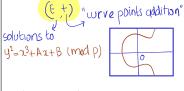


♦ order(p-1)(q-1) ♦ not cyclic

Multiplication modulo prime *p*



Elliptic curves modulo prime p



Addition modulo prime p

$$0 = P \xrightarrow{f_1} Q \xrightarrow{f_2} Q \xrightarrow{f_2} Q \xrightarrow{f_1} Q \xrightarrow{f_2} Q \xrightarrow{f_2} Q \xrightarrow{f_2} Q \xrightarrow{f_1} Q \xrightarrow{f_2} Q \xrightarrow{f_2} Q \xrightarrow{f_1} Q \xrightarrow{f_2} Q \xrightarrow{f_$$

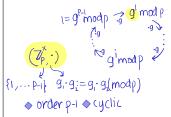
Multiplication modulo N = pq

$$\{1, \dots P_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N}$$

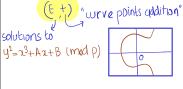
$$\{1, \dots P_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N}$$

$$\dots P_{-1}\}$$

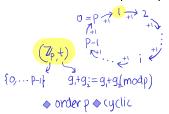
Multiplication modulo prime p



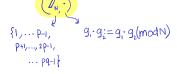
Elliptic curves modulo prime p



Addition modulo prime p

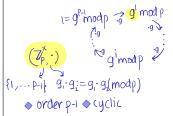


Multiplication modulo N = pq

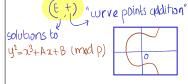


♦ order(p-1)(q-1) ♦ not cyclic

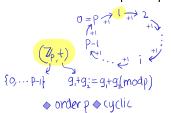
Multiplication modulo prime p



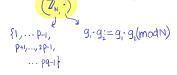
Elliptic curves modulo prime p



Addition modulo prime p



Multiplication modulo N = pq

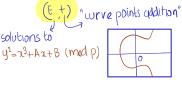


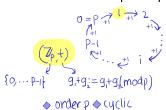
◆ order(p-1)(q-1) ◆ not cyclic

Multiplication modulo prime p

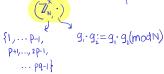


Elliptic curves modulo prime p





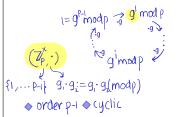
Multiplication modulo N = pq



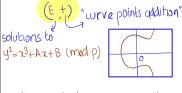
♦ order(p-1)(q-1) ♦ not cyclic

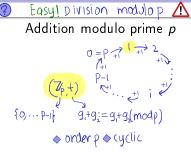
@ Believed hard; I sub-exponential algos

Multiplication modulo prime p

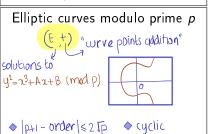


Elliptic curves modulo prime p





Multiplication modulo N = pq $primes \nearrow$ $\{1, \dots P_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N}$ $P^{+1}, \dots, 2P^{-1}, \qquad \dots P^{q-1}\}$

◆ order(p-1)(q-1) ◆(not)cyclic Hard in its cyclic subgroup 

Believed hard; no known sub-exp. algo

Efficient Group Samplers Exist

E.g.:
$$(\mathbb{Z}_p^*, p, g) \leftarrow \mathsf{S}(1^n)$$

- 1 Sample random prime p such that $||p|| \approx n$
 - **1** Sample random integer p such that $||p|| \approx n$
 - **Test** whether p prime using (say) Miller-Rabin text
 - Randomised test, runs in roughly $\tilde{O}(n^3)$ time for negligible error

Efficient Group Samplers Exist

E.g.:
$$(\mathbb{Z}_p^*, p, g) \leftarrow \mathsf{S}(1^n)$$

- 1 Sample random prime p such that $\|p\| \approx n$
 - **Sample** random *integer* p such that $||p|| \approx n$
 - 2 Test whether p prime using (say) Miller-Rabin text (1) Randomised test, runs in roughly $\tilde{O}(n^3)$ time for negligible error
- 2 Sample a random generator
 - 1 Sample a random $g \in \{0, \dots, p-1\}$
 - 2 Test whether g is a generator
 - Efficient if factorisation of p-1 known

Efficient Group Samplers Exist

E.g.:
$$(\mathbb{Z}_p^*, p, g) \leftarrow \mathsf{S}(1^n)$$

- 1 Sample random prime p such that $\|p\| \approx n$
 - **Sample** random *integer* p such that $||p|| \approx n$
 - **Test** whether p prime using (say) Miller-Rabin text (1) Randomised test, runs in roughly $\tilde{O}(n^3)$ time for negligible error
- 2 Sample a random generator
 - **1** Sample a random $g \in \{0, \dots, p-1\}$
 - - $igcup \mathsf{Efficient}$ if factorisation of p-1 known
 - Note: sample random generator ⇒ sample random group element via "isomorphism"

$$0 = k + \frac{1}{1 + 1} + \frac{1}{2} + \frac{$$

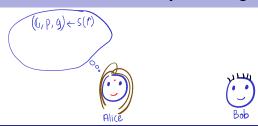
Plan for Today's Lecture

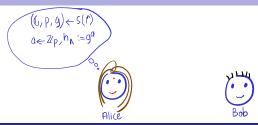
■ Task: key exchange

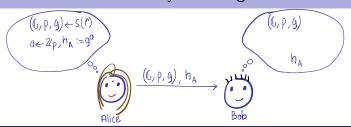
■ Threat model: computational secrecy against eavesdroppers

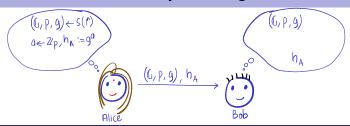
Key Exchange

Basic Group Theory



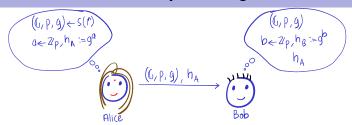






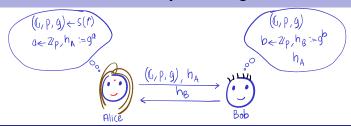
Protocol 1

Alice \to Bob: Send $((\mathbb{G},\ell,g),h_A:=g^a)$, where $(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)$ and $a\leftarrow \mathbb{Z}_\ell$



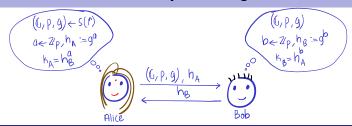
Protocol 1

I AliceoBob: Send $((\mathbb{G},\ell,g),h_A:=g^a)$, where $(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)$ and $a\leftarrow \mathbb{Z}_\ell$

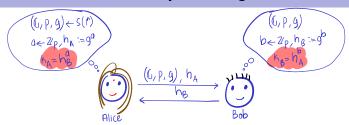


Protocol 1

Alice \to Bob: Send $((\mathbb{G},\ell,g),h_A:=g^a)$, where $(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)$ and $a\leftarrow \mathbb{Z}_\ell$

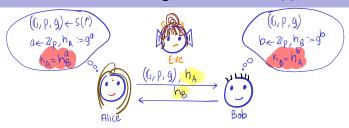


- I Alice \to Bob: Send $((\mathbb{G},\ell,g),h_A:=g^a)$, where $(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)$ and $a\leftarrow \mathbb{Z}_\ell$
- 2 Alice \leftarrow Bob: Send $h_B := g^b$ for $b \leftarrow \mathbb{Z}_\ell$

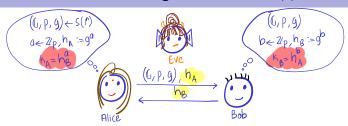


- **1** Alice→Bob: Send $((\mathbb{G}, \ell, g), h_A := g^a)$, where $(\mathbb{G}, \ell, g) \leftarrow \mathsf{S}(1^n)$ and $a \leftarrow \mathbb{Z}_{\ell}$
- 2 Alice \leftarrow Bob: Send $h_B := g^b$ for $b \leftarrow \mathbb{Z}_\ell$
- 3 Alice outputs $k_A := (h_B)^a$; Bob outputs $k_B := (h_A)^b$
- Correctness of key generation:

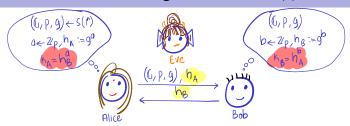
$$k_{A} = h_{B}^{a} = (g^{b})^{q} = g^{ab} = (g^{a})^{b} = h_{A}^{b} = k_{B}$$



• What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$

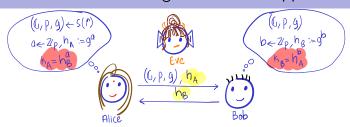


- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- What if DLog problem is easy over G?

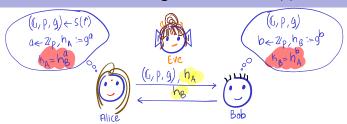


- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- ? What if DLog problem is easy over G?

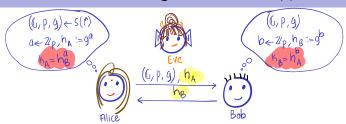
 \bigwedge Then Eve can invert h_A to get a and compute $k=h_B^a$



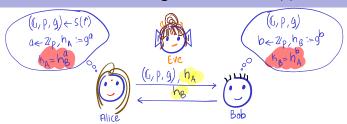
- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- What if DLog problem is easy over G?
 - \bigwedge Then Eve can invert h_A to get a and compute $k = h_B^a$
- ②Is DLog problem being hard sufficient?



- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- What if DLog problem is easy over G?
 - \bigwedge Then Eve can invert h_A to get a and compute $k = h_B^a$
- ②Is DLog problem being hard sufficient?
 - \bigwedge No, what if Eve can compute g^{ab} given g^a and g^b ?
 - This is the "computational Diffie-Hellman" (CDH) problem



- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- What if DLog problem is easy over G?
 - \bigwedge Then Eve can invert h_A to get a and compute $k = h_B^a$
- Is DLog problem being hard sufficient?
 - \bigwedge No, what if Eve can compute g^{ab} given g^a and g^b ?
 - This is the "computational Diffie-Hellman" (CDH) problem
- ② Is CDH problem being hard sufficient?



- What does Eve see? The transcript is $(h_A := g^a, h_B := g^b)$
- $extbf{ extit{Q}}$ What if DLog problem is easy over $extbf{ extit{G}}$?
- Is DLog problem being hard sufficient?

 - This is the "computational Diffie-Hellman" (CDH) problem
- ② Is CDH problem being hard sufficient?
 - - There exist such groups!

Assumption 2 (Decisional DH (DDH) assumption in \mathbb{G} w.r.to S...)

· · · holds if for all PPT distinguishers D, the following is negligible:

$$\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^{ab})=0]-\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b,r\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^r)=0]$$

Assumption 2 (Decisional DH (DDH) assumption in \mathbb{G} w.r.to $S \cdots$)

· · · holds if for all PPT distinguishers D, the following is negligible:

$$\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^{ab})=0]-\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b,r\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^r)=0]$$

Theorem 1

Diffie-Hellman key-exchange is computationally secret against eavesdroppers under the DDH assumption in \mathbb{G} w.r.to \mathbb{S} .

Proof.

Secrecy requirement is same as the assumption!

Assumption 2 (Decisional DH (DDH) assumption in \mathbb{G} w.r.to S...)

· · · holds if for all PPT distinguishers D, the following is negligible:

$$\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^{ab})=0]-\Pr_{\substack{(\mathbb{G},\ell,g)\leftarrow \mathsf{S}(1^n)\\a,b,r\leftarrow \mathbb{Z}_\ell}}[\mathsf{D}(g^a,g^b,g^r)=0]$$

Theorem 1

Diffie-Hellman key-exchange is computationally secret against eavesdroppers under the DDH assumption in \mathbb{G} w.r.to \mathbb{S} .

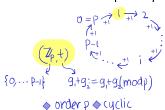
Proof.

Secrecy requirement is same as the assumption!

Exercise 6

But I did slightly cheat! Figure out where.

Addition modulo prime p



Multiplication modulo N = pq

$$\{1, \dots P_{-1}, \qquad g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

$$P+1, \dots, 2P-1, \qquad \dots Pq-1\}$$

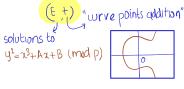
◆ order(p-1)(q-1) ◆ not cyclic

Multiplication modulo prime p

$$\begin{array}{c}
1 = g^{p} \mod p \xrightarrow{g^{q}} g^{1} \mod p \\
\downarrow^{q_{g}} \\
\downarrow^{q_{g}} \\
\{1, \dots p-1\} \quad g \cdot g := g \cdot g \pmod p
\end{array}$$

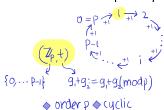
$$\begin{array}{c}
\downarrow^{q_{g}} \\
\downarrow^{q$$

Elliptic curves modulo prime p



Easy! Since Plog is easy <a>A

Addition modulo prime p



Multiplication modulo N = pq

$$\{1, \dots P_{-1}, \qquad g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

$$\{1, \dots P_{-1}, \qquad g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

$$\dots p_{q-1}\}$$

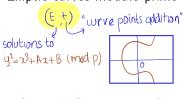
♦ order(p-1)(q-1)
♦ not cyclic

Multiplication modulo prime p

$$l = g^{P_1} \mod p \xrightarrow{g^1} g^{1} \mod p$$

$$[g] \qquad [g] \qquad$$

Elliptic curves modulo prime p



♦ | p+1 - order | ≤ 2 \(\text{F} \)
♦ cyclic

Addition modulo prime p

$$0 = P \xrightarrow{+1} 2$$

$$7 \xrightarrow{+1} P \xrightarrow{+1} 2$$

$$P \xrightarrow{+1} P \xrightarrow{+1} 1 \xrightarrow{+1} 2$$

$$\{0, \dots P - 1\} \qquad g_1 + g_2 = g_1 + g_2 \pmod{p}$$

$$\Rightarrow \text{ order } p \Leftrightarrow (y \in \text{lic})$$

Multiplication modulo N = pq

$$\{1, \dots, p_{-1}, g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

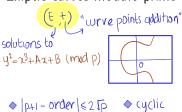
$$\{1, \dots, p_{-1}, g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

$$\dots p_{q-1}\}$$

◆ order(p-1)(a-1) ◆ not cyclic

Multiplication modulo prime p

Elliptic curves modulo prime p



Addition modulo prime p

$$0 = P \xrightarrow{+1} 2$$

$$\uparrow + 1$$

$$P - 1$$

$$\uparrow + 1$$

$$P - 1$$

$$\uparrow + 1$$

$$\downarrow +$$

Multiplication modulo N = pq

$$\{1, \dots P_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N}$$

$$\{1, \dots P_{-1}, \qquad g_i \cdot g_i = g_i \cdot g_i \pmod{N}$$

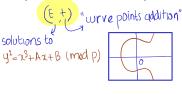
$$\dots P_{n-1}$$

◆ order(p-1)(q-1) ◆ not cyclic

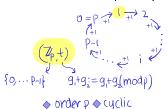
@ Easy! See Assignment 4 1

Multiplication modulo prime p

Elliptic curves modulo prime p



Addition modulo prime p



Multiplication modulo N = pq

$$\{1, \dots P_{-1}, \qquad g_1 \cdot g_2 = g_1 \cdot g_2 \pmod{N}$$

$$P+1, \dots, 2P-1, \qquad \dots Pq-1\}$$

♦ order(p-1)(q-1) ♦ (not)cyclic

Hard in its cyclic subgroup

@ Easy! See Assignment 4 1

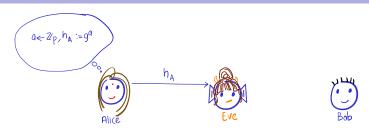
Multiplication modulo prime p

Elliptic curves modulo prime *p*

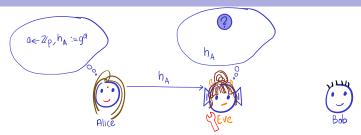
solutions to
$$y^2 = x^3 + Ax + B \pmod{p}$$

Believed hard

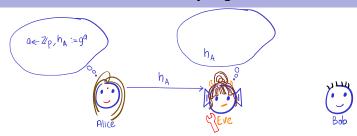
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages



- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

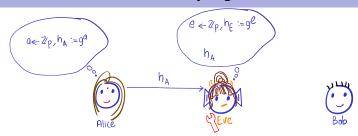


- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages



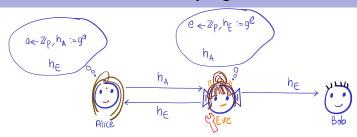
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



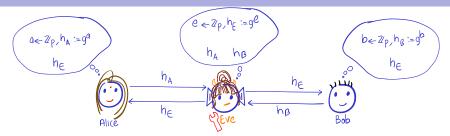
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



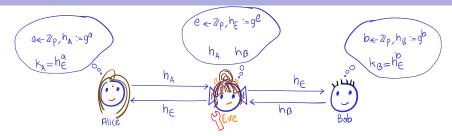
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



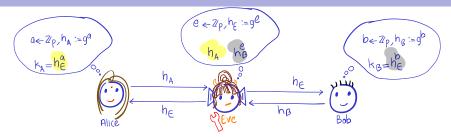
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



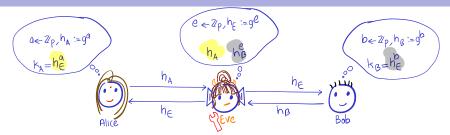
- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob



- What if Eve is an active adversary?
 - Recall that active Eve can intercept/tamper messages

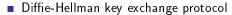
⚠There is a person-in-the-middle attack!

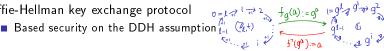
- Pretends to be Alice to Bob and Bob to Alice
- Eve sets up two separate key exchanges with Alice and Bob

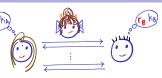
♠ Insecure against active adversary

- Key exchange against eavesdroppers
 - Modelled key exchange setting and security

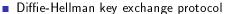
- Key exchange against eavesdroppers
 - Modelled key exchange setting and security

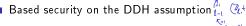






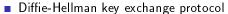
- Key exchange against eavesdroppers
 - Modelled key exchange setting and security

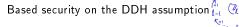




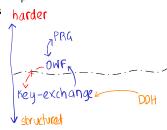
- e-Hellman key exchange protocol $g = k + \sqrt{1 + r^2} + \sqrt{$
- 💢 Takeaway: structure vs hardness
 - 1 Structure is useful for protocol design and proofs
 - Also makes it susceptible to algorithms

- Key exchange against eavesdroppers
 - Modelled key exchange setting and security





- 🛪 Takeaway: structure vs hardness
 - 1 Structure is useful for protocol design and proofs
 - 2 Also makes it susceptible to algorithms
- Next lecture: public-key encryption (PKE)
 - Syntax and security
 - Relationship with key-exchange
 - Elgamal PKE



- Basic group theory and algorithmic number theory can be found in [KL14, Appendix B]. MIT 6875 handout is also an excellent resource.
- 2 More motivation about groups can be found in Keith Conrad's expository paper on the topic
- [KL14, Chapter 11] for more details on key exchange
- 4 Read the seminal paper by Diffie and Hellman [DH76] for a description of the namesake key-exchange. In general this paper is a very insightful read.
- **5** Boneh's survey [Bon98] is an excellent source on the DDH problem.

The decision diffie-hellman problem.

In ANTS, volume 1423 of Lecture Notes in Computer Science, pages 48-63. Springer, 1998.

Whitfield Diffie and Martin E. Hellman.

New directions in cryptography.

IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

Jonathan Katz and Yehuda Lindell.

Introduction to Modern Cryptography (3rd ed.).

Chapman and Hall/CRC, 2014.